The Cubic Mapping Graph
of the Residue Classes of Integers

Yangjiang Wei'?; Jizhu Nan’!, Gaohua Tang?, Huadong Su?

1. School of Mathematical Sciences, Dalian University of Technology,
Dalian, 116024, China
2. School of Mathematical Sciences, Guangxi Teachers Education University,
Nanning, 530023, China

Abstract

In this paper, we study the connection of number theory with
graph theory via investigating some uncharted properties of the di-
rected graph I'(n) whose vertex set is Z, = {0,1,...,n — 1}, and
for which there is a directed edge from a € Z, to b € Z, if and
only if a® = b(mod n). For an arbitrary prime p, the formula for
the decomposition of the graph I'(p) is established. We specify two
subgraph I'1(n) and I'2(n) of I'(n). Let I'i(n) be induced by the
vertices which are coprime to n and I'z(r) by induced by the set of
vertices which are not coprime to n. We determine the level of every
component of I'1(n), and establish necessary and sufficient condi-
tions when I'1(n) or I'2(n) has no cycles with length greater than
1, respectively. Moreover, the conditions for the semiregularity of
I'z(n) are presented.

Keywords: Cubic mapping graph, Carmichael A-function, Chinese
remainder theorem, Component of a graph
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1 Introduction

In this paper, we investigate some uncharted properties of the directed
graph I'(n), whose vertex set is all the elements of Z,, = {0,1,...,n — 1},
the ring of integers modulo n, and for which there is a directed edge from
a € Zy, to b € Z, if and only if a® = b(mod n). This graph I'(n) is called
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the cubic mapping graph of Z, and some properties of I'(n) were studied
in (5] and [6]. Our study is motivated by some results of [4] and [7].

For n > 1, let U(Z,) denote the unit group of Zy, D(Z,) the zero-
divisor set of Z,. For b € U(Z,), ord,b denotes the multiplicative order of
b modulo n. We specify two particular directed subgraphs I';(n) and I'z(n)
of I'(n), i.e., ['1(n) is induced by all the vertices of U(Z,), and Ia(n) is
induced by all the vertices of D(Z,).

Let G be a finite abelian group of order p¥! - --pim, where py, ..., Pm
are distinct primes and ¢;,...,tm are positive integers. Then we can write
G = G x --- x G with G; is a group of order pj* for i = 1,...,m. Let
g be an element of the group G, then we can write g = (g1,-..,9m) Where
gi € G..

InT(n), if ay, ..., a; are pairwise distinct vertices and a = az (mod n),
..., 63_; = a:(mod n), a} = a1 (mod n), then the elements a;,az,...,a:
constitute a cycle of length t, and such a cycle is called a t-cycle. Cycles
are assumed to be oriented counterclockwise. It is obvious that a is a
vertex of a t-cycle if and only if ¢ is the least positive integer such that
o® = a(mod n). Let Ay(T'(n)) and As(T1(n)), Ai(T2(n)) denote the
number of t-cycles in I'(n) and I'1(n), I'2(n), respectively.

A component of I'(n) is a directed subgraph which is a maximal con-
nected subgraph of the associated undirected graph of I'(n). The vertex set
of I'(n) is denoted by V(I'(n)). Suppose a € V(I'(n)), if o® = a(mod n),
then o is called a fized point. For a € V(I'(n)), let us denote indeg(cr)
the number of directed edges coming into c. If the in-degree indeg(a) of a
fixed point  is equal to 1, then a is called an isolated fized point. Clearly
the number of components of I'(n) is equal to the number of all cycles in
I'(n).

A vertex o of ['(n) is said to be at level k (k > 1), if there exists a
directed path of maximum length k& which terminates at o and contains no
directed edge belonging to a cycle. If « is a vertex of a cycle, then we will
call the vertex a to be at level 0. If the highest level of all vertices in a
component is k, then we say that this component has level k+ 1.

Similarly, we can also assign to a cyclic group C,, of order n a cubic
mapping graph whose vertex set is all the elements in C,, and for which
there is a directed edge from g € C,, to h € Cy, if and only if g% = k, and
such a graph will be denoted by I'c(n).

2 The cubic mapping graphs of cyclic groups
Theorem 2.1. Let C, denote the cyclic group of order n.

(1) Suppose n = 3%, k > 1. Then I'¢(n) is a ternary tree of height k
with the root in 1 (for ezample, see Fig.1).
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(2) Suppose 31 n. Then T'.(n) is the disjoint union

Te(n) =J(o(orda8) U ---U o(ordy3))
din ©(d)/orda3

where o(l) is the cycle of length l, ¢(d) is Euler totient function (for ez-
ample, see Fig.2).
(3) Suppose n =3*m, k> 1, m>1,3tm. Then
Te(n) = | (o(orda3, k) U -+ U o(ordy3, k))
dim (d)/ords3

where o(l, k) consists of a cycle of length | with a copy of the ternary tree
of height k attached to each vertex (for ezample, see Fig.3).

Proof. (1) Suppose that Cs« is generated by q, ie., Cax = (a), a® =1.

First, for b € Cys, it is obvious that the order of b is a power of 3. Hence,
there exists a positive integer d such that B =1. So I'.(n) has exactly a
component. On the other hand, it 1s not difficult to check that for b € Cyx,
the number of solutions in Cy« of 23 = b is 0 or 3. Therefore, we easily see
that 'c(n) is a ternary tree of height k with the root in 1.

(2) Let Cn = Uy, G, where Gy is the set of elements with order d in
Ch. Since 3 {n, we have 3 t d and ords3 > 1 for d|n. So for g € G4, ordy3
is the least positive integer such that g3°'d“3 = g. This implies that each
G is the disjoint union of cycles of length ords3. Moreover, by |G| = ¢(d)
we have the formula.

(8) Since 3t m, Cp, = C3x XCpp. Let a = (a,, c,) be a vertex of a t-cycle
in 's(n), where ¢, e Csx and o, € Cr. Obviously, ¢ is the least positive
integer such that o® = a, so a3 = q; for i = 1,2. By the argument of
(1), we have o, = 1, and z'ndeg(l) 3 in T'(3*). By (2), indeg(a,) =1 in
T¢(m). So indeg(a) 3 x 1 =3 in I'c(n). By the similar argument in (1),
we have the formula. 0O

11

07 al& ‘125 a:o a

Fig.1. The cubic mapping graph of cyclic group Cy7 = (a), 0" = 1.
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Fig.2. The cubic mapping graph of cyclic group Cio = {a), e’® = 1.
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Fig.3. The cubic mapping graph of cyclic group Css = (a), a*® = 1.

3 Structure of the directed graph I'(n)

Let n be a positive integer, the Carmichael A-function A(n), which was
first defined in [1}, is defined as follows.

A1) =p(1) =1, M2) =¢(2) =1, M4) =¢(4) =2,
A@2k) = %¢(2k) =252 for k>3
Mp*) = o(p*) = (p — 1)p*~! for any odd prime p and k > 1,
Apht -+ pkr) = lem[A(PT!), - .., A(PE")]
where py, . .., pr are distinct primes and k; > 1 foralli € {1,...,7}.
The following lemma is easy to check.

Lemma 3.1. Let n = pi! ---pls, where py < -+ < p, are distinct primes,
ti > 1ands > 1. Suppose a € Zyn, and o; € Zp:‘ such that o =
o; (mod P ‘-

(1) If indeg(c) = k in T'(n), and indeg(cs) = k; in T'(p¥), then k =
kl v ks

(2) The element o is a vertez of a cycle in I'(n) if and only if o; is a
vertez of a cycle in T(pl) forie {1,...,s}.

Theorem 3.2. Suppose n > 1, then each component of I'y(n) has ezactly
level w + 1, where 3¥ || A(n).
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Proof. Let n =pi .. .pts, wherep; < -+ < Ps are distinct primes, £; > 1
and s > 1. Clearly, U(Z,) = Uy x --- x Uy, where U; = U(Z p:() for
i=1,...,s For a € U(Z,), we have o = (ay,...,a,) with a; € U;.

Case 1. Suppose 3 { (n), then 3 1 p(p}‘) for i = 1,...,s. So 31 A(n)
and hence w = 0. If p; = 2, by [6, Theorem 4], each component of I'; (p!!)
is exactly a cycle. If p; > 2, then U; is a cyclic group of order (%) ([2]).
Since 3§ ¢(p;*), by Theorem 2.1 (2), each component of I'; (p¥*) is exactly a
cycle. Hence, by Lemma 3.1 (1), for @ € V(I'y(n)), we have indeg(c) = 1.
So each component of I'; (n) is exactly a cycle and hence each component
has level 1.

Case 2. Suppose 3|p(n). Let |U;| = @(p¥) = 3*m;, where k; > 0 and
3tm;fori=1,...,8 Ifk; >0, then p; > 2 and U; is a cyclic group,
so by Theorem 2.1 (3), each component of Iy (p}*) has exactly level k; + 1.
Otherwise, if k; = 0, then 3 { ¢(p}*), by the argument of Case 1, each
component of 'y (p}') has exactly level 1. Now let k, = maz{k,...,k},
1 < v < s. Since 3|p(n), we have k, > 1.

Let & be an arbitrary component of I'y(n), and the unique cycle in
& is denoted by <. Let v = (71,...,7s) be a vertex of the cycle <,
where v; € V(I'1(p¥*)). By Lemma 3.1 (2), v is a vertex of & cycle which
is denoted by %;, in I'y(pf) for i € {1,...,8}. Since k, > 1, it follows
from Theorem 2.1 (3) that indeg(y,) = 3 in I'y(plr). Hence, there exists
gv € V(I'1(p¥)) such that g3 does not belong to B, for 0 < p < ky,
and g,,k" = v, (mod p}*). In addition, let a; be a vertex of B; such that

a?k" = 75 (mod p;’) for j # v. Now, let a = (ay,...,a,) where ¢, = g,
and a; = a; for j # v. Clearly, & € V(I'y(n)). By Lemma 3.1 (2), a does
not belong to any cycle in I'1(n) and k, is the least positive integer for
which o® = 7 (mod n). So a belongs to the component &. Moreover,
if there exists an integer k (0 < k < k,)) such that o belongs to the cycle
&, then gﬁk is a vertex of the cycle @, of I';(p{*), a contradiction. So the
level of component & is at least k, + 1.

Next, suppose that the component & has exactly level {+1 with > k,,.

Then there exists 8 = (B1,...,8s) € V(&) where §; € V(I'y1(p}*)), such
that { is the least nonnegative integer for which ,33' belongs to the cycle o7..
By Lemma 3.1 (2), ,8,-3‘ is a vertex of a cycle in Ty (p}*) for i € {1,...,s}. We
can check that there must exists m € {1,...,s} such that 8%~ does not
belong to any cycle in I'; (p7). Hence, the level of T'y (pim) is at least [+ 1,
which is impossible, for the level of I'y (pi) is exactly kp,+1 < k,+1 < I+1.
So the component & has exactly level k, + 1. Hence, each component of
T'1(R) has level k, + 1. Finally, notice that 3k || |U,|, i.e., 3% || o(pt),

thus 3% || A(n), so w = k,. This completes the proof. O

By [5, Lemma 2, Theorem 3], we have the following lemma.
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Lemma 3.3.

(1) Suppose o € V(I'1(n)), then o is a vertez of a cycle in I'1(n) if and
only if 34 ordpa.

(2) Suppose that o and B belong to one and the same cycle of I'1(n),
then ord,a = ord,, 8.

Theorem 3.4.

(1) Let n > 1, then T'a(n) has ezactly one component if and only if
n = p* for some prime p and positive integer t.

(2) Fort > 1, if A(T2(n)) 2 1, then A¢(T'1(n)) 2 1.

Proof. (1) It is not difficult to check.
(2) Suppose A;(T'2(n)) > 1. Let a be a vertex of a t-cycle in I'z(n).
Then t is the least positive integer such that

a(e® ! = 1) = 0 (mod n). (3-1)

Let n, = ged(e,n), @ = ayn,, n = nyn,. Then ged(a,,n,) = 1. By (3-1),
we have n,n, ja(a®~1—1). Hence, ny|a, (e~ —1). Since n, is coprime to
a,, we have ng|a® =1 — 1. Moreover, by n, |e and ged(e, o¥-1-1) =1, we
have ged(n,,n,) = 1. Now, set f=1+a— o3'~1, then 8 = 1 (mod n,),
B = a (mod n,). Hence, #~! = 1 (mod n,) and gF-1= o3l =
1 (mod n,). It follows from ged(n,,n,) = 1, n = n,n, and (3-1) that ¢ is
the least positive integer such that B3-1 = 1 (mod n). So B is a vertex of
a t-cycle in I'y(n). Thus, 4,(T'y(n)) 2 1. ]

By inspection, we have the following lemma.

Lemma 3.5. Let n > 1. Then A(n) = 2-3™ for some m 2 0 if and only
ifn=2°3p, -+ pk, where s =0,1,2,3 andt > 0, k > 0, p; is a prime of
the form 2-3% + 1 for somet; 2 1,i=1,...,k.

Theorem 3.6.

(1) Let n > 1. Then for t > 1, Ay(T1(n)) = 0 if and only if AM(n) =1
or2-3™ wherem 2 0.

(2) Letn > 1. Then fort > 1, A¢(T'2(n)) = 0 if and only if n is a power
of a prime, or A(n) = 2-3™ where m > 0.

Proof. (1) Suppose A¢(T'1(rn)) = 0 for ¢t > 1. Clearly, if n = 2, then
Mn) = 1 and Ay(T'1(2)) = 0 for t > 1. Now we assume that n > 2. If
p > 5 is a prime such that p|A(n), then by Lemma 3.3 (1), there exists
a cycle with length larger than 1 in I';(n), a contradiction. So we have
p < 5. Further, clearly A¢(T'2(n)) = 0 for ¢ > 1 by Theorem 3.4 (2). This
implies that A;(I'(n)) = 0 for ¢ > 1. By [6, Theorem 2|, for any even
positive divisor d of A(n) with 3 { d, we must have ordg3 = 1. Sod =2
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and therefore 2 || A(n). By the argument above, we have A(r) = 1 or 2-3™
where m > 0, as desired.

The converse is easy to check by [6, Theorem 2J.

(2) Suppose that A;(T'3(n)) = 0 for t > 1. If n is not a power of a
prime, let n = pit .. -pf{‘, where o > 1, py < -+ < p,, are distinct primes
and ¢;,...,t, are positive integers.

Case 1. Suppose p; = 2. Ift; > 4, thent;—2 > 2 and A(21) = 21-2, 50
4|A(2"). Since ord43 = 2, by [6, Theorem 2], there exists a cycle of length 2
in I'(2%). Let o be a vertex of a 2-cycle in I'(2%1). Then o3’ = o (mod 2%)
but a® # a (mod 2%). By the Chinese remainder theorem, there exists an
integer f such that 8 = o (mod 2*) and 8= 0 (mod p¥) fori =2,..., p.
Clearly, ** = B(mod n) but % # B (mod n). So B is a vertex of a 2-cycle
in I'2(n), a contradiction. So ¢; < 3.

Case 2. Suppose that p; > 5 for some i € {1,...,u}. By the similar
argument of Case 1, we can show that ¢; = 1. So A(p¥) = A(p;) =p; — 1 =
2*g;, where 2 ¢; and by the similar argument of Case 1, we have k; = 1.
Moreover, if there exists a prime d; > 3 such that d;|g;, then ordzq,3 > 2,
by [6, Theorem 2], there exists a cycle of length ordgq,3 > 2 in I'(p;). By
the similar argument of Case 1, we will also derive a contradiction. Hence,
g; = 3™ for some positive integer m;, and we have p; =2-3™ + 1.

So we can conclude that n is a power of a prime, or by Lemma 3.5,
A(n) = 2-3™ for some m > 0.

The proof of converse is easy. : a

We call a directed graph semiregular if there exists a positive integer
d such that the in-degree of each vertex is d or 0. Specially, if every com-
ponent of the directed graph is a cycle, we also call this directed graph
semiregular. For example, I'2(3%) (see Fig.4) is semiregular. By [5, Corol-
lary 1], I'y(n) is semiregular for » > 1. Now, we study the semiregularity
of I'a(n).

30 39 48 33 42 51
Fig.4. The subgraph I'2(3%).
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Theorem 3.7.

(1) T'2(3%) is semiregular if and only if t = 1,2,3,4,5.

(2) Suppose that p is a prime and 3 | p— 1. Then I'a(p*) is semiregular
if and only ift =1,2,3.

(8) Suppose that p is a prime, 3t p—1 and p # 3. Then To(pt) is
semiregular if and only ift =1,2,3,4.

(4) Suppose that n = pi* ---pt* where s > 1, py < -+ < p, are distinct
primes, t1,...,t, are positive integers. Then the following statements are
equivalent:

(a) T'(n) is semiregular.
(b) T'2(n) is semiregular.
(c) T(p¥) is semiregular fori € {1,...,s}.

(5) Suppose that n is not a power of a prime. Then I'2(n) is semiregular
if and only if n = 3'p; - - - ps, where p1 < --- < p, are distinct primes with
pi#3and3tp;—1 fori={1,...,8},s2>1,t=0,1,2.

Proof. (1) Ift = 1,2,3,4,5, it is easy to inspect that I'y(3") is semiregular.
Now, let ¢ > 6. Clearly indeg(3%) > 0 and it is easily seen that o® =
3% (mod 3t) if and only if @ = 38 (mod 3*) for some integer 8 such that

B% = 1 (mod 3t73) (3-2)

Obviously 8 = 3k + 1 for some integer k > 0. By (3-2), we have 3'~3 |
Ok(3k? + 3k + 1). Hence, 3t~* | 8k. This implies that § = 3*~*m + 1 for
some integer m > 0. Moreover, 3(3~*m; + 1) = 3(3*"*mg + 1) (mod 3*)
if and only if m; = mg (mod 3%). Thus, indeg(3%) = 33. On the other
hand, by [6, Theorem 5], indeg(0) = 3t-T%1, It follows from ¢ > 6 that
t — [£] > 4, whereas indeg(3*) = 3° and hence I'5(3") is not semiregular
for t > 6.

(2) If t = 1,2,3, clearly I's(p*) is semiregular.

Conversely, suppose that ¢ > 4. Clearly indeg(p®) > 0 and it is easily
seen that o® = p3 (mod pt) if and only if @ = pB (mod p*) for some integer
B such that

A% = 1 (mod p*~3) (3-3)

Since 3 | p — 1, by [3, p.231, 8(i)], there are exactly ged(8,p—1) = 3
solutions of (3-3), namely 8 = B; (mod pt73), i = 1,2,3, where By, 52,83
are distinct positive integers less than pt~3. Moreover, p(8; + k1p*~?%) =
p(Bi + k2pt~2%) (mod p*) if and only if k&y = k2 (mod p?). In addition, if
i # 4, then p(B; + k1p*~3) # p(B; + k2p*~2) (mod p*) for ky, k2 > 0. Thus,
indeg(p®) = 3p2. On the other hand, there are exactly pt~(%1 elements
in T'2(p*) namely pl31, 2. pM41 . pt-5] . pl%] which are mapped into 0.
Hence, indeg(0) = p'~T31. Since p > 3 and t > 4, we have indeg(0) #
indeg(p®) and hence T'3(p*) is not semiregular for ¢ > 4.
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(3) Suppose t > 5. Clearly indeg(p®) > 0 and it is easily seen that
a® = p* (mod p') if and only if @ = pB (mod pt) for some integer 3
such that the congruence (3-3) holds. Since 3 p — 1, by [3, p.231, 8(i)],
the number of solutions of (3-3) is equal to ged(3,p — 1) = 1, ie.,, B =
1 (mod p*~3). Moreover, p(1 + k1p*~3) = p(1 + kap*~3) (mod ') if and
only if ky = k2 (mod p?). So indeg(p®) = p?. Further, indeg(0) = pt-I41
and t —[£] > 3 for ¢t > 5. Hence, indeg(0) # indeg(p®). So I'z(p*) is not
semiregular for t > 5.

Conversely, let ¢ = 4. It is not difficult to show that for vy € {1,...,p—
1}, there exists o € {1,...,p — 1} such that ¥ = 42 (meod p). So
7p° = 18p® (mod p*). Therefore, indeg(yp®) > 0. By the similar argu-
ment above, we have indeg(yp®) = p®. Moreover, since t = 4, indeg(0) =
p*~1%1 = p2, So we can conclude that there are p vertices in I's (p*), namely
0,p%,2p%,...,(p — 1)p®, with in-degree p?, and we have p x p? = p>. Since
the number of vertices in I'z(p*) is p%, the in-degree of any vertex in T2(p*)
is p? or 0. Hence I'y(p*) is semiregular if t = 4. Moreover, it is easy to see
that I';(p*) is semiregular for ¢ = 1,2, 3.

(4) (a) = (b) is clear.

(b) = (c) Suppose that I'z(n) is semiregular. In each I'(p¥*), set indeg(0)
= k; > 1. By Lemma 3.1 (1), indeg(0) = ky---k; in ['(n). Let i €
{1,...,s}. Suppose that 3; is an arbitrary vertex in I'(p¥*) with indeg(8;) =
d; # 0. By the Chinese remainder theorem, there exists a positive integer 8
such that 8 = f; (mod p¥*) and 8 = 0 (mod p??) for j € {1,...,8} and j #
i. Then by Lemma 3.1 (1), indeg(8) = ki - - ki_1dikspy - -- ks % 0 in T'(n).
Since I'z(n) is semiregular, indeg(0) = indeg(B) in La(n), ie., ky - ks =
ky---ki—1dikiy1---k,. Hence, d; = k;. Thus P(pf-‘) is semiregular for
ie{l,...,s}.

(c) = (a) Suppose that I'(p}‘) is semiregular for each i. In every I'(p*),
let indeg(0) = indeg(l) = k; > 1. Obviously, indeg(0) = indeg(l) =
ky---ks in ['(n). Assume a € Z, and @ = ; (mod p}*), then indeg(a) =
indeg(a;) x -++ x indeg(c,). Since I'(p¥*) is semiregular, we have either
indeg(a;) = 0 or indeg(a;) = indeg(0) = k; in I'(p¥). So indeg(a) = 0
or indeg(a) = ky -+ -k, = indeg(0) = indeg(1) in I'(n). Moreover, by [6,
Lemma 2}, I';(n) is semiregular for n > 1, so I'(n) is semiregular.

(5) By (1), (2) and (3) above, we have I'(p*) is semiregular if and only
if p* =32 or 3¢p — 1 with ¢ = 1. Therefore, by (4), the result holds. O
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