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Abstract

A -design on v points is a set of v distinct subsets (blocks) of a
v-set such that any two different blocks meet in exactly ) points and
not all of the blocks have the same size. Ryser’s and Woodall’s A-
design conjecture states that every A-design can be obtained from a
symmetric design by a certain complementation procedure. A result
of Ryser and Woodall establishes that there exist two integers, r and
r*, such that each point in a A-design is in exactly = or 7* blocks.
The main result of the present paper is that the A-design conjecture
is true for A-designs with ged(r — 1,7* —1) = 7.

1 Introduction

Definition 1.1. Given integers A and v satisfying 0 < A < v, a A-design on
v points is a pair (X, B), where X is a set of cardinality v whose elements
are called points and B is a set of v distinct subsets of X whose elements
are called blocks, such that

(i) Forall A, Be B, A# B, |AnB|= ), and
(ii) There exist A, B € B such that |A| # |B].

Remark 1.2. If X is a v-set and B is a set of subsets of X such that any
two distinct subsets intersect in exactly A > 1 elements () fixed), then the
non-uniform Fisher inequality {14] asserts that |B| < v. Thus, )-designs
are eztremal set systems in this sense. They are the non-uniform analogue
of symmetric designs.

A-designs were first defined by Ryser [15] and Woodall [22]. The only
known examples of A-designs are obtained from symmetric designs by the
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following complementation procedure: Let (X,.4) be a symmetric (v, k, u)-
design with u # k/2 and fix A € A. Put B= {A}JU{AAB|B € A B #
A}, where A denotes the symmetric difference of sets. Then elementary
counting shows that (X, B) is a A-design with A = k — u. Any A-design
obtained in this manner is called a type-1 A-design.

The A-design conjecture of Ryser [15] and Woodall [22] states that all
A-designs are type-1. The conjecture was proven for A = 1 by deBruijn and
Erdés [4], for A = 2 by Ryser [15], for 3 < A < 9 by Bridges and Kramer [1],
(3], [12], for A = 10 by Seress {17], and for all remaining A < 34 by Weisz
[20]. S. S. Shrikhande and Singhi {19] proved the conjecture for prime A and
Seress [18] proved it when ) is twice a prime. Recently, Fiala (7], [8] proved
the conjecture for A-designs with only two block sizes for all A < 150.

Investigating the conjecture as a function of v rather than A, Tonin and
M. S. Shrikhande [10}, [11] proved the conjecture for v = p+1, 2p+1,3p+1,
and 4p + 1, where p is any prime. Also, Hein and Ionin [9] proved the
conjecture for v = 5p + 1, p # 2 or 8 (mod 15) prime, and Fiala [5], [6]
proved it for v = 6p+1, p prime, and v = 8p+1, p = 1 or 7 (mod 8) prime.
The conjecture has also been verified by computer for all v < 85 [23].

2 Preliminary results

Definition 2.1. Given a A-design (X, B) and z € X, the replication number
of z is |[{A € Blz € A}].

Ryser [15] and Woodall [22] independently proved the following theorem
concerning these replication numbers.

Theorem 2.2. If (X, B) is a A-design on v points, then there exists integers
r>1andr* >1, r #r*, such that every z € X has replication number r
orr* and v+ 7" = v+ 1. In addition, r and r* satisfy the equation

1 1 (v—=1)?
SR DR oy Gl ey oy @

We have the following results regarding these two replication numbers.
Theorem 2.3. (5], [6], [9], [10], [11] Let D be a A-design with replication
numbers v and r* and put g = ged(r - 1,7* - 1). Ifg=1,2,3,4,5,6, or 8,
then D is type-1.

This led to the following results.

Theorem 2.4. [5], [6], [9], (10], [11] All A-designs onv = p+1,2p+1,3p+
1,4p + 1, and 6p + 1 points, p any prime, are type-1. All A-designs on
v = 5p+1 points, p # 2 or 8 (mod 15) prime, are type-1. All A-designs on
v=28p+ 1 points, p=1 or 7 (mod 8) prime, are type-1.
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In the present paper, we prove the following result.

Theorem 2.5. Let D be a A-design on v points with replication numbers
T and r*. If ged(r — 1,7* — 1) =7, then D is type-1.

We prove Theorem 2.5 using the method of Ionin and Shrikhande from
(10] and [11]. However, whereas in [10] and [11] they were able to reduce
to the case of designs with at most two block sizes and in [5] and [6] they
were able to reduce to the case of designs with at most three block sizes,
we will have to consider designs with possibly four block sizes.

We will also need the following theorem concerning the replication num-
bers. It was first stated without proof in [23]. For a proof see [16].

Theorem 2.6. A A-design on v points with replication numbers r and r*
is type-1 if and only if r(r — 1)/(v —1) or r*(r* — 1)/(v — 1) is an integer.

Additionally, we will need the following results concerning the validity
of the A-design conjecture for certain values of A.

Theorem 2.7. [1], (3], (4], (12], [15], [17], [18], [19], [20] All A-designs with
A < 34, X prime, or \ twice prime are type-1.

3 The Ionin-Shrikhande method

Let D = (X, B) be A-design on v points. Then Theorem 2.2 implies that
every point of D has replication number r or r* for some integers r #
r*. Therefore, the underlying set X of our A-design is partitioned into
two subsets, £ and E*, of points having replication numbers r and r*,
respectively. Let |E| = e and |E*| = e*, so e + ¢* = v. Also, for each
A€eB,put7s=|ANE|and 7} = |[ANE*|, s0 74 + 74 = |A|. We will
frequently use the trivial inequalities 0 < 74 < e for all A.

The following simple relation among these parameters is the starting
point of the Ionin-Shrikhande method developed in [10].

Lemma 3.1. Let (X, B) be a A-design on v points with replication numbers
r and 7. Then the following equation holds for all A € B:

(r = 1)(|A| - 274) = (v ~ 1)(|A] = A - 74). )

Proof. Fixing A € B, we will count in two different ways all the pairs (z, B),
where z € X, B € B, B # A, and z € AN B. This gives us the equation
Ta(r—1)+74(r* — 1) = A(v — 1), which is easily transformed into equation
(2). ]
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Now, let g = ged(r — 1,7* — 1). Then, since (r= 1)+ (r* —1)=v -1
by Theorem 2.2, we also have g = ged(r — 1,v — 1) = ged(r* - 1,v = 1).
We put )
v —
g= : (3)

Then, since ged((r — 1)/g,9) = 1, equation (2) implies that g divides |A| -
274. Therefore, for each A € B we define an integer o4 by

qoa =|A| - 274. (4)

Next, we define

s = ZO‘A. (5)

AeB
Also, equations (2) and (4) imply that
TA=A-C 15, (6)
and 1
Th= A+ ’"—g—aA (7)

for all A. Adding equations (6) and (7) we obtain

r—r*

|A| = 2) + oA (8)

for all A.

Remark 3.2. Note that equation (8) implies that for any A, B € B, |A| =
|B| if and only if 04 = 05.

The next two equations are easily verified:

S lAl=er+er (9)
AeB
and
Z TA = er. (10)
AeB

Equations (4), (9), and (10) then imply that sq¢ = Y 4 g(lA| — 274) =
e*r* —er = (v—e)(v —r+ 1) — er, which can be transformed into

sq=gq(gg—e—r+3)—(2e+71-2). (11)
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Equation (11) then implies that ¢ divides 2e + r — 2. Therefore, we define

integers m and m* by
gn=2e+71-2 (12)

and
gm* =2e* +1* -2, (13)

Adding equations (12) and (13), we obtain
m+m* = 3g. (14)
Then equations (11), (12), and (14) imply that
s=g%q—gle+7)+3g-m. (15)

Remark 3.3. Upon further manipulation of the above equations, we even-
tually arrive at

(r—r*)(m* = m) = glv— (4A—-1)]. (16)
Note that equation (16) and the fact that r # r* imply that v = 4\ — 1 if
and only if m = m*.

The next lemma establishes formulas for e and r in terms of the para-
meters A, g,q, and m. They follow easily from equations (12) and (16).

Lemma 3.4. (10] If v # 4 — 1, then

gr—(g—-m)’q+g-m
39 —2m

e=

and
_ (29 —m)(gq +2) — 292
3g—-2m ’

r

Our last result gives a way of constructing new A-designs from old by
complementing with respect to a fixed block. For a proof see [10].

Remark 3.5. In what follows, if we complement with respect to a block
A, the parameters of the new design will be denoted by A(4), r(4), m(A),
etc.

Lemma 3.6. Let D = (X,B) be a A-design on v points with replication
numbers r and r*. Let A € B. Put

B(A) = {A}U{AAB|B € B, B # A}.

Denote by D(A) the complemented set system (X, B(A)). Then we have
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(i) If A= E or E*, then D(A) is a symmetric (v,|A|, |A] — A)-design,

(ii) If A# E and A # E*, then D(A) is a A(A)-design on v points with
r(A) =r, r*(A) = r*, and m(A) = m + 204, where A(A) = |A| =
(ili) If A# E, A# E*, and D is type-1, then D(A) is also type-1, and

(iv) (D(A))(4) =

4 MX-designs with g=7

We are now in a position to prove our main result, Theorem 2.5. In what
follows, the computer program Mathematica [21] was used extensively to
carry out computations.

Theorem 4.1. Let D = (X, B) be a A-design on v points with replication
numbers r and r*. If g = ged(r — 1,7* — 1) =7, then D is type-1.

Proof. If A < 34, then Theorem 2.7 implies that D is type-1. Therefore, we
shall assume that A > 35. By equation (3), we may write v = 7g + 1. For
each i € Z, let a; = |{A € Bloa = i}|. We clearly have

D ai=Tg+1. (17)
icZ

Now, since 7 is odd, equation (14) implies that m = m* is impossible.
Therefore, by equation (16), v = 4X — 1 is also impossible. So, equations
(5), (15), and (16) and the formulas of Lemma 3.4 imply that

e = (7q +2)(m? — 21m + 98) + 40X

21-2m (18)

i€Z

Next, equation (4) implies that |A| = 274 + go4 for all A. Using this
and the formulas of Lemma 3.4, equation (1) is transformed into

Z (2m — 21)a; (2m - 21)%¢® 1
A(2m 21) +i(dA=7g—2) [q(m -7 —22+1][glm-14)+2X-1] A
(19)
Also, equation (14) implies that m+m* = 21. Without loss of generality,
we may assume that m < m*. Therefore, m € {1,2,3,4,5,6,7,8,9,10}.
Case 1: m = 1.
In this case, Lemma 3.4 implies that e = (7A — 36¢ + 6)/19, r = (91q —
14X +26)/19, and r* = 2(21g+ 7A +6)/19. Also, equation (6) implies that
T4 = A—[(6g 4+ 2X — 1)/19]o 4 for all A. Then the inequalities 0 < 74 < e
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imply that 6 < o4 < 19\/(6g+ 2XA — 1) for all A. Now, 7 divides r — 1 and
r > 1, s0 7 > 8. This gives us ¢ > (2A + 18)/13. Combining the last two
inequalities, we obtain that o4 = 6 for all A. Therefore, by Remark 3.2,
all blocks have the same cardinality, a contradiction.

Case 2: m = 2.
In this case, Lemma 3.4 implies that e = (7A — 25g + 5)/17, r = 2(42¢q —
7A+12)/17, and r* = (35¢ + 14A + 10)/17. Also, equation (6) implies that
Ta = A= [(5¢ +2)\ — 1)/17]o 4 for all A. Then the inequalities 0 < 74 < e
imply that 5 < 04 < 17A/(5g + 2A — 1) for all A. Next, r > 8 gives us
g 2> (A + 8)/6. Combining the last two inequalities, we obtain that o4 =5
for all A, a contradiction.

Case 3: m = 3.
In this case, Lemma 3.4 implies that e = (7TA — 16 + 4)/15, r = (77q —
14X + 22)/15, and 7* = 2(14q + 7A + 4)/15. Also, equation (6) implies that
Ta = A —[(4¢+2) - 1)/15]o 4 for all A. Then the inequalities 0 < 74 < e
imply that 4 < o4 < 15A/(4g + 2A — 1) for all A. Next, r > 8 gives us
g 2 (2X + 14)/11. Combining the last two inequalities, we obtain that
oa =4 or 5 for all A. Hence, a; = 0 for all ¢ except possibly 4 and 5. Then
equations (17), (18), and (19) become

as+as=Tq+1, (20)
308g + 49 + 88
Saq + 5ag = 0 +15 +88). (21)

and

25: 15a; B 225¢
215X —i(4A—Tg—2)  (1—4g-2))(2) - 11g-1)

1
-3 (@)

Solving equations (20) and (21) yields
o = 217q — 49X - 13
4T 15

and
_T(TA—16q+4)

4 15
Inserting the above expressions for a4 and a5 into equation (22) and
manipulating the result, we arrive at

(4) — 7q — 2)%(7TA — 16g + 4)(31Ag — 55¢ — TA2 + 6A — 5) = 0.

Now, e > 0so 7TA—16g+4 # 0. Also, 4) —7g—2 # 0 since v # 4A—1.
Therefore, we obtain that

31Ag—55¢—TA2+6A-5=0
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which can be transformed into
(31X — 55)(31g — 7A) = 199X + 155.

Now, 199A+4155 > 0 and 31\ —55> 0,50 31g—7A > 1. If 31g—-7A < 6,
then A < 0, a contradiction. If 31g — 7\ = 7, then r = (5¢ + 12)/5 is
not an integer, a contradiction. Therefore, we must have 31g — 7A > 8.
Consequently, 8(31A — 55) < 199\ + 155, which implies that A < 12, a
contradiction.

Case 4: m = 4.

In this case, Lemma 3.4 implies that e = (7A — 9¢ + 3)/13, r = 2(35¢q -
72+ 10)/13, and r* = (21q + 14X + 6)/13. Also, equation (6) implies that
74 =A—[(3¢+2) - 1)/13]o4 for all A. Then the inequalities0 <74 < e
imply that 3 < 04 < 13)\/(3¢ + 2X — 1) for all A. Also, r > 8 gives us
q > (A +12)/5. Combining the last two inequalities, we obtain that 04 =3
or 4 for all A. Hence, a; = 0 for all i except possibly 3 and 4. Then
equations (17), (18), and (19) become

a3+ a4 =7+ 1, (23)
30y + day = 210 +14;,\ +60 )

and

5“; 13a; 3 169¢°
<133 —i(4A—T7¢—2) (1 -3¢-2))(2A—10g—1)

(25)

1
3

Solving equations (23) and (24) yields

4. _ 1549492 -8
3= 13

and
s = 7(7TA —9g + 3)
47 13 :

Inserting the above expressions for a3 and a4 into equation (25) and
manipulating the result, we arrive at

(4) — 7g — 2)%(7TA — 9g + 3)(22Aq — 40g — TA2 + 5A — 4) = 0.

Now, e > 0so 7TA —9g + 3 # 0. Also, 4\ — Tq — 2 # 0 since v # 4A — 1.
Therefore, we obtain that

220g—40g—7TA2+51-4=0
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which can be transformed into
(22) — 40)(22¢ — 7A) = 170\ + 88.

Now, 170\ + 88 > 0 and 220 —40 > 0,50 22¢—-7A > 1. If 22¢-7A < 7,
then A < 0, a contradiction. If 22¢ — 7A = 8, then r = (26¢ + 36)/13 is
not an integer, a contradiction. If 22¢ — 7A = 9, then r = (26¢ + 38)/13
is not an integer, a contradiction. Therefore, we must have 22¢q — 7\ > 10.
Consequently, 10(22X — 40) < 170X + 88, which implies that A < 9, a
contradiction.

Case 5: m = 5.

In this case, Lemma 3.4 implies that e = (7A — 4¢g + 2)/11, r = (63q —
14X + 18)/11, and r* = 2(7¢ + 7A + 2)/11. Also, equation (6) implies that
Ta = A —[(2¢ + 2X — 1)/11]o4 for all A. Then the inequalities 0 < 74 < e
imply that 2 < 04 < 11A/(2¢ + 2)\ — 1) for all A. Also, r > 8 gives
us g > (2A + 10)/9. Combining the last two inequalities, we obtain that
o4 =2,3,or 4 for all A. Hence, a; = 0 for all 7 except possibly 2, 3, and 4.
Then equations (17), (18), and (19) become

az+az+ag=T7q+1, (26)
126 3
2a2 + 3a4 + 404 = %—qy (27)
and
i 11a; _ 121¢° 1 g
1IA—i(dA—-7¢—2) (1-2¢g-20)(2A—9g—-1) X )

i=2

Solving equations (26), (27), and (28) yields

0 = a23q® + a22q® + a21q + agp
2T 22X -9g-1)2A+2¢ 1)’

where ags = —5460) + 3024, agp = 2848)\% — 4342\ — 312, ag; = 17573 +
88922 — 1386\ — 504, and agp = —1472% — 9423 + 103A2 — 80\ — 48,

0n = a3aq® + a32q® + az1q + ago
ST IDEA—9-1)(2A+2¢-1)

where a3z = 2184 — 3024, a3y = —4514)% + 5472\ + 312, a3; = 123923 —
2072)2 + 1624 + 504, and agp = —49X% + 322A3 — 184)2 + 88\ + 48, and

an = a43q° + 6429° + ag1q + ago
‘T 22A2A—9¢-1)(@2A +2¢ 1)’
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where ag3 = —1680A + 3024, ags = 4024)2 — 5920) — 312, aq; = —2037A%+

2331)2 — 1554\ — 504, and a4o = 254X% — 462)% + 177A% — 74A — 48,
Replacing q by a real variable z in the above expressions for az, a3, and

a4, we obtain three functions, ax(z), as(z), and as(z). Now, we already

know g > (22 + 10)/9 and the inequality e > 1 implies that ¢ < (7A ~9)/4.

This implies (2A — 99 — 1)(2X + 2¢ — 1) < 0. Therefore, az(z), as(z), and

a4(z) are continuous functions of = on the interval [(2A+10)/9, (7TA—9)/4].
Now, a3(z) has zeros only at (A — 6)/21, (7A + 2)/4, and

L, _TA—6A+4
= o3 -18)

Clearly, (A —6)/21, (7A + 2)/4 ¢ [(2) + 10)/9, (7TA — 9)/4], so a3(z) has at
most one zero on this interval. However,

22+ 10 —5X% 4 7223 4 672)% — 1720\ + 576

a(—5 )= ITACA+ 1) <0

and
A-9, 7(13)2% — 41X + 30)

ranthe 5A—17
Therefore, a3(z) has exactly one zero on [(2A+10)/9, (TA—9)/4] at z3;. The
above inequalities then imply a3(z) < 0 on the interval [(2X + 10)/9, z3;).

Hence, we must have g € [231, (7TA — 9)/4].
Next, aq(z) has zeros only at (5A —8)/28, (7A + 2)/4, and

L T -dr+3
47 T36A-9)

as( > 0.

Clearly, (5A—8)/28, (7TA+2)/4 ¢ (231, (TA—9)/4], so as(z) has at most one
zero on this interval. However,

7(7A2 — 8 — 4)

a4(za1) = m >0

and
A-9, —7(A - 3)(4) - 5)

4 )= ABA-T)
Therefore, a4(z) has exactly one zero on the interval [z3;1, (TA—9)/4] at 24;.
The above inequalities then imply a4(z) < 0 on the interval (241, (7A—4)/9).

Hence, we must have g € (231, 241].
Now, az(z) has zeros only at —(3A + 4)/14 and

<0.

aq(

ot 3y o 287A% = 2450 — 84 F 11V4ON — 374X% — 2872 + 264X + 144
M 222 = 12(65X — 36) '
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Clearly, —(3X + 4)/14 ¢ {231, 241], 50 a2(z) has at most two zeros on this

interval. However,
1022 + 1)

2(31)= T -18
22 —3655\* + 29948\ + 62665)% + 35200 + 6000
2= 110A(112)2 + 30X — 25)

>0,

<0,

and
2(13\ + 6)

a2(za1) = —p5—5— >0,

where 233 < 2A/5 < z4;. Therefore, az(z) has exactly two zeros on the
interval (231, 241]. The above inequalities then imply az(z) < O on the
interval (22, 222). Hence, we must have g € [231,221] U [222, 241].

Next, we easily obtain the inequalities z3; > (7A+3)/26 and z4; < (7TA+
11)/15. Also, 49A* —374)3 — 28702 + 264\ + 144 > (7A% - 27X —98)2, which
implies 227 < (210A2+52)+994)/[12(65A — 36)] and 222 > (3642 — 542X —
1162)/[12(65A — 36)). This implies 221 < (7TA+9)/26 and zp2 > (7A—9)/15.
Therefore, we have g € ((7A+3)/26, (7TA+9)/26)U((7A—9)/15, (7A+11)/15).
Thus, since g is an integer, we must have ¢ € {(7TA + j)/26|4 < j < 8} U
{(TA+ k)/15| =8 < k < 10}. If g € {(7TA + 5)/26/4 < j < 8}, then
r = (11g+25+18)/11 for j = 4,5,6,7, or 8. But, clearly r is not an integer
for any of these values. Therefore, g € {(7A + k)/15| — 8 < k < 10}.

Then r = (33¢+ 2k +18)/11 for some integer —8 < k < 10. But, clearly
r is an integer only for k = 2. So, we must have g = (7A + 2)/15. Then

aa(q) = 335X + 102487 + 280841\" + 2200461 + 42502
A= 13310A(A + 1)(@) = 1)

for all A > 33. Therefore, we must have A < 32, a contradiction.

Case 6: m =717,
In this case, Lemma 3.4 implies that e = A, 7 = 7g — 2\ + 2, and r* = 2.
Also, equation (6) implies that 74 = A — [(2A — 1)/7]o 4 for all A. Then
the inequalities 0 < 74 < e imply that 0 < 04 < 7A/(2) — 1) for all A.
This implies that 04 =0, 1,2, or 3 for all A. Hence, a; = 0 for all i except
possibly 0, 1, 2, and 3. Then equations (17), (18), and (19) become

<0

ao+ar+ax+az3=7¢+1, (29)
ay + 2a2 + 3a3 = 7), (30)
and
4942

(31)

1
Z?A—z(4)\ 7q—2) (1-20@2A—7¢-1) A

Subcase 6a: ag = 0.
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Solving equations (29), (30), and (31) yields

o = a13¢> + a12¢° + a11q + a0
TTaaeA-n@A-T9-1)°

where a13 = —2058), a1z = 8332 — 1715\ — 294, a;; = 392)3 + 329)2 —
525\ — 126, and a1g = —147A% + 40)3 + 59)2 — 40) — 12,

4y = a23q° + a22¢° + a219 + azo
2T T -)A-1g-1) ’

where ag3 = 2058), age = —2891)\2 + 2744\ + 294, az; = 882)3 — 155472 +
819X + 126, and agg = —49)2* + 24023 — 1922 + 61X + 12, and

e = a3sq® + as2q® + az1q + azo
STADRI-1)(2A-Tg-1) '

where aszz = —2058/\, a3z = 3577/\2 — 3087\ — 294, asy = —1764/\3 +
2191A2 — 917X — 126, and azp = 245)\% — 464)3 + 269)% — 68\ — 12.

Replacing ¢ by a variable z in the above expressions for a;, a2, and as,
we obtain three functions, a;(z), az(z), and az(z). Now, the inequality
r > 8 implies ¢ > (2A + 6)/7. This implies (2A — 1)(2A -~ 7¢—1) < 0.
Therefore, a;(z), az(z), and az(z) are continuous functions on the interval
[(2X +6)/7, 00).

Now, az(z) has zeros only at (A — 4)/14 and

2802 — 22\ — 3 F V19674 — 704)3 + 124)2 + 99X + 9
221,222 = 20 .

Clearly, (A — 4)/14 ¢ [(2X + 6)/7,00), so az(z) has at most two zeros on
this interval. However,

2A+6.  —15A% + 20873 4 75002 — 4255\ — 336

a(——) = 19021 - 1) <0,
wy(l) < 29X 1320 - 100A-12
R/~ TACA — 1) '
and (28672 + 127 + 12)
— + 127\ +
=N ="—nm-n  °

where (2A+6)/7 < A/2 < A. Therefore, az(x) has exactly two zeros on the
interval [(2) + 6)/7,00) at 22; and zz2. The above inequalities then imply
az(z) < 0 on [(2A+6)/7, 221) U(222,00). Hence, we must have q € (221, z22].
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Next, as(z) has zeros only at (5A — 6)/21 and

2122 — 170 — 2 F V4924 — 44203 + 10102 + 52X + 4
231,232 = 28\ .

Clearly, (5A — 6)/21 ¢ [221, z22), so aa(z) has at most two zeros on this
interval. However,

(1822 — 10X — 3 — /B2)[14X% + 3802 — 13X — 3+ (A — 1)v/55]

= 0,
a(z21) 12A(2X — 1)(16X2 — 16X — 3 — v/by) g
( 3A - —(19X + 15)(98)3 — 9352 — 535\ — 50) <0
Wiy = 175M2X — 1)(11A + 5) ’
and
(18)2 — 10X — 3 + /b;)[1423 + 38)% — 13X — 3 — (A — 1)v/by)
as(z22) = 2 >0,
12X(2) — 1)(16)2 — 16A — 3 + /b;)

where 221 < 3)A/5 < 292 and by = 196A*—704A3+124224+-96A+9. Therefore,
a3(r) has exactly two zeros on the interval [zp, 209] at 23; and z33. The
above inequalities then imply a3(z) < 0 on the interval (z3;, 233). Hence,
we must have g € (221, z31] U 232, 202).

Suppose first that g € [232, 222]. Now, we easily obtain the inequalities
4901 — 44203 + 10102 4+ 52X + 4 > (7A2 — 32% — 94)2 and 1960 — 70473 +
124)0%4+96A+9 < (14A2—251—22)2. These imply that 233 > (7TA—14)/7 and
z32 < (TA—7)/7. Therefore, we have g € ((7TA-14)/7,(7A=7)/7). However,
there are clearly no integers in this interval, a contradiction. Therefore, we
must have g € (231, z31).

Now, a;(x) has zeros only at —(3A +2)/7 and

35X2 — 23X\ — 6 F 54927 — 50673 — 1552 + 132X + 36
211,212 = 84/\ .

Clearly, —(3)X + 2)/7 ¢ [221,231], so a1(z) has at most two zeros on this
interval. However,

a1(221) >0, 0.1(%) <0, and a1(231) >0,

where 237 < 2A/5 < 23;. Therefore, a;1(z) has exactly two zeros on the
interval [221,231]. The above inequalities then imply a)(x) < 0 on the
interval (211, 212). Hence, we must have g € [221, z11) U [212, 2a1).

Next, we easily obtain the inequalities z3; > A/3 and z3; < (A + 2)/2.
Also, 490 — 506A3 — 15542 + 132X + 36 > (TA? — 37X — 172)2, which
implies 211 < (A +1)/3 and 232 > (A — 2)/2. Therefore, we have g €
(A/8,(A+1)/3)U ((A—2)/2,(A + 2)/2). But, there are no integers in the
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interval (A\/3, (A + 1)/3). Thus, we must have ¢ = (A — 1)/2, ¢ = A/2, or
g=(A+1)/2. If g = () - 1)/2, then we have 7 = 3(A — 1)/2, so 2 divides
X — 1. Therefore, 14 divides 7A — 7. Also, 7 divides r* — 1 = 2X — 1, which
implies that 14 divides 4\ — 2. Thus, 14 divides TA =7 — (4A—2) = 3A - 5.
But, then r(r —1)/(v —1) = 3(3X — 5)/14 is an integer and D is type-1 by
Theorem 2.6. If ¢ = A/2, then 7*(r* — 1)/(v — 1) = 4(2A — 1)/7, which is
an integer since 7 divides 2\ — 1. Therefore, D is type-1 by Theorem 2.6.
If g = (A + 1)/2, then we have

11(A% + 1041+ 9)

w@)=—Z@m-n <!

for A > 17. So, since a3 is a non-negative integer and A > 35, we must
have a3 = 0. This means that (A + 1)/2 is a zero of a3(z). Now, clearly
(A+1)/2 > (56A—6)/21. Also, the inequality 49A*—442X3+101X2+520+4 <
(722 — 31) — 92)? implies that z3; > (A + 1)/2, a contradiction.

Subcase 6b: ap = 1.
Solving equations (29), (30), and (31) yields

o1 = a13¢° + a12¢° + @119 + @10
T IR A-T¢g-1) '

where aj3 = —2058), a1 = 833A% — 1127\ — 588, a;; = 392)3 + 413)2 —
315\ — 252, and ajp = —147A% — 32)3 4+ 83)2 — 10\ — 24,

00 = a23q® + az2¢® + an1q + ao
2T TR D)@A—Tg-1) °

where az3 = 2058, aze = —289172 4 2156 + 588, ag; = 88273 — 1344)2 +
462\ + 252, and ag = —49)% 4+ 228)3 — 132)2 4 10\ + 24, and

e = a3sq® + a3z2q” + aaig + a0
ST 1AARA-D)(2A-Tg-1)’

where azs = —2058), az; = 3577A% — 2499\ — 588, a3; = —1764)3 +

1883)2 — 511\ — 252, and agp = 245A% — 42423 4 18122 — 10A — 24.
Replacing g by a variable z in the above expressions for a;, az, and a3,

we obtain three continuous functions of z on the interval [(2A + 6)/7, 00).
Now, ax(x) has zeros only at (A — 4)/14 and

14)02% — 8\ — 3 F 49X4 — 12873 — 32A2 + 30A + 9
2219222 = 21A *

Clearly, (A — 4)/14 ¢ [(2X + 6)/7,00), so az(z) has at most two zeros on
this interval. However,
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a2(2248) <0, ax(3)>0, and a2()) <0,

where (2A+6)/7 < A/2 < X, Therefore, az(z) has exactly two zeros on the

interval [(2) 4 6)/7,00) at 22; and z92. The above inequalities then imply

a2(z) < 0 on [(2A+6)/7, 221)U (222, 0). Hence, we must have g € [z31, 222).
Next, az(z) has zeros only at (5A — 6)/21 and

2122 — 13X — 2 F V4921 — 338X —30)\2 + 72\ + 16
231,232 = 28)\ .

Clearly, (5) — 6)/21 ¢ [221, z23], 50 a3(z) has at most two zeros on this
interval. However,

az(z21) > 0, aa(-as—'\) <0, and a3(222) >0,

where 221 < 3A/5 < 222. Therefore, az(z) has exactly two zeros on the
interval (221, 222] at 23; and 233. The above inequalities then imply a3(z) <
0 on the interval (z31, z32). Hence, we must have q € (221, 231] U [232, 222).

Suppose first that g € [232, 222]. Now, we easily obtain the inequalities
490*—338X3—39A2+ 720 +16 > (TA2—25A—41)2 and 4924 — 128233222+
30A +9 < (722 = 9X — 11)2. These imply that z3p > A — 2 and 299 < A.
Therefore, we have ¢ € (A — 2,)). So we must have ¢ = A — 1. Then
7—1=5A—86, so 7 divides 5\ — 6. But, then r(r —1)/(v—1) = 5(5A-6)/7
is an integer and D is type-1 by Theorem 2.6. Therefore, we may assume
q € (221, 231)-

Now, a;(z) has zeros only at —(3X +2)/7 and

35A2 — 11X — 12 F v49)% — 24203 — 407X — 24X + 144
211,212 = Y5 .

Clearly, —(3X + 2)/7 € [221,231), s0 a1(z) has at most two zeros on this
interval. However,

a1(221)>0, a.ﬂ%)(o, and a1(231)>0,

where 2z3; < 2A/5 < 2z3;. Therefore, a;(z) has exactly two zeros on the
interval [221, 231] at 21) and z12. The above inequalities then imply a;(z) <
0 on the interval (211, z12). Hence, we must have g € 221, 211] U [212, 231].

Next, we easily obtain the inequalities 22; > A/3 and 2z3; < (A +1)/2.
Also, 4901 — 2423 — 407)2 — 24X + 144 > (TX2 — 18X — 58)2, which implies
z11 < (A+1)/3 and z12 > (A — 1)/2. Therefore, we have ¢ € (A/3,(\ +
1)/3) U ((A — 1)/2,(A + 1)/2). But, there are no integers in the interval
(A/3,(A+1)/3). Thus, we must have ¢ = A/2. But, then r*(r*—1)/(v—1) =
4(2X — 1)/7 is an integer since 7 divides 2\ — 1. Therefore, D is type-1 by
Theorem 2.6.

Subcase 6¢: az = 0.
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Solving equations (29), (30), and (31) yields

0o = ao2q® + an1q + aoo
O @A -1)(2A—T7g-1)’

where agz = —98), ag; = 147A2 — 119X — 14, and agp = —49)3 + 3422 —
131 -2,

an = a129% + a119 + a1
1T A nEA-7g-1)’
where aj2 = —98\ + 98, a1; = 7TAZ — 14X\ + 42, a10 = 21X3 — 2) + 4, and

4y = a22q® + a219 + azo
22X -1)(2A-7g-1)’
where age = 98A—98, az; = —105A24-63A—42, and azp = TA3—30A2+9\—4.
Replacing g by a variable z in the above expressions for ag, a1, and a2,

we obtain three continuous functions on the interval [(2A + 6)/7, 00).
Now, a,(z) has zeros only at —(3X + 2)/7 and

TA2 4142
142 -1) °

Clearly, —(3A +2)/7 ¢ [(2A + 6)/7,0), so a;(x) has at most one zero on
this interval. However,

a1(2+8) <0 and a1()) >0,

where (20 +6)/7 < A. Therefore, a;(z) has exactly one zero on the interval
[(2) + 6)/7,00) at 211. The above inequalities then imply a1(z) < 0 on the
interval [(2\ + 6)/7, z11). Hence, we must have g € [213,00).

Next, az(z) has zeros only at (A —4)/14 and

o I =241
2TT00-

Clearly, (A—4)/14 ¢ [211, 00), so az(z) has at most one zero on this interval.
However,

21 =

az(z11) >0 and ag(A+1)<0,

where z;; < A + 1. Therefore, az(z) has exactly one zero on the interval
[211,00) at z21. The above inequalities then imply a2(z) < 0 on the interval
(221,00). Hence, we must have g € [211, 221).

Now, ap(z) has zeros only at

21A2 — 17X — 2 F V490 — 442X3 +- 10102 + 52X + 4
201,202 = 28A .

Also, we have
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ao(211) >0, ao(3) <0, and ag(z21) >0,

where 213 < 3A/5 < z2;. Therefore, a1(z) has exactly two zeros on the
interval {211, z21] at 201 and zp2. The above inequalities then imply a;(z) <
0 on the interval (zo1, zo2). Hence, we must have q € [213, z01] U [202, 221]-
Next, we easily obtain the inequalities z1; > A/2 and 221 < (7X +
6)/7. Also, 4X* — 442)3 + 101A2 + 52X + 4 > (7)% — 32\ — 76)2, which
implies 217 < (14A% + 15X + 74)/(28)) and z12 > (28)2 — 49X — 78)/(28)).
This implies 217 < (A + 2)/2 and 212 > (7A — 14)/7. Therefore, we have
g € (A2,(A+2)/2) U ((TA - 14)/7,(7TA + 6)/7). Hence, we must have
g=(A+1)/2,A—1,0r A If g = (A +1)/2, then we have

A2 4104049
@@ =353 <

So, since ag is a non-negative integer, we must have agp = 0. This means
that (A + 1)/2 is a zero of ag(z). But, 49X — 442)3 + 10102 + 52\ + 4 <
(7A% — 31X — 92)? implies that 21 > (7A% + 7A + 45)/(14)). This implies
Z01 > (A+1)/2, a contradiction. If g=A—1,thenr—-1=5\A~6,s0 7
divides 5\ — 6. But, then r(r —1)/(v—1) = 5(5A—6)/7 is an integer and D
is type-1 by Theorem 2.6. If ¢ = A, then r*(r* —1)/(v—1) = 2(2A-1)/7 is
an integer since 7 divides 2\ — 1. Therefore, by Theorem 2.6, D is type-1.
Subcase 6d: a3 = 1.
Solving equations (29), (30), and (31) yields

_ a03¢° + a02q> + ap1q + ago
222 —1)(2A—7g— 1)(5A — 21g — 6)’

ao

where ag3 = 2058\, agp = —3577A2 43087\ +294, ag; = 176413 — 238722 +
1015\ + 126, and agp = —245X% + 52023 — 325)2 4 82\ + 12,

_ a13¢° + a129% + an1q + axo
22X —1)(2A— 7g - 1)(5A — 21g — 6)’

a

where a;3 = 2058\ — 2058, a1, = —637A% + 1666\ — 1617, a;; = —406)3 —
112A2 + 441X — 399, and a;o = 1054 — 152)3 — 10A2 + 47 — 30, and

- az3q® + a22q® + az19 + azo
202X —1)(2x — 7q— 1)(5A— 21— 6)"

a2

where az3 = —2058)\ + 2058, agy = 2695A% — 3577 + 2058, a; = —672)3 +
199522 — 1491\ + 588, and agp = 35X — 21613 + 345)2 — 176 +- 48.

Replacing ¢ by a variable  in the above expressions for ao, a1, and as,
Wwe obtain three continuous functions on the interval [(2) + 6)/7, 00) since
5A—-21¢—-6 < 0.

117



Now, a;(z) has zeros only at —(3X +2)/7 and

3122 — 40X + 21 F V12123 + 13623 + 22)2 — 216 + 81
211,212 = 84(/\—1) .

Clearly, —(3A+2)/7 & [(2A+6)/7,00). Also, 121)4+136A3+22)2 — 216)+
81 > (1122 + 6 +2)? implies that z1; < (2002 —46A+19)/[84(A—1)]. This
implies 217 < (10A — 13)/42, which is strictly less than (2A + 6)/7. Thus,
a1 () has at most one zero on the interval [(2A + 6)/7, 00). However,

a1(#£8) <0 and a3()) >0,

where (2A+6)/7 < A. Therefore, a;(z) has exactly one zero on the interval
[(2X + 6)/7,00) at 212. The above inequalities then imply a;(z) < 0 on the
interval [(2) + 6)/7, z12). Hence, we must have g € [212,00).

Next, az(z) has zeros only at (A — 4)/14 and

2672 — 20\ + 15 F /25609 — 17623 + 217X2 — 234\ + 81
221,222 = 42(,\_1) .

Clearly, (A — 4)/14 ¢ [212,00). Also, 256A% — 176A3 + 2172 — 234X\ + 81 >
(162 — 6\ + 15)2 implies that 297 < A(10A — 23)/[42(A — 1)]. This implies
that zg; < (10A—13)/42, which is strictly less than (2A+6)/7. Thus, az(x)
has at most one zero on the interval [212,00). However,

ax(z12) >0 and a3z(A+1) <0,

where 212 < A + 1. Therefore, as(z) has exactly one zero on the interval
[212,00) at z92. The above inequalities then imply az(z) < 0 on the interval
(z22,00). Hence, we must have g € (212, z22].

Now, ap(z) has at most three zeros on the real line. Also, we have

ao(3377) <0 and ao(85EL) > 0.

Since ap(z) is continuous on the interval [(5A — 7)/21, (5A — 6.1)/21], ao(z)
must have a zero on this interval. But, clearly (8A—6.1)/21 < z)2, s0 ag(z)
has at most two zeros on the interval (212, 202]. However,

ao(zlg) >0, ao(%‘\') <0, and ao(zn) >0,

where z)2 < 3A/5 < 22. Therefore, ag(z) has exactly two zeros on the
interval [z12,222). Then the above inequalities imply ao(x) < 0 between
these two zeros.

Next, we easily obtain the inequality z12 > (42A% —34A+23)/[84(A—1)],
which implies that 212 > A/2. Also, 256\% — 1763 + 217)2 — 234\ + 81 <
(1622 — 5) — 4)? implies 220 < (42A% — 34\ + 11)/[42(A — 1)]. This implies
that 292 < A+ 1. Also, we have
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ao(3) >0, ao(241) <0, ao(A—2)<0, and ap(A+1)>0.

Therefore, we must have g € (A/2,(A+1)/2)U (A — 2,1+ 1). Since g is an
integer, we must haveg=A—1lor A. Ifg=A—1,thenr—1=5X—6, so
7 divides 5\ — 6. But, then r(r —1)/(v — 1) = 5(5A — 6)/7 is an integer and
D is type-1 by Theorem 2.6. If ¢ = A, then r*(r* —1)/(v—1) = 2(2A-1)/7
is an integer since 7 divides 2\ — 1. Therefore, D is type-1 by Theorem 2.6.
Subcase 6e: ag,az > 2.
By hypothesis, there exist A, B,C,D € B such that 04 = cg = 0 and
oc = op = 3. Then we have 74 = 78 = A = e and |A| = |B| = 2A. Put
A* = ANE* and B* = BN E*. Then we must have [A*| = |B*| = A
and |A* N B*| = 0. Also, we have 7¢ = 7p = A — (6A — 3)/7 = (A + 3)/7.
Therefore, |A*NC| = |[A*ND| = A—(A+3)/7 = 3(2A—1)/7. Thus, we have
|A*NCND|>2(6A—3)/7— A= (5A—6)/7 and similarly |[B*NCND| >
(5A — 6)/7. However, then |CND| > 2(5A — 6)/7 = (10A—12)/7 > A\, a
contradiction.
Case 7: m = 6.

In this case, Lemma 3.4 implies that e = (7A — 4g + 1)/9, r = 2(28¢ -
7A +8)/9, and r* = (7q + 14X + 2)/9. Also, equation (6) implies that
Ta = A—[(g+2X—1)/11]o 4 for all A. Then the inequalities 0 < 74 < eimply
that 1 < o4 <9A/(g+2X—1) for all A. Also, r > 8 givesus ¢ > (A+4)/4.
Combining the last two inequalities, we obtain that o4 = 1,2,3, or 4 for
all A, Now, if E € B or E* € B, then D is type-1 by Lemma 3.6 (i) and
(iv). Therefore, we shall henceforth assume that E, E* ¢ B. So, if there
exists a block A with o4 = 4, then Lemma 3.6 (ii) implies that g(4) = 7
and m(A) = 14, so m*(A) = 7 and D(A) is type-1 by case 6. But, then D
is also type-1 by Lemma 3.6 (iv). Hence, we may assume that a; = 0 for all
i except possibly 1, 2, and 3. Then equations (17), (18), and (19) become

aj+az+ae3=Tg+1, (32)
56
a1 + 2ag + 3az = __qig)\+_16 (33)

9 I
and
z"': 9a; B 81¢2
S~ ON-i(4A-T7¢-2)  (1-g-2))(2A-8¢—1)

Solving equations (32), (33), and (34) yields
o = a13¢° + a12¢> + a119 + azo
TT BN -8 - 1) @A+ ¢ -1)’
where a13 = —1330) + 336, a2 = 47122 — 1365\ — 198, a;; = 672)3 —
231A2 — 651 — 126, and ajp = —245A% 4 72)3 + 3)2 — 56\ — 12,
o = a23q + a22¢° + az19 + ago
2T @A —8¢-1)2A+¢—-1)

(34)

!
5
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where ags = 266\ — 336, asp = —1941)2 + 2208\ + 198, az; = 54673 —
798)2 + 861\ + 126, and ago = 49A* + 16813 — 9612 + 67X + 12, and

aa = a33q° + as2q® + az1q + aso
3T A2 —8¢-1)(2A+q—-1)’

where agzg = ~70A+ 112, agzs = 54922 = 771\ - 66, az; = —420)3 435722 —
273\ — 42, and ago = 49A% — 1123 + 392 — 20A - 4.

Replacing g by a variable z in the above expressions for a;, ag, and
a3, we obtain three functions, a;(z), a2(z), and az(z). Now, we already
know ¢ > (A + 4)/4 and e > 1 implies that ¢ < 7A — 8. This implies
(2\ — 8¢ — 1)(2XA + ¢ — 1) < 0. Therefore, a;(z), a2(z), and az(z) are
continuous on the interval [(A +4)/4,7X — 8].

Now, az(z) has zeros only at —(\ +4)/14, 7TA+ 1, and

. _TA2-5)+3
2= Ton-24

Clearly, —(A +4)/14,7A+ 1 ¢ [(A + 4)/4,7X — 8], so az(z) has at most one
zero on this interval. However,

A+4 —3(A3 —4)2 — 20\ + 48
az( 2 )= ( gx )<0

and
7(22X2 — 57\ + 36)

A(BA=T7)
Therefore, ax(z) has exactly one zero on the interval [(A + 4)/4,7) — 8].
Then the above inequalities imply a2(z) < 0 on the interval [(A+4)/4, 221).

Hence, we must have g € [221, 7\ — 8].
Next, a3(z) has zeros only at (A —2)/7, TA+ 1, and

ax(TA - 8) = > 0.

o TR -3A+2
7 ToBr-8)

Clearly, (A = 2)/7,7A+ 1 ¢ [221, 7\ — 8]. Therefore, az(z) has at most one
zero on this interval. However,

7(14)2 — 161 - 3)

o) = —5agy—ag 0

and
—-7(A-2)(8A—-9)

A6X—T7)

as(Th — 8) = <.
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Therefore, az(z) has exactly one zero on the interval [z11,212]. Then the
above inequalities imply az(z) < 0 on the interval (z3;,7A — 8). Hence, we
must have g € [z1, z31].

Now, a;(z) has zeros only at —(5A + 2)/7 and

_ 203\% — 175) — 42 F 9v/A0NT — 44233 — 35X 1 1561 7 36
A1, 212 = 4(95X — 24) '

Clearly, —(5A+2)/7 ¢ (221, 231]. Therefore, a;(z) has at most two zeros on
this interval. However,

_ 5(16)+3)
a1(221) = 19 —24) > 0,

( A )= —85)3 + 7282 + 380\ + 48
“lg)= 36A(5A — 2)

<0,

and
3110+ 2)

a(za1) = —53—5— >0,

where 293 < A/2 < 2z3;. Therefore, a;(z) has exactly two zeros on the
interval [201,23;). Then the above inequalities imply a;(z) < O on the
interval (214, 212). Hence, we must have ¢ € [221, 211] U [212,231].

Now, we easily obtain the inequalities 297 > (7A — 3)/19 and 23, <
(7A+10)/10. Next, 49X* — 442)3 — 3502 + 156\ + 36 > (7A? — 32) — 109)?
implies 217 < (140024113 +939)/[4(95X —24)] and 212 > (2662 — 463\ —
1023)/[4(95A —24)]. This implies z3; < (7TA+11)/19 and 212 > (7A-13)/10.
Therefore, we have ¢ € ((7TA — 3)/19, (7TA + 11)/19) U ((7TA - 13)/10, (7 +
10)/10). Thus, we must have g € {(7TA+ 7)/19| — 2 < j < 10} U {(7TA +
k)/10 - 12 < k < 9}.

If g € {(7TA +7)/19]| — 2 £ j < 10}, then r = (18¢ + 2j + 16)/9 for some
integer —2 < j < 10. However, clearly 7 is an integer only for 7 = 1 and 10.
If g = (7A+1)/19, then r* = 5(7A + 1)/19 so 19 divides 7A + 1. Therefore,
19 divides 19A — 2(7A + 1) = 5\ — 2. But, then r*(r* — 1)/(v - 1) =
5(5A —2)/19 is an integer and D is type-1 by Theorem 2.6. Thus, we must
have ¢ = (7A + 10)/19. However, then

_ —328)3 + 52662 + 4662 + 396

w@ =T rsmoi) <0

for A > 17. So, we must have A < 16, a contradiction. Hence, we must
have g € {(7TA + k)/10| — 12 < k < 9}.

Then r = (36¢ + 2k + 16)/9 for some integer —12 < k < 9. However,
clearly r is an integer only for k = —8 and 1. If ¢ = (7A — 8)/10, then
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r = 2(7A—8)/5, so 5 divides 7A—8. Therefore, 5 divides TA-8-5(A—1) =
2) — 3. But, then r(r — 1)/(v — 1) = 4(2)\ — 3)/5 is an integer and D is
type-1 by Theorem 2.6. If ¢ = (7A + 1)/10, then r* = 3(7A + 1)/10, so 10
divides 7A + 1. Therefore, 10 divides 10A — (7A + 1) = 3X — 1. But, then
r*(r* —1)/(v—1) = 3(3X\ —1)/10 is an integer and D is type-1 by Theorem
2.6.
Case 8: m = 8.

In this case, Lemma 3.4 implies that r = 2(21¢ — 7\ + 6)/5 and * =
(14X — 7q — 2)/5. Now, if there exists a block A with 04 < -1, then
m(A) < 6 and D is type-1 by previous cases. If there exists a block A with
oa > 3, then m(A4) > 14, so m*(A) < 7 and once again D is type-1 by
previous cases. Therefore, we may assume that o4 = 0,1, or 2 for all A.
Hence, a; = 0 for all i except possibly 0, 1, and 2. Then equations (17),
(18), and (19) become

a+ay+ay=Tq+1, (35)
a1+ 20y = DA 42— 12 452" -1z (36)

and

i 5a; _ 25¢ 1 e
~ 5A—i(4A—T7¢—2) (g—-22+1)(2x—-6g—-1) X
Solving equations (35), (36), and (37) yields

— a02q® + ag1q + aoo
22X —6g—-1)(2A~-g-1)’

ap

where agz = —176)\ — 12, ag; = 18922 — 119X — 14, and agp = —49A% +
46)2 — 13X - 2,
ay = a13¢® + a12¢® + @119 + ayo
5(2A —6g—1)(2A —g—1)’

where a3 = 672, a12 = —982)\ + 976, a;; = 1892 — 504\ + 336, and
a10 = 4973 4 5423 — 72) + 32, and

0 = a23¢° + a22¢’ + az1q + az
2T 0@ —6q-1)(2A—-q-1)’

where ag3 = —924, ago = 1864\ — 1342, ag; = —1043)\%2 + 1183\ — 462, and
ago = 14723 — 208)% + 169\ — 44.

Replacing g by a variable z in the above expressions for ao, a1, and az,
we obtain three functions, ag(z), a1(z), and az(z). Now, the inequalities
r > 8 and r* > 8 imply (A +2)/3 < ¢ < 2X — 6. This implies (2A — 6g — .
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1)(2A — g — 1) < 0. Therefore, ap(z), a1(z), and az(z) are continuous on
the interval [(A + 2)/3,2) - 6].
Now, a;(z) has zeros only at —(A + 2)/7 and

77X — 56 F 54/49)2 — 176) + 64
211,212 = 96 .

Clearly, —(A+2)/7 ¢ [(A+2)/3,2X — 6], s0 a1 (z) has at most two zeros on
this interval. However,

A+2, —2A—42(A+2)
W)= —3p-y <%
4),  10527A3 — 34430A2 — 24600\ — 4000
a’l(—) = >0,
5 25(6A — 5)(14) + 5)
and 15A3 + 184)2 — 720 + 896
au@r-6)= 22+ — AR o,

2A-17
where (A +2)/3 < 4A/5 < 2X — 6. Therefore, a,(z) has exactly two zeros
on the interval [(A + 2)/3,2) — 6] at z11 and z12. The above inequalities
then imply a1(z) < 0 on [(A+2)/3, z11) U (212, 2A — 6] Hence, we must have

q € (211, 212).
Next, az2(z) has zeros only at (3A — 4)/14 and

119X — 7 F 5v49A% — 374X + 121
221,222 = 132 .

Clearly, (3A — 4)/14 ¢ [211,212), so a2(z) has at most two zeros on this
interval. However,

49\ + 40 + 7/49A2 — 176\ + 64 >

02(211) = 32 O’
. (g) _ —(41) + 20)(99A% — 690\ — 275) <0
A 50(6A — 5)(14X + 5) '
and
49\ + 40 — 749202 = 176X + 64
ax(z12) = 3 >0,

where z1; < 4)\/5 < 2j12. Therefore, az(z) has exactly two zeros on the
interval [21;, z12] at z5; and 205. The above inequalities then imply az(z) <
0 on the interval (221, z22). Hence, we must have g € 213, 221] U [222, 212).
Suppose first that g € [222, 212]. Now, we easily obtain the inequalities
49)% — 374X + 121 > (7TA — 32)? and 492 — 176\ + 64 < (72 — 12)2.
These imply that 233 > (7A — 11)/6 and 213 < (7A — 7)/6. Therefore, we
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have ¢ € ((7A — 11)/6, (7A — 7)/6). Thus, we must have ¢ = (7A — 10)/6,

g=(7TA—-9)/6, 0or ¢ = (TA—8)/6. If ¢ = (7A - 10)/6, then r = (30g — 8)/5

is not an integer, a contradiction. If ¢ = (7A — 9)/6, then r = (30g — 6)/5

is not an integer, a contradiction. If ¢ = (7A — 8)/6, then r = (30g — 4)/5

is not an integer, a contradiction. Therefore, we must have g € [z11, 221).
Now, ao(z) has zeros only at

o1 z09 = 189)2 — 119X — 84 F 514924 — 598A3 + 7722 + 52\ + 4

Also, we have

1568)2 — 3673\ + 1304 — (224X — 161)v/49A2 — 176\ + 64 S

= 0
ao(211) 237X — 120 — 21/49X2 — 176 + 64 '
A, -3\ +36)+4
w(3)=—m-gy  <*
and
5920)2 — 16976 + 4807 — (847X — 427)v49X% — 374\ + 121
ao(z21) = >0,

6(193) — 55 — 7/40X2 — 374X + 121)

where z;; < A/2 < z2. Therefore, ap(z) has exactly two zeros on the
interval [211,221]. The above inequalities then imply ao(x) < 0 on the
interval (201, 202). Hence, we must have g € [211, 201] U [202, 221}

Next, we easily obtain the inequalities z;; > 7A/16 and z2; < (7A +
7)/11. Also, 49X% — 598)3 + 77)2 + 52X + 4 > (702 — 43\ — 263)2, which
implies 297 < (1542 + 96X + 1301)/[8(44A + 3)] and zp2 > (22422 — 334\ —
1329)/[8(44X + 3)]. This implies 201 < (7A +1)/16 and zp2 > (7A — 1)/11.
Therefore, we have g € (7A/16,(7A + 1)/16) U ((7TA — 1)/11,(7TA + 7)/11).
But, there are no integers in the interval (7A/16,(7A + 1)/16). Thus, we
must have g € {(7TA + k)/11|0 < k < 6}.

Then we have r = (20g + 2k + 12)/5 for some integer 0 < k < 6.
However, clearly 7 is an integer only for k£ = 4. Therefore, we must have
g = (7A + 4)/11. But, then we have

(A + 21)(13X + 20)

2@ =@+ <

for A > 27. So, since as is a non-negative integer and A > 35, we must
have ag = 0. This means that (7A + 4)/11 is a zero of az(z). Clearly,
(7A +4)/11 > (3) — 4)/14. Also, 49X — 374X + 121 < (7A — 26)2 implies
that zp; > (84X + 53)/132, which is strictly greater than (7A + 4)/11, a
contradiction.
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Case 9: m=0.
If there exists a block A with 04 < —1, then m(A) < 7 and D is type-1
by previous cases. If there exists a block A with o4 > 2, then m(A) > 13,
so m*(A) < 8 and once again D is type-1 by previous cases. Therefore,
we may assume that 4 = 0 or 1 for all A. Hence, a; = 0 for all ¢ except
possibly 0 and 1. Then equations (17), (18), and (19) become

ag+a; =Tg9+1, (38)

49\ — 70g — 20
a1 = —'3—q—, (39)

and

9q2

21: 3 = -1 o)
243N —i@x-7q—2) (24— 2A+1)(@A—5g—1) A

Solving equations (38) and (39) yields

_91¢—492+23
- 3
d
. 49 — 70 — 20
0 = ——————,
3
Inserting the above expressions for ag and a; into equation (40) and
manipulating the result, we arrive at

(4) — 7q — 2)%[130¢> — (161X — 91)g + 49)% — 46) + 13] = 0.
Now, 4\ — Tq — 2 # 0 since v # 4\ — 1. Therefore, we obtain that
130A% — (161X — 91)g + 49X% —~ 46) + 13 = 0. (41)

Thus, the discriminant of the left-hand-side of equation (41), which is a
quadratic in g, must be a perfect square. This implies that

49)% — 598\ + 169 = ¢?
for some integer ¢, which can be transformed into
(1680) — 7c — 102557)(1680\ + 7c — 102557) = 81120. (42)

However, by considering all possible ways of factoring 81120 into the prod-
uct of two integers, it can easily be shown that equation (42) has no solution
in integers. We thereby obtain a contradiction.

Case 10: m = 10.
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If there exists a block A with 64 < —1, then m(A) < 8 and D is type-1
by previous cases. If there exists a block A with o4 > 1, then m(A4) > 12,
so m*(A) < 9 and once again D is type-1 by previous cases. Therefore,
we.may assume that o4 = 0 for all A, a contradiction. This concludes the
proof. O

Remark 4.2. Although we were able to prove the content of Theorem 2.5,
unfortunately we were not able to prove that all A-designs on v = 7p +1
points, p prime, are type-1. We were not even able to prove this for a single
conguence class of primes modulo 7. The reason for this is that a proof
attempt analogous to those in [5], (6], [9], [10], and [11] breaks down when
p divides g.
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