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Abstract

We made a computer search for minimal blocking sets in the projective
geometry PG(2,11), and found 30000, of which only two nontrivial blocking
sets had the possibility of being isomorphic.
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Introduction

In a geometry consisting of sets of lines and points, a blocking set is a subset B of
points such that every line has at least one point in the subset. These sets are said
to be minimal if removing any point leaves us with 2 set of points not blocking
all lines. The size |B| of a minimal and non-trivial blocking set in the projective
geometry PG(2,p), where p is a prime, is bounded by

3p+1)/2<|B{<pyp+1

The lower of these bounds was finally shown by Blokhuis in 1994 [2], after being
unproven for about 20 years. It is now known as the Blokhuis bound. The upper
bound was shown by Bruen and Thas in 1977 [4], and is valid also when p is not a
prime.

Though minimal blocking sets seems to have been studied since 1969, [3], and
many contributions have been made, see e.g. [1] or [6] for references, not many
computer searches for minimal blocking sets have been done. We made a program
in Matlab, in which we used a random method to generate minimal blocking sets
in the projective geometries PG(2,q), where g =11,¢=13,¢g=17and g=19. In
PG(2,11) we found 30000 minimal blocking sets, of which two trivial sets had the
size 12, and the rest were of sizes between 21 and 30, and the most common size
being 25. Of these only two non-trivial blockcing sets had the possibility of being
isomorphic, as explained in the next section.
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Construction and results

To generate minimal blocking sets in PG(2, q) we need the incidence matrix A for
the points and lines. To construct this matrix A, we considered the two matrices
with all points and all lines in homogeneous coordinates, [7]. The point matrix was
then multiplied with the transponate of the line matrix, and the resulting matrix
was taken modulo g. We call this matrix A. If A(3, ) = O point ¢ is on line j, and if
Z(i, 7) # 0 point i is not on line j. By replacing all zeros with ones, and all non-zero
elements with zero we get the incidence matrix A of that set of points and lines.
Hence, A(4, ) = 1 if and only if line j contains point i.

We had a few alternative approaches when trying to generate minimal blocking
sets in PG(2,q); we removed a random point, and we used two kinds of greedy
algorithms, in which we added the best point to, and removed the worst point
from the blocking set, and also their inverses, in which we added the worst and
removed the best point. The method we found most appealing was the method
in which we removed a random point. This was also the fastest one. Generating
30000 minimal blocking sets in PG(2, 11) with the random method took us about .
50 minutes.

In the random method we started with the trivial blocking set containing all points,
and then randomly chose a point P. If all lines containing this point P had other
points in the blocking set the point was removed. To see if it was possible to remove
P, we took the sum over every column in the incidence matrix with a one in the
row corresponding to the chosen point. If the sum was larger than one in all of
them, there was no l-secant through that point. Hence, the point was not needed
in the blocking set, and it was removed. We continued in this way until every point
was checked and no more points could be removed.

For an isomorphism, structures are preserved and elements can be linked to each
other. We will perform a computer search for blocking sets, and ask whether the
sets we generate will be the same, down to isomorphism. Isomorphic sets have the
same number of elements, and points will map to points in such a way that lines
map to lines. Especially, having two isomorphic blocking sets, a blocking point in
one will map to a blocking point in the other, such that the number of i-secants
through the two points are the same.

To determine whether there existed any isomorphic blocking sets, we looked at the
number of i-secants through every point in every blocking set. We then created a
matrix for every blocking set, where each row represented a blocking point. These
rows consisted of the vectors (I3, 12, ...,l,), where I; is the number of i-secants the
corresponding point is on. Note that !; theoretically could be zero for ¢ = 2,...,r-1,
and will in some cases definitely be zero for I, since the blocking sets are sorted
by size and thus can have different secants. We call this vector the type of the
point. If two blocking sets are isomorphic, there must for every point in the first
set exist a point in the second set which is of the same type. Sorting the rows in
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Figure 1: The size distribution of a thousand sets each for g = 11 (top left), ¢ = 13
(top right), ¢ = 17 (bottom left) and ¢ = 19 (bottom right). These sets were
generated with the random method.

the matrices lexicographically and pair-wise subtracting all matrices representing
blocking sets of the same size we can immediatley tell which blocking sets that
have the possibility of being isomorphic; the resulting matrix must consist only of
Z€eros.

In PG(2,11) we generated 30600 minimal and non-trivial blocking sets. Of these,
there were only two non-trivial blocking sets for which the matrices constructed as
above were the same. Hence, most of the sets were non-isomorphic.

When randomly picking points we got for ¢ = 11, ¢ = 13 and ¢ = 17 the most
common size of the sets B being |B| = 3¢ — 8. This is not always the case. For
g = 19 the most common size was |B| = 3¢—7. Hence, for ¢ = 11 the most common
size was 25. In figure 1 we present diagrams of the distribution of sizes among a
thousand blocking sets, for ¢ = 11, ¢ = 13, ¢ = 17 and g = 19, generated with the
random method.
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When generating 30000 minimal blocking sets in PG(2,11) ve got the size distri-
bution

size |12 21 22 23 24 25 26 27 28 29 30
number | 2 16 446 2827 8062 10461 6239 1743 200 3 1

Let us finally remark that further information, e.g. the programming code, can
be found in [5].

References
[1] L. Berardi, F. Eugeni, Blocking sets e teoria dei giochi: originie e prob-
lemathiche, Atti. Sem. Mat. Fis. Univ. Modena XXXIV (1988) 165-196.

[2] A. Blokhuis, On the size of a blocking set in PG(2,p), Combinatorica, 14
(1994) 111-114.

[3] A.A. Bruen, J.C. Fisher, Spreads which are not dual spreads, Canadian Math-
ematical Bulletin, 12 (1969) 801-803.

{4] A.A. Bruen, J.A. Thas, Blocking sets, Geometriae Dedicata, 6 (2) (1977) 193-
208. .

[5] J. Danielsson, Minimal blocking sets in PG(2,q), TRITA-MAT-2005-11, KTH,
Stockholm Sweden.

[6] T. Szonyi, A. Gécs, Z. Weiner, On the spectrum of minimal blocking sets in
PG(2,p), Journal of Geometry, 76 (2003) 256-281.

[7) E.W. Weisstein, Homogeneous Coordinates From MathWorld-A Wolfram Web
Resource  http://mathworld.wolfram.com/HomogeneousCoordinates.html,
July 2005.

Jennie Danielsson, David Bagares Gata 6, 111 38 Stockholm, Sweden
jennied@kth.se

100



