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Abstract

This paper is based on the splitting operation for binary matroids
that was introduced by Raghunathan, Shikare and Waphare [ Dis-
crete Math. 184 (1998), p.267-271] as a natural generalization of
the corresponding operation in graphs. Here, we consider the prob-
lem of determining precisely which graphs G have the property that
the splitting operation, by every pair of edges, on the cycle matroid
M(G) yields a graphic matroid. This problem is solved by proving
that there are exactly four minor-minimal graphs that do not have

this property.

Mathematics Subject Classifications: 05B35, 05C50 and 05C83.
Key words: Binary matroid, minor, splitting operation, graphic matroid.

1. Introduction

The splitting operation for a graph with respect to a pair of adjacent edges
is defined as follows (see [1]): Let G be a connected graph and let v be
a vertex of degree at least three in G. If z = vv; and y = vv, are two
edges incident at v, then splitting away the pair z, y from v results in a new
graph G, obtained from G by deleting the edges = and y, and adding a
new vertex vy, adjacent to v; and vs. The transition from G to G:y is
called the splitting operation on G. For practical purposes, we also denote
the new edges v, ,v1 and v;4v; in G.,, by = and y, respectively. The graph
G can be retrieved from Gy by identifying the vertices v and Vz,y. We say
that G,y arises from G by the splitting operation.

The following figure illustrates this construction explicitly.

The splitting operation has important applications in graph theory. For
example, Fleischner (1] characterized Eulerian graphs and developed an al-
gorithm to find all distinct Eulerian trails in an Eulerian graph using the
splitting operation. Tutte [10] characterized 3-connected graphs, and Slater
[9] classified 4-connected graphs using a slight modification of this opera-
tion. Raghunathan et al. [5] have extended the notion of splitting operation
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from graphs to binary matroids and used this operation to characterize Eu-
lerian binary matroids.

The splitting operation for binary matroids is defined in the following
way: Let M be a binary matroid on a set S and A be a matrix over GF(2)
that represents the matroid M. Consider elements = and y of M. Let Az,
be the matrix that is obtained by adjoining an extra row to A with this
row being zero everywhere except in the columns corresponding to z and
y where it takes the value 1. Let M, , be the matroid represented by the
matrix Az . We say that My has been obtained from M by splitting the
pair of elements z and y. The two elements = and y in the matroid M,
are now in series.

Alternatively, the splitting operation can be defined in terms of circuits
of binary matroids. Let M = (5,C) be a binary matroid on a set S together
with the set C of circuits. Then M, = (S,C’) with C' = Co UC;, where
Co={CeC:z,yecCorzgC,y¢gC}; and
C = {C]UCz :C, CreC,zeCy, yeCy, CiNnCy =¢and C;UC
contains no member of Cy }.

In particular, if M is graphic, G is a corresponding graph and z, y are
adjacent edges of G, then the above notion of splitting operation coincides
with the splitting operation in graphs. The following theorem is proved in

[5].

Theorem 1.1. Let G be a graph, M(G) be the circuit matroid of G and
let z,y be a pair of adjacent edges in G. Then M(G:y) = M(G)z,y. O

The splitting operation on a graphic matroid, in general, need not yield
a graphic matroid. Shikare [7] provided some examples in his Ph.D. Thesis
to justify this fact. Luis Goddyn in his evaluation report on the Thesis
mentioned that the most important and interesting problem in this context
is the problem of determining precisely which graphs G have the property
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that, for every pair z,y of edges, the matroid M(G),,, is graphic. In
this paper, we provide an excluded-minor characterization of the graphic
matroids M such that for all {z,y} € E(M), the splitting matroid M, , is
also graphic.

The main result in this paper is the following theorem.

Theorem 1.2. The splitting operation, by any pair of elements, on a
graphic matroid yields a graphic matroid if and only if the circuit matroid
of the corresponding graph has no minor isomorphic to the circuit matroid
of any of the following four graphs.

Figure 2

The following theorem is well known.

Theorem 1.3 [11]. A binary matroid is graphic if and only if it has no
minor isomorphic to F7, F7, M*(Ks), or M*(K33). a

Notation. For convenience, let F = {Fy, F7, M*(K3), M*(K33)}.
For undefined notation and terminology in graphs and matroids, we
refer the reader to [1, 3, 4, 6, 13].

2. The splitting operation and minors

In this section, we explore the relationship between the splitting operation
and the operations of deletion and contraction.

Proposition 2.1. Let M be a binary matroid on a set S containing T as
a subset and let z,y € S\ T. Then

(1) (M\T)z,y = (Mzy)\T ; and

(i) (M/T)zy = (Mzy)/T.

Proof. Let A be a matrix over GF(2) that represents the matroid M.
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(i) This follows from the fact that a matrix representation for M \ T is
obtained from A by deleting the columns corresponding to the elements of
T.

(ii) Let z be an arbitrary element of T. We show that (M/2)z,y = (Mz,y)/z.
If z is a loop, then by (i), (M/2)zy = (M\ 2)zy = (Mz,y) \ 2= (Mzy)/2.
Suppose that z is a non-loop element of T. Let ¢ be the column of A cor-
responding to z. By pivoting on a nonzero element of ¢, we can transform
A into a matrix A’ in which c is a unit vector. Let A’/z be the matrix ob-
tained from A’ by deleting the column ¢ and the row containing the unique
non-zero entry of c. Then A’/z represents the matroid M/z. The matrix
B that represents (M/z),, over GF(2) is obtained from A’/z by adding
an extra row with zero everywhere except in the columns corresponding
to z and y, where it is 1. But B also represents the matroid (My)/z
over GF(2). We conclude that (M/z);,y = (M,y)/2. Now it follows from
this fact that by contracting successively the elements of T in M and then
applying splitting operation with respect to the pair z, y, we obtain the
desired result. O

In the next proposition, we state some basic properties concerning the
splitting operation. Recall that elements e and f of a matroid M are in
series if {e, f} is a cocircuit of M.

Proposition 2.2. Let z and y be elements of & binary matroid M and let
r(M) denote the rank of M. Then

(i) (Mz,y) = (M) + 1 if and only if = and y are not in series;

(ii) My = M if and only if z and y are in series;

(iii) if z1, 22 are in series in M, then they are in series in My y;

(V) (May)/{z}\ {9} & (Me)/ {0} \ {o} = (M) \ (2,9} = M\ {z,};
(v) y is a coloop in (My,y) \ {z} while z is a coloop in (M) \ {y}-

The proofs are straightforward. ]

Theorem 2.3. Let G be a graph and let z and y be edges of G. Suppose
M(G);,y is not graphic. Then there is a graph G' in which no pair of edges
is in series and M(G’) is a minor of M(G) such that M(G');y/{z} € F or
M(G')zy/{z, v} € F.

Proof. By Theorem 1.3, the matroid M(G);,, has a minor F' € F. So
there exist subsets 77 and T2 of E(G) such that M(G):y \T1/T> = F.
Let T! = T; — {z,y} for i = 1,2. By Proposition 2.1, M(G)zy \T1'/T; =
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(M(G)\T{/T3)s,y- Let Gy denote the graph G\ T}/T5. Then F is a minor
of M(G1)z,y- We have subsets T;” = T; — T{,i = 1,2 of {z,y} such that
M(G1)zy \T1"/T2" = F. F does not use both z and y. If F uses neither
z nor y then, by Proposition 2.2(iv), M(G)s,/{z,y} & F. Suppose the
minor F' uses exactly one of z and y, say y. Then, by Proposition 2.2(v),
M(Gi)ey/{a} 2 F.

If G, does not have a pair of edges in series then we take G' = Gy.
Suppose that the edges z; and z; are in series in G;. Then, by Proposition
2.2(iii), 1 and z» are in series in M(G1)z,y. If {z1,z2} is disjoint from
{z,y} then z; and z; are in series in F, a contradiction. By Proposition
2.2(ii), the sets {z;,z2} and {z,y} cannot be equal. Therefore, we may
assume that = and z; are one and the same but y and z, are distinct.
Then z,z; and y form the series class in M(G1)zy. If M(G1)zy/{z} =
F then zo and y are in series in F, a contradiction. We conclude that
M(G1)z,y/{z,y} = F. But then M(G1)zy/{z,y} = M(G1)z,y/{z,z2}.
By Proposition 2.1, M(G1)z,y/{z, 22} = (M(G1)/{z2})z,y/{z}. By setting
G' = G1/{z2}, we have M(G’);,/{z} & F. This completes the proof of
the theorem. ]

Definition 2.4. Let G be a graph in which no pair of edges is in series and
let F € F. We say that G is minimal with respect to F if there exist two
edges z and y of G such that M(G).y/{z} = F or M(G),,,/{z,y} = F.

We deduce the following result as a corollary to Theorem 2.3.

Corollary 2.5. Let M be a graphic matroid and G be a corresponding
graph. Then the splitting operation, by any pair of elements, on M yields
a graphic matroid if and only if G has no minor isomorphic to a minimal
graph with respect to some F € F.

Proof. If M(G;,,) is not graphic for some pair z,y of edges then, by
Theorem 2.3, G has a minor isomorphic to a minimal graph corresponding

. to some member of F.

Conversely, suppose G contains a minor, say G, isomorphic to a mini-
mal graph that corresponds to F € F. Then G has edges z and y such that
M(G1)e,y/{z} = F or M(G1)zy/{z,y} = F, where G; = G\ T;/T, and
11, T; C E(G) - {z,y}. By Proposition 2.1, M(G),, \T1/(To U {z}) = F
or M(G)zy \T1/(T2 U {z,y}) = F. Thus M(G),, is not graphic, a con-
tradiction. ' a

115



In the next theorem, we state some properties of minimal graphs.

Theorem 2.6. Let G be a minimal graph with respect to F' where F € F
and let z, y be two edges of G such that either M(G)s,y/{z} = F or
M(G)z,y/{z,y} = F. Then

(i) G has no loops;

(ii) = and y are non-adjacent edges;

(iii) G is 2-connected;

(iv) if z; and z, are parallel edges of G then one of them must be either
or y; and

(v) if M(G)z,y/{z,y} = F, then G has at most one pair of parallel edges
and there is no 4-circuit in G containing both z and y.

Proof. (i) On the contrary, suppose G has a loop, say 2. If z is dif-
ferent from z and y, then it is a loop in M(G)., and also a loop in
M(G)zy/{z,y}. Consequently, it is a loop in F, a contradiction. If 2
is one of the two elements z and y, say z, then M(G).,,/{z} = M(G)\{z}
and M(G)zy/{z,y} = M(G)\{z}/{y}. We conclude that F is a minor of
M(G), a contradiction. Therefore, G can not have loops.

(ii) This follows from Theorem 1.1.

(iii) Suppose G is not 2-connected. By (i), (ii) and the fact that F is 2-
connected, it follows that G cannot have more than two blocks and z, y are
contained in different blocks. Then there is a graph H with E(H) = E(G),
z and y adjacent in H and M(H) = M(G). By Theorem 1.1, M(G)z,y =
M(H,,). Hence, the matroid M(G).,y is graphic, a contradiction.

(iv) If z; and z, are in a parallel class of G that does not contain z or y,
then z; and o remain in parallel in each of matroids M(G)z,y/{z} and
M(G)z,y/{z,y}. This is a contradiction, since no member of F contains a
parallel class. If z; and z, are in a parallel class containing z or y, then
M(G)z,y/{z} and M(G)z4/{z,y} contain a loop; a contradiction.

(v) Suppose that M(G).,/{z,y} = F for F € F and G has two pairs
of parallel edges. By the properties (ii) and (iv), these pairs must be dis-
joint, one should contain z and the other should contain y. Then M(G)z,y
has a 4-circuit containing = and y. This circuit results in a 2—circuit of
M(G)z,y/{z,y} which is not possible. Similarly, if G has a 4-circuit con-
taining = and y then it is preserved in M(G);, and will give rise to a
2—circuit of F which is impossible. O
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A matroid is said to be Eulerian if its ground set can be expressed as
a union of disjoint circuits of the matroid (see [12]). A matroid is called
bipartite if every circuit of it has an even number of elements. One can
check that each of the matroids Fy and M *(K3,3) is Eulerian while each
of F7 and M*(K5) is bipartite. Welsh [12] showed that a binary matroid
is Eulerian if and only if its dual is bipartite. If M is a Eulerian binary
matroid and A is a matrix over GF(2) that represents M then the sum of
columns of A is zero. It follows that a binary matroid M is Eulerian if and
only if M, , is Eulerian for every pair of elements z and y.

Proposition 2.7 Let G be a loopless graph and z,y € E(G). Then

(i) M(G)z,y/{z} is Eulerian if and only if G is Eulerian.

(ii) If z and y are nonadjacent and M(G);,,/{z,y} is Eulerian then either
G is Eulerian or the end vertices of z and y are precisely of odd degree.

Proof. (i) This follows from the fact that if G is Eulerian then E(G), the
edge set of G can be partitioned into edge-disjoint cycles of G and that
M(G).,y is binary.

(ii) Consider the incidence matrix A of the graph G. The number of ones
in a row of A gives the degree of the corresponding vertex. We know
that A represents M(G) over GF(2). Let A, be the matrix represen-
tation of M(G);,, and A;,/{z,y} represents M(G),,/{z,y}. Suppose
M(G);,y/{z,y} is Eulerian and the graph G is not Eulerian. Then the
number of ones in each row of A;,/{z,y} is even and there is a row of A
consisting of odd number of 1s. In fact, there is a nonzero even number of
such rows. Note that the number of 1s in a row of A which corresponds to
a vertex other than an endvertex of = or ¥ remains the same as the number
of 1s in the corresponding row of Az, /{z,y}. Therefore each of the rows
of A corresponding to a vertex other than an endvertex of z or y contains
even number of 1s. Obtain A.,/{z,y} from A, firstly contracting z by
pivoting on the nonzero entry that lies in the newly added row ( to A )and
then contracting y by pivoting on the nonzero entry of a row that has an
odd number of 1s. It follows that each row of A corresponding to the end
vertices of z and y consists of odd number of 1s. Thus the odd vertices of
G are precisely the end vertices of z and y. |

3. The splitting of graphic matroids

In this section, we investigate the minimal graphs corresponding to the four
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matroids Fy, F}, M*(Ka3) and M*(Ks), the excluded minors for the class
of binary matroids, and give a proof of Theorem 1.2. In particular, the
graphs to be examined have at most two more edges than each of the above
matroids. We found that there are in all nine minimal graphs, as shown
in Figure 3; the graphs G and G, correspond to F7, G corresponds to
Fy, the four graphs G4, Gs, Gg and G7 correspond to M*(K33), and the
graphs Gg and Gy correspond to M *(Ks).
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Figure 3

In the following lemma, we characterize minimal graphs corresponding
to the Fano matroid F.

Lemma 3.1. A graph is minimal with respect to the matroid Fy if and
only if it is isomorphic to one of the two graphs Gy and G, of Figure 3.

Proof. Observe that M(G1)z,/{z} = Fr and M(G2)s,,/{z,y} = F7.
Therefore G; and Gy are minimal with respect to Fr.

Conversely, let G be a minimal graph with respect to F7 and let z and y
be edges of G such that either M(G)z,y/{z} & F7 or M(G)z,y/{z,y} = F.
Case (i). Let M(G);/{z} = F;. Since the rank of F7 is 3, 7(M(G)z,y) =
4 and |E(M(G).4)| = 8 = |E(M(G))|. By Proposition 2.2 (i), r(M(G)z,y)
= r(M(G)) + 1 so, r(M(G)) = 3. Further, by Proposition 2.6, G is 2-
connected and contains at most two pairs of parallel edges. We conclude
that |V(G)| = 4 and |E(G)| = 8. Thus the simplification of G is the
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complete graph on four vertices. Moreover, G is obtained by adding two
nonadjacent parallel edges to its simplification. Hence G is isomorphic to
the graph G; of Figure 2.

Case (ii). Assume that M(G).,/{z,y} = F7. In this case, r(M(G)zy) =
5 and |[E(M(G).,y)| =9 = |E(M(G)|. By Proposition 2.2 (i), r(M(G)) =
4. Further, by Theorem 2.6(iii), G is 2-connected. Accordingly, |V(G)| =5
and |E(G)| = 9. Now, by Theorem 2.6(v), z and y must be edges in a cycle
of G with five edges. Two of the possible edges from endvertices of = to
endvertices of ¥ can’t be edges of G or a four cycle containing z and y is
obtained. Thus the simplification of G is as given by G, deletes a parallel
edge. Put the parallel edge back in the only possible place to get G,. This
completes the proof of the lemma. (]

Lemma 3.2. A graph G is minimal with respect to the matroid F; if and
only if it is isomorphic to the graph Gs.

Proof. Observe that M(G3)s,,/{z} = F7. Therefore G5 is minimal with
respect to Fy.

Conversely, let G be a minimal graph with respect to F;' and let z and y
be edges of G such that either M(G)z,y/{z} = F7 or M(G);,/{z,y} = F;.
We note that the rank of F; is four and every circuit of it has four elements.
Case (i). Suppose that M(G);y/{z} = F?. Then r(M(G)z,y) = 5 and
|E(M(G)zy)l = 8 = |E(M(G))|. By Proposition 2.2(i), r(M(G)z,) =
r(M(G)) + 1 so, r(M(G)) = 4. Further, by Theorem 2.6, G is 2-connected
and has no edges in series. Thus |V(G)| = 5, |E(G)| = 8 and the degree
sequence of G is (4, 3, 3, 3, 3). If G is simple then it must be isomorphic
to Gs \ {e2, €6} (see [3], p. 217). However, every pair of non-adjacent edges
in this graph is contained in a 4-circuit which will reduce to a 3-circuit of
M(G)z,y/{z}, that is, of F7, a contradiction since every circuit of F; has
size four. Hence G cannot be simple. Suppose G is a multigraph. Then
it must be obtained from a simple graph with 5 vertices and 7 edges by
putting an edge in parallel. There is just one simple graph of this type (see
(3], p. 217) and that is isomorphic to G5 \ {ez,e4, es}. This graph has two
edges in series. The graph G is obtained from this graph by putting an edge
parallel to one of the two edges which are in series. Then G is isomorphic
to the graph G3 of Figure 3.
Case (ii). Let M(G)sy/{z,y} = F7. Then we have r(M(G).,) = 6,
|[E(M(Gz,y))l = 9 = |E(M(G))|. Moreover, by Proposition 2.2(i),
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)

r(M(G)) = 5 and, by Theorem 2.6(i), G is 2-connected. Consequently,
G has 6 vertices, 9 edges and there are no edges in series. Thus the degree
sequence for G is (3, 3, 3, 3, 3, 3). If G is simple, then it must be one of
the two graphs (i) and (ii) of Figure 4 (see (3], p. 222). But every pair
of non-adjacent edges in each of the two graphs is contained in either a
4-circuit or a 5- circuit which will give rise to a 2-circuit or a 3-circuit of
M(G)zy/{z,y} which is impossible. Hence G cannot be simple. If G is
a multigraph then, by Theorem 2.6(v), it has at most one pair of parallel
edges. G can be obtained from a simple graph, say G', with 6 vertices
and 8 edges, by adding an edge parallel to the edge having endvertices of
degree 2. The graph G’ has the degree sequence (3,3,3,3,2,2)and the
vertices of degree 2 must be adjacent. Indeed, the graph G’ is isomorphic
to the graph (iii) of Figure 4 (see (3], p.221). The corresponding graph G
is isomorphic to the graph (iv) of Figure 4. However, the edges e; and e;
of this graph are in series and hence it is not minimal with respect to F7.

a.

The following lemma characterizes minimal graphs corresponding to the
matroid M*(K33).

Lemma 3.3. A graph is minimal with respect to the matroid M*(K3,3) if
and only if it is isomorphic to one of the four graphs G4, Gs, G and G7 of
Figure 3.

Proof. One can check that none of the graphs G4, Gs, Gg and G7 of Figure
3 contains edges in series. Further, each of the matroids M(Gy¢)zy/{z},
M(Gs)z y/{z}, M(Ge)sy/{z,y}, and M(G7)z,y/{z,y} is isomorphic to
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M*(K33). Therefore, each of these graphs is minimal with respect to
M*(Ks3,3).

Now, suppose G is a minimal graph with respect to M*(K3 3) and let =
and y be the edges of G with the property that M(G),,,/{z} & M*(K3 3)
or M(G)zy/{z,y} = M*(Ks3).

Case (i). M(G)z,y/{z} = M*(K33). Since the rank of M*(K33) is four,
M(G)z,y is a matroid of rank 5 and |E(M(G)z,)| = 10. In the light of
Proposition 2.2(i), the matroid M(G) has rank 4 and its ground set has 10
elements. By Theorem 2.6(iii), G is 2-connected. We conclude that G is a
graph with 5 vertices, 10 edges and there are no edges in series. Further,
by Proposition 2.7(i), G must be Eulerian. If G is simple, then it must
be isomorphic to G5 which is the complete graph on five vertices (see [2],
p.217). Suppose G is a multigraph and has one pair of parallel edges. Then
it must be obtained from the complete graph on five vertices by removing
one of its edges and adding a parallel edge to an edge having each end
vertex of degree four. But then such a graph is not Eulerian. Hence G
cannot have just one pair of parallel edges. Suppose G has two pairs of
parallel edges. In this case, G is obtained from the complete graph on five
vertices by removing two nonadjacent edges and then putting two parallel
edges in such a way that the resulting graph is Eulerian. The graph G must
be isomorphic to the graph G4 of Figure 3.

Case (ii). Assume that M(G);,y/{z,y} = M*(Ks3). Then M(G),, is
a matroid with 11 elements and has rank 6. In the light of Proposition
2.2(i), the rank of M(G) is 5 and its ground set has 11 elements. In view of
Theorem 2.6, G must be a 2-connected graph with [V(G)| = 6 and |E(G)|
= 11. Further, by Proposition 2.7(ii), G is Eulerian or precisely the end
vertices of z and y are of odd degree. Figure 5 shows all 2-connected simple
graphs on 6 vertices and 11 edges ([3], p.223).

SRR

(%) (243) () (v)
Figure 5

Every pair of non-adjacent edges of the graph (iii) of Figure 5 is con-
tained in a 4-circuit and therefore, by Theorem 2.6(v), it is not minimal.
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The graph (%) of Figure 5 is nothing but the graph G7 of Figure 3. Each
of the remaining graphs of Figure 5 does not satisfy either of the two prop-
erties stated in Proposition 2.7(ii). Hence none of these graphs is minimal
with respect to M*(K33).

Now suppose that the graph G is a multigraph. Then, by Theorem
2.6(v), it has at most one pair of parallel edges and, by minimality, has no
edges in series. Thus G is obtainable from a connected simple graph with
6 vertices and 10 edges, by putting a parallel edge in a suitable place. The
connected simple graphs each with 6 vertices and 10 edges are shown in
Figure 6 ([3], p.223).

AN AVURNEE,
) o W S

Figure 6

Consider the first graph in the first row of Figure 6. This has a vertex
of degree two. If a parallel edge is to be put up in this graph to obtain the
graph G the edge must be put up parallel to an edge which has one end
vertex of degree two. There are two ways, to put a parallel edge in this
graph. In fact, the two ways are symmetric and give rise to two graphs
each of which is isomorphic to the graph Gg of Figure 3. In each of the
remaining graphs of Figure 6 if we put a parallel edge in all possible ways,
we obtain graphs each of which does not satisfy either of the two conditions
stated in Proposition 2.7(ii). Thus none of these graphs is minimal with
respect to M*(K3,3). This completes the proof. O

The following lemma. characterizes the minimal graphs corresponding
the matroid M*(Ks).

Lemma 3.4. A graph is minimal with respect to M*(Kj5) if and only if it
is isomorphic to Gg or Gg.

Proof. Observe that neither of the graphs Gg and Gg of Figure 3 has edges
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in series. Moreover, each of the matroids M(Gs).,,/{z} and M(Gg).,,/{=}
is isomorphic to M*(Kj). Thus, each of the graphs Gg and Gy of Figure 3
is minimal with respect to M*(Kj).

Conversely, suppose that G is a minimal graph with respect to M*(Kj)

and let z, y be a pair of edges in G such that either M(G).,,/{z} = M*(Ks)
or M(G)z,y/{z,y} = M*(Ks). We note that M*(Ks5) is a bipartite matroid
of rank 6. In fact, it has 5 circuits of size 4 and 10 circuits of size 6.
Case (i). Suppose M(G).,y/{z} = M*(Ks). Then M(G),,, is a matroid
on a 1l-element set and has rank 7. By Proposition 2.2(i), M(G) has rank
6 and its ground set has 11 elements. By Theorem 2.6, G is 2-connected,
has no edges in series and hence no vertex of degree 2. Consequently, G
has 7 vertices, 11 edges and the degree sequence (4, 3, 3, 3, 3, 3, 3). From
the nature of circuits of M*(Ks) and the definition of M(G),,y, it follows
that G cannot have (i) two or more edge-disjoint triangles and (ii) two or
more pairs of parallel edges. Suppose G is simple. The non-isomorphic
simple graphs each of which has degree sequence (4, 3, 3, 3, 3, 3, 3) can be
constructed from the simple graphs with degree sequence (3, 3, 2, 2, 2, 2)
by adding a vertex adjacent to vertices of degree two. There are precisely
four non-isomorphic simple graphs each with degree sequence (3, 3, 2, 2, 2,
2) ([3], p- 220). All of the non-isomorphic simple graphs each with degree
sequence (4, 3, 3, 3, 3, 3, 3) are shown in Figure 7. However, each of the
graphs (i), (ii) and (iii) of Figure 7 has two or more triangles and therefore
none of these graphs is minimal with respect to M*(K;). The graph (iv)
of Figure 7 is the graph Gg of Figure 3.

ANANRYANEIN
N N

(%) (i)
Z \/\ ' {
(iid) (iv)
Figure 7

If G is not simple then, as noted above, it has just one pair of parallel

123



edges. Thus G can be obtained from a simple graph whose degree sequence
is (3,333,332 or (43,33, 3,2, 2) by adding an edge in paral-
lel. However, any such graph obtained from a simple graph having degree
sequence (4, 3, 3, 3, 3, 2, 2) contains a pair of edges in series. Hence G can-
not arise from these type of graphs. Now all non-isomorphic simple graphs
with degree sequence (3, 3, 3, 3, 3, 3, 2) can be obtained from the non-
isomorphic simple graphs each with degree sequence (3, 3, 2, 2, 2, 2) (see
[3], p-220-221 ). There are in all five non-isomorphic simple graphs each
with degree sequence (3, 3, 3, 3, 3, 3, 2). The non-isomorphic multigraphs
obtained from each of the five graphs, by adding a parallel edge to an edge
having an endvertex of degree 2, are shown in Figure 8.

(2) (%%) : 111) ; w ; (v)

Figure 8

Now, each of the graphs (ii), (iii) and (v) of Figure 8 contains a pair of
edge-disjoint triangles and hence none of them is minimal. In the graph
(iv) of Figure 8, one of the two edges z and y, say = must be in a 2-circuit
and the edge y being non-adjacent with z must be contained in a 4-circuit
which is disjoint from the 2-circuit. But then M(G),,,/{z} will contain
a circuit whose cardinality is different from 4 and 6, which is impossible.
Thus G must be isomorphic to the graph (i) of Figure 8 which is nothing
but the graph Gy of Figure 3.

Case (ii). Assume that M(G);,/{z,y} = M*(Ks). Since M*(Ks) has
rank 6, M(G)z,,/{z,y} is a matroid of rank 6 and its ground set has 10
elements. Consequently, M(G),., is a matroid of rank 8 on a set with 12
elements. By Proposition 2.2(i), M(G) has rank 7 and its ground set has
12 elements. By Proposition 2.6(iii), G is 2-connected. Thus the graph
G must have 8 vertices, 12 edges and no edges in series. Accordingly, the
degree sequence of G is (3, 3, 3, 3, 3, 3, 3, 3). Suppose G is simple. Then G
is obtained from a simple graph having degree sequence (2, 2, 2, 2, 2, 2), (3,
2,2,2,2,1),(3,3,2,2,1,1)or (3, 3,3, 1, 1, 1) by adding two more vertices
adjacent to vertices of degree two and one. There are 11 non-isomorphic
graphs each of which has one of the above degree sequences (see (3], p. 221,
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222). Figure 9 shows all non-isomorphic 2-connected simple graphs each of
which has degree sequence (3, 3, 3, 3, 3, 3, 3, 3) and no pair of edges in
series.

Figure 9

The matroid M*(K35) has only even sized circuits and contains 5 circuits
each of size four. Therefore the nonadjacent edges r and y satisfy the
following properties.

i) If G contains a triangle then precisely one of z and y must be an edge of
the triangle.

ii) G has no cycle of odd size which contains both z and y.

iii) The total number of 4-cycles containing neither z nor y and 6-cycles
containing both z and y should not exceed 5.

iv) By Proposition 2.6(v), G has no 4-cycle which contains both z and y.
Now one can check that neither of the three graphs of Figure 9 contains a
pair of nonadjacent edges = and y which satisfy the above properties. Thus
there cannot be a simple graph G with the condition M(G),,,/{z,y} =
M*(Ks).

Suppose G is a multigraph. Then, by Theorem 2.6(v), it has at most
one pair of parallel edges. Accordingly, G is obtained from a connected
simple graph, say H, with 8 vertices and 11 edges by adding an edge in
parallel. Further, the graph H must have two adjacent vertices each of
which has degree two and the edge to be added must be parallel to the
edge joining these two vertices. But the two edges of G adjacent to the pair
of paralle] edges are in series. We conclude that there is no graph G such
thet M(C)sy/{z,y} & M*(Ks). O

Now we use Lemmas 3.1, 3.2, 3.3 and 3.4 to prove Theorem 1.2.

Proof of Theorem 1.2. Let M be a graphic matroid and let G be a
graph such that M = M(G). On combining Corollary 2.5 and Lemmas
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3.1, 3.2, 3.3, and 3.4, it follows that M(G)z,y is graphic for every pair
{z,y} of edges of G if and only if M(G) has no minor isomorphic to any
of the matroids M(G;), i = 1,2,...,9, where the graphs G; are as shown
in Figure 3. However, we have M(G3) = M(G2) \ ez = M(Ga) \ {e2, w} =
M(Ge)/e2 \ {es, s} = M(Gr)/er\ {w,es} = M(Go)/{v,2}\e1. Thus,
M(G)z,y is graphic if and only if M(G) has no minor isomorphic to any
of the matroids M(G;), M(Gs), M(Gs) and M(Gs). But the graphs
G, G3, Gs and Gg are precisely the graphs given in the statement of the

theorem.
O
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