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Abstract

A diagonally switchable A-fold 4-cycle system of order =,
briefly DS4CS(n, A), is a A-fold 4-cycle system in which by
replacing each 4-cycle (a, b, ¢, d) covering pairs ab, bc, cd, da by
either of the 4-cycles (a,c,b,d) or (a,b,d,c) another M-fold 4-
cycle system is obtained. In [3]Adams, Bryant, Grannell, and
Griggs proved that a DS4CS(n,1) exists if and only if n =
1 (mod 8), n > 17 with the possible exception of n = 17. In this
paper we prove that for A > 2 the necessary conditions for the
existence of a A-fold 4-cycle system of order 7 are also sufficient
for the existence of a DS4CS(n, A) except for (n,\) = (5,2).

Key words: A-fold 4-cycle system, complete multipartite
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1 Introduction

Let G and H be simple finite graphs, and let AH denotes the graph H
with each of its edges replicated A times. The graph K,, denotes the
complete graph with n vertices. The graph K, ng,...,n, denotes the
complete multipartite graph with ¢ partite sets of size ny,ng,...,n;
respectively. For convenience, we use K, \ K, to denote the graph
Kj,..1m with n — m 1s. Note that K, \ K,, is sometimes referred
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to as a complete graph of order n with a hole of size m. A A-fold
G-design of A\H, (AH,G)-design, is a pair (X,B) where X is the
vertex set of H and B is a collection of isomorphic copies (called
blocks) of the graph G whose edges partition the edges of AH. If
H is the complete graph K, we refer to such a A-fold G-design as
having order n. If A = 1, we drop the term “l-fold”and simply say
"G-design”. Let H = {X1,X2,...,Xt} , | Xi| = ni , be a partition
of the set X into subsets called holes. Let Ky, n,,..n, be defined
on X with parts X;. A A-fold holely G-design, (G, A)-HD, is a triple
(X, H, B) where (X, B) is a (AKn, n,...,n:, G)-design. The hole-type of
the HD is {n1,n2,...,n:}. We usually use an “exponential” notation
to describe hole-types: the hole-type 1:273*... denotes ¢ occurrences
of 1, j occurrences of 2, etc.

Let G be a simple finite graph; and let V(G) and E(G) denote
the vertex-set and edge-set of G respectively. For a subgraph I'c of
G, G — T'¢ denotes the graph obtained from G by deleting the edges
of T'g. T'g is said to be admissible if there exists a simple graph

%, such that E(I';) N E(G) = 8, V() C V(G), and the graph
(G — T'g) + I' obtained from G — I'c by adding the edges of I'; is
isomorphic to G.
if ['c is an admissible subgraph of G, then using the vertices of
G a further copy of G may be constructed by replacing E(I'¢) by
E(T'c’).Let (X,B) be a (AH, G)-design and I'¢ a fixed admissible
subgraph of G. For each block B € B, (B—T'g)+I} is called a I'g-
transformation of B. Let B' = {(B-TI'g)+I's: Be B}. If (X,B) is
also a (AH, G)-design, then it is said to be a I'g-transformed design of
(X, B) and we will say that (X, B) is ['g-switchable. When E(T'g) =
{€}, we will simply say e-transformation and e-switchable (see [6,
7]). The motivation for the concept of I'g-switchable (AH, G)-design
can be found in [3], where Adams, Bryant, Grannell, and Griggs
studied the diagonally switchable property for the class of 4CSs (4-
cycle systems), i.e. designs whose blocks are copies of the graph
(a,b,c,d), covering edges ab,bc,cd,da, and with the I-switchable
property where I' is the pair of non-adjacent edges of the 4-cycle.
More precisely, (a,b, c,d) may be transformed into (a,b,d,c) or
(a, ¢, b,d) by replacing, respectively, each pair of non-adjacent edges
of the original 4-cycle by the diagonals ac and bd. In [3] it is proved



that a diagonally switchable 4-cycle system of order n exists if and
only if n = 1 (mod 7), n > 17 with the possible exception of n = 17.

It is well known that the spectrum for A-fold 4CSs is the set of
all integers n such that An(n — 1) = 0 (mod 8) and A(n — 1) =
0 (mod 2). In this paper we determine the necessary and sufficient
for the existence of a diagonally switchable \-fold 4-cycle system
of order n (briefly, DS4CS(n, A)), for A > 2, proving the following
theorem as the main result.

Main Theorem There exists a diagonally switchable 4C'S(n, A) for
all A > 2 and admissible n, except for (n,\) = (5,2).

2 Working lemmas

A group divisible design (or GDD) with index ) is a triple (X, H, .A),
which satisfies the following properties:

(1) H is a partition of X into subsets called groups.

(2) A is a set of subsets of X (called blocks) such that a group
and a block contain at most one common point.

(8) Every pair of points from distinct groups occurs in exactly A
blocks.

The group-type of a GDD (X, H, A) is the multiset {|H|: H € H}.
We will use an “exponential” notation to describe group-types: the
group-type 1°273%... denotes ¢ occurrences of 1, j occurrences of 2,
etc. We call the GDD (X, H, A) a (K,))-GDD if | A |€ K for every
A€ A. A ({k},A)-GDD is briefly written as (k, \)-GDD. A (v, K, \)-
PBD is a (K, )-GDD of type 1%, and a (v, {k}, A)-PBD is called a
(v, k, A)-BIBD and is denoted by Sx(2, k,v) (S(2, k,v) when A =1).

A transversal design (TD) TD(k,n) is a GDD of group type n*
and block size k. It is well known that a TD(k,n) is equivalent to
k — 2 mutually orthogonal Latin squares (MOLS) of order n. If ¢
is a prime power, then there exist ¢ — 1 MOLS(g)s and therefore a
TD(g + 1,q). For later use, we recall the following existence results
for TDs:



Lemma 2.1 ([1, 2])

1) A TD(4,n) exzists for all integers n # 2,6.
2) A TD(k,q) ezists for any prime power g and any k < g + 1.

The following Constructions 2.2-2.5 are well described in [6]. The
first one is a variation of Wilson’s Fundamental Construction in [9].

Construction 2.2 (Weighting Construction) Suppose (X, H, A) is
a (K,\)-GDD. Let w : X — Z+ U {0} be any function (we refer
to w as a weighting) and, for every z € X, let S(z) be a set of w(z)
“copies” of . For every A € A, suppose that

(UzeAs(x)’ {S(z) ‘T € A}: BA)

is a diagonally switchable (Cy, u)-HD with hole-type {w(z) : z € A}.
Then
(UzexS(z), {UzenS(z): H € H}, UscaBa)

is a diagonally switchable (Cy4, Ap)-HD with hole-type {3 epy w(z) :
HeH}.

Construction 2.3 (PBD-construction) Suppose that there ezists a
(v,L,u)-PBD. If, for each | € L, there is a diagonally switchable
M-fold Cy-design of order I, then there ezists a diagonally switchable
pA-fold Cy-design of order v.

Construction 2.4 (Filling subdesigns) Let a be a nonnegative inte-
ger. Suppose that there ezists exists a diagonally switchable (Cy, A)-
HD of hole-type {n1,n2,...,n:}. If there exists a diagonally switch-
able (\(Kn;+a\ Ka), Cs)-design for each1 < i <t, then there exists a
diagonally switchable (\(Ky+a \ Ka), C4)-design, where v = >
If further there exists a diagonally switchable 4CS(a, ) then there
ezists a diagonally switchable 4CS(v + a, ))

Construction 2.5 (Repeating blocks) If there ezists a diagonally
switchable (M H,Cy)-design and a diagonally switchable (A2H, Cy)-
design, then there exists a diagonally switchable ((p1M1+p1M)H, Cy)-
design for any positive integers py and pa.



We quote the following known results for later use.

Lemma 2.6 ([10]) Necessary and sufficient conditions for the exis-
tence of a (4,A)-GDD of type m* are u > 4, A(u— 1)m = 0 (mod 3)
and du(u — 1)m? = 0 (mod 12) with the exception of (m,u,)) €
{(2,4,1),(6,4,1)}, in which case no such GDD exists.

Lemma 2.7 ([8]) There exists a (4,1)-GDD of type 4*m! for each
©u>6,u=0 (mod3)andm=1 (mod 3) with1<m < 2(u-1).

Lemma 2.8 ([5]) A (4,1)-GDD of type 25! ezists if and only if
©v=0 (mod 3), u>9.

" Lemma 2.9 ([4]) There exists a (v, {4,5,6,7},1)-PBD for any in-
teger v > 4 and v # {8 — 12,14, 15,18, 19, 23}.

3 The case of A =2

In this section we deal with the case where A = 2. To start with,
we note that the necessary and sufficient condition for the existence
of a 4CS(n,2) is » = 0,1 (mod 4) (n > 4). We want to prove that
conditions is also sufficient for the existence of a DS4CS(n, 2), except
for n = 5.

3.1 DSA4Cs of small order

Here we give a proof of the nonexistence of a DS4CS(5, 2) as well as
some examples which are necessary for the main constructions. We
point out that throughout the paper, the corresponding transforma-
tion of the block B = (a,b,¢,d) is (a,b,d,c).

Lemma 3.1 There does not exist a DS4CS(5,2).

Proof Suppose (5, B) is & DS4CS(5,2), where I5 = {1,2,3,4,5}.
Every vertex of I5s occurs in four blocks, thus for every z € Iy



there exists exactly one block whose vertex set is I5 \ {z}. If we
fix a pair, say {1,2}, the blocks containing both 1 and 2 are of the
form : ) (1,2, %, %), (1,2, %,%); or i) (1,*,%,2), (1,%,%,2), (1,%,2,%),
(1,%,2,%); or i) (1,%,%,2), (1,2,%, *), (1,%,2,%). To start with,
note that the second configuration is impossible; otherwise, the fifth
block is constructed on three verteces. If {1,2} appears in config-
uration i), then the four blocks involving the vertex 1 are in the
form of (1,2, a,%), (1,2,b,%), (1,%,¢,%), (1,*,d, %), with {a,b,c,d} C
{3,4,5}, and so there exists a vertex o such that the pair {1,a} ap-
pears in configuration 44) which is impossible. Therefore, all pairs of
vertices appear in configuration ). For each (a,b,c,d) € B if we
put the quadruple {a, b, c,d} in B'; the resulting design (s, B') is an
S2(2,4,5). Let B' = {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,
3,4,5}}. Each block of B’ contains three pairs of parallel edges: one
pair of horizontal edges, one of vertical edges, and one of diagonal
edges. Without loss of generality assume that in the first quadruple
12, 34 are horizontal, 14, 23 vertical, and 13, 24 diagonal (i.e. the
corresponding 4-cycle of B is (1,2,3,4)). Then in the second one
12, 35 are vertical or diagonal. If 12, 35 are vertical, in the second
quadruple 13, 25 are horizontal and so 15, 23 diagonal. It follows
that in the third one 12, 45 are necessarily diagonal and so 14, 25
can be neither vertical nor horizontal. If in the second quadruple 12,
35 are diagonal, then 15, 23 are horizontal and so 13, 25 vertical. It
follows that in the fifth one 23, 45 are necessarily diagonal and so 34,
25 can be neither vertical nor horizontal. That is a contradiction. O

All of the remaining examples are defined on the set X = Z,
(or X = Zn_1 U {oo}) and are cyclic (or 1-rotational, respectively).
They are obtained under the group action i = i+ 1 (0o + 1 = 00)
on the sets of starters listed below.

n=4
(00,0,1,2)

n==8§
(00,6,1,0), (2,6,0,4)



n=9
(1,-1,2,-2), (1,-1,-2,2)

n=12
(3,2,0,00), (1,5,-3,3), (1,0,3,-3)

n=17
(6,-6,7,-7), (6,-6,-7,7), (3,-3,5,-5), (38,-3,-5,5)

n=20
(6,0,3,00), (2,-7,5,-3), (2,-7,-3,5), (1,3,7,8), (1,3,8, 7)

n=21
(1,15,2,12), (5,18,3,6), (4,20,11,7), (8,17,19,13), (14, 16,9, 10)

n=>53

(0,5gi, 9i,449:), for i = 1...,(q — 1)/4, where g, ... »9(g—1)/4 are all
representatives in the quotient group Co/{1, —1} and Cj is the group
of non-zero squares in Fj3.

3.2 Main constructions

In this section we give some constructions which collectively, along
with the examples in Section 3.3 and a few other examples that we
will give later, allow us to settle the case of A = 2. They are all
direct constructions, except for the first one which is a recursive con-
struction. Before giving those constructions, which we will present
as theorems, we need a further lemma.

Lemma 3.2 There exists a diagonally switchable (Cy,2)-HD of hole-
type n? for any integer n.

Proof For n # 2,6, take a TD(4,n) from Lemma 2.1 and replace
every quadruple {a, b, ¢,d} by the three 4-cycles (a,b, ¢, d), (a,c,d,b),
(a,d,b,c) to obtain the required design. For n = 2, the assertion



follows by Construction 2.5 with a diagonally switchable (Cy4,1)-HD
of hole-type 2%, whose existence is proved in [3]. For n = 6, take a
TD(4,3) from Lemma 2.1, give each point a weight of 2, and apply

Construction 2.2 with diagonally switchable (Cy, 2)-HDs of hole-type
24, o

Theorem 3.3 If there erxists a DS4CS(n,2), then there ezists a
DS4CS(4n,2) and a DS4CS(4n —3,2).

Proof Take a diagonally switchable (Cy,2)-HD of hole-type n* (or
(n — 1)*) from Lemma 3.2 and apply Construction 2.4 with a = 0 (or

a = 1, respectively) and DS4CS(n, 2)s to obtain the required design.
a

Theorem 3.4 There exists a DS4CS(n,2) for any n = 1,4 (mod
12).

Proof Take an S(2,4,n), which exists for any n = 1,4 (mod 12),
and apply Construction 2.3 with DS4CS(4, 2)s, given in Section 3.1,
to obtain the required system. m|

Theorem 3.5 There exists a DS4CS(12k, 2) for every k > 3.

Proof Take a 4-GDD of type 6%, k > 5, from Lemma 2.6, give each
point a weight of 2 and apply Construction 2.2 to obtain a diagonally
switchable (Cy,2)-HD of hole-type 12¥, where the input designs are
from Lemma 3.2. Apply again Construction 2.4 with a = 0 and with
DS4CS(12,2)s, given in Section 3.1, to obtain a DS4CS(12%, 2). For
k = 3,4 apply Theorem 3.3 (n — 4n) with n = 9, 12, respectively.
a

Theorem 3.6 There exists a DS4CS(24k + 20+ a,2), a = 0,1, for
every k > 1, (a,k) # (0,1).
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Proof Take a 4-GDD of type 4%¥10!, k£ > 2, from Lemma 2.7,
and give each point a weight of 2. Apply Construction 2.2 to ob-
tain a diagonally switchable (Cy, 2)-HD of hole-type 83%20! and then
Construction 2.4 with ¢ = 0,1 and with DS4CS(8 + a,2)s and a
DS4CS(20 + a,2) to obtain the required design. For (a,k) = (1,1)
apply Theorem 3.3 (n — 4n — 3) with n = 12. a

Theorem 3.7 There exists a DS4CS(24k + 8,2) for every k > 1.

Proof Take a 4-GDD of type 43%*1, k > 1, from Lemma 2.6, give
each point a weight of 2. Apply Construction 2.2 to obtain a diago-
nally switchable (Cy, 2)-HD of hole-type 8%+1 and then Construction

2.4 with a = 0 and with DS4CS(8, 2)s to obtain a DS4CS(24k+8, 2).
O

Theorem 3.8 There exists a DS4CS(24k + 5,2) for every k > 1,
k#4,6.

Proof First, note that applying Theorem 3.3 (n — 4n — 3) with
n = 8 gives a DS4CS(29, 2). From Lemma 2.7 take a 4-GDD of type
43h(3s+1)!, where h > 2and 0 < s < 2h—1. Put s = 2and give each
point a weight of 4. Apply Construction 2.2 to obtain a diagonally
switchable (Cy,2)-HD of hole-type 163#28! then Construction 2.4
with @ = 1 and with DS4CS(17, 2)s and a DS4CS(29, 2) to obtain a
DS4CS(48h + 29,2). Apply Theorem 3.3 (n — 4n — 3) with n = 20
to obtain a DS4CS(77,2). Put s = 4 (clearly A > 3)and give each
point a weight of 4. Apply Construction 2.2 to obtain a diagonally
switchable (Cy,2)-HD of hole-type 1634521 then Construction 2.4
with a =1 and with DS4CS(17, 2)s and a DS4CS(53, 2) to obtain a
DS54CS(48h + 53,2). o

Finally, the next lemma deals with the small orders left.
Lemma 3.9 There eists a DS4CS(n, 2) for n = 24,44, 101, 149,
Proof n =24: In Z33 U {00} take the base blocks (o0, 10,0,22),
(14,12,7, 20), (19,8,15,18) , (4,9,13,6), (11,5,17,3), (21,2, 16, 1).

11



n = 44: Start from a 5-GDD of type 4% by deleting one point from
a S(2,5,25). In the last group give 2 points a weight of zero and the
remaining 2 points a weight of 2. Give all the other points of the 5-
GDD a weight of 2 and apply Construction 2.2 to obtain a diagonally
switchable (Cy,2)-HD of hole-type 8°4!; the input designs are from
Lemma 3.2 and from [3] where a diagonally switchable (Cy,1)-HD of
hole-type 25 is given. Apply again Construction 2.4 with a = 0 and
with DS4CS(8, 2)s and-a DS4CS(4,2) to obtain a DS4CS(44,2).

n = 101: Take a TD(5,11) from Lemma 2.1. Select a block and
give all its point a weight of zero. Give all the other points of the
TD a weight of 2 and apply Construction 2.2 to obtain a diagonally
switchable (Cj,2)-HD of hole-type 20°. Apply again Construction
2.4 with a = 1 and with DS4CS(21, 2)s to obtain a DS4CS(101, 2).

n = 149: Take a TD(5,16) from Lemma 2.1. In the last group
give 6 points a weight of zero and the remaining 10 points a weight
of 2. Give all the other points of the TD a weight of 2 and ap-
ply Construction 2.2 to obtain a diagonally switchable (C4,2)-HD of
hole-type 324201, Apply again Construction 2.4 with a = 1 and with
DS4CS(33,2)s and a DS4CS(21,2) to obtain a DS4CS(149,2). DO

4 Thecaseof \=14

In this section we prove that a DS4CS(n, 4) exists for any n > 4.

Lemma 4.1 Let ¢ > 5 be an odd prime power and s < (¢ —1)/2
be a non-negative integer. Then there exists a diagonally switchable

(4(Kq+s \ Ks), Cy)-design.

Proof Let F, be a finite field with g elements. Let g1,...,9(g—1)/2
be all representatives in the quotient group Fy /{1,-1}. Choose an
element = € F; such that z # +y. (Fq U {o01,...,00:}, B), where
B is the collection of 4-cycles obtained by listing the following base
blocks in (Fg, +):

(0’ (.’II + y)gi) Y9i, OOi), (ygi,mgi,o, OOi), where i = 1, ey 8y

12



(O: (.’27 + y)gi) ygi,xgi)' where i = s + 1) sevy (q - 1)/21
is the required design. (m]

Lemma 4.2 There exists a DS4CS(n,4) for every n > 4.

Proof For n = 4, take two copies of a DS4CS(4, 2) from Section 3.

For n € {5,6,7}, n can be written as ¢ + s by taking (¢,8) =
(5,0), (5,1), and (7,0), respectively. By Lemma 4.1 there exists a
DS4CS(n, 4).

For any integer n > 4 and n ¢ {8 — 12, 14, 15, 18, 19, 23},
there is a (n, {4, 5,6, 7},1)-PBD by Lemma 2.9. Hence there exists a
DS4CS(n, 4) by Construction 2.3. The input designs exist as pointed
before.

For n = 8,9, 12, take two copies of a DS4CS(n,2) from Section
3.

For n = 10,14, 18, by Lemma 4.1 there exists a DS4CS(n, 4) by
takingg=n—1and s=1.

For n = 11, 19,23, by Lemma 4.1 there exists a DS4CS(n, 4) by
taking g =n and s = 0.

For n = 15, by Lemma 4.1 there exists a diagonally switchable
(4(K1s5 \ K4),Cy)-design. By Construction 2.4 with a = 4 and ¢t =
1, there exists a DS4CS(15,4). The needed DS4CS(4,4) exists as
pointed before. m]

5 Conclusion

We are in position to present our main result.

Main Theorem There exists a diagonally switchable 4CS(n, \) for
all A > 2 and admissible n , except for (n,)) = (5,2).

Proof X =2: In (3] it has been proved that a DS4CS(n, 1) exists
for every n = 1 (mod 8), except for n = 9 and possibly n = 17.So

13



by Construction 2.5 and combining all of the results in Section 3 we
have a complete solution to our problem.

A =1 (mod 2), A > 3: The conclusion follows by Construction 2.5
together with the following examples for (n,A) = (9,3) and (17,3).

(n,\) = (9,3): take the base blocks (0,2,5,1), (0,4,3,2), (0,6,1,3)
in Zg.

(n,A) = (17,3): take the base blocks (3,~5,—4,1), (3,-5,1,—4),
(0,1,7, 4), (0,1,4,7), (0,2,11,7), (0,2,7,11) in Zy7.

A = 0 (mod 4): The conclusion follows by Section 4 and Con-
struction 2.5.

A = 2 (mod 4), A > 4: The conclusion follows by Construction
2.5 together with the following example for (n, A) = (5, 6).

(n,\) = (5,6): take the base blocks (4,0,2,1), (0,2,4,1), (0,1,2,4)
in Zs. O
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