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Abstract

The supereulerian index of a graph G is the smallest integer k
such that the k-th iterated line graph of G is supereulerian. We first
show that adding an edge between two vertices with degree sums at
least three in a graph cannot increase its supereulerian index. We
use this result to prove that the supereulerian index of a graph G
will not be changed after either of contracting an Ag(F)-contractible
subgraph F of a graph G and performing the closure operation on G
(if G is claw-free). Our results extend a Catlin’s remarkable theorem
[4] relating that the supereulericity of a graph is stable under the
contraction of a collapsible subgraph.
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1 Introduction

Throughout this article we consider only finite undirected loopless graphs.
However, except for Section 4, we admit G to have multiple edges. We
use Bondy & Murty [1] for terminology and notation not defined here. For
a graph G, set Vi(G) = {v € V(G) : dg(v) = i} (where 7 is an integer
and dg(v) is the degree of a vertex v in G) and W(G) = V(G) \ V2(G).
A branch in G is a nontrivial path with end vertices in W(G) and with
internal vertices, if any, of degree 2 in G. If a branch has length 1, then
it has no internal vertex. Let B(G) denote the set of branches of G, and
B,(G) the subset of B(G) in which every branch has an end in V1(G). If
P =gz, -,z is a path in a graph G and §,T C G are subgraphs of G,
then we say that P is an (S, T)-path if z; € V(S) and zx € V(T). The
distance of two subgraphs S, T C G (denoted by dg(S,T)) is the minimum
length of an (S, T)-path. For a subgraph H of G let By (G) be the set of
those branches of G which have all edges in H.

If G is a graph and k > 0 an integer, then SUx(G) denotes the set of
all subgraphs H of G satisfying the following five conditions:

(I) dg(z) =0 (mod 2) for every x € V(H);
A(G)
(1) Vo(H) € U Vi(G) C V(H);
=3
(I11) dg(Hy,H — Hy) < k for every subgraph H; of H;
(IV) |E(b)| € k + 1 for every branch b € B(G) \ Bu(G);
(V) |E(b)| < k for every branch b € B, (G).
The line graph L(G) of a graph G = (V(G), E(G)) is the graph with
the vertex set E(G) and two vertices are adjacent in L(G) if and only if
the corresponding edges of G have a vertex in common. L¥(G) is defined

recursively by L°(G) = G and L¥(G) = L(L*"1(G)). A graph is called a
supereulerian if it contains a spanning eulerian subgraph. If de(H, H —
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H;) = 0 for every subgraph H; of H, then H is a connected graph. Thus a
graph G is supereulerian if and only if SUp(G) # 8. The following theorem
generalizes this result to the k-th iterated line graph L*(G) of a graph G.

Theorem 1.1. [16] Let G be a connected graph with at least three edges
and let k£ > 0 be an integer. Then L*(G) is supereulerian if and only if
SUL(G) # 0.

The supereulerian indez of a graph G, denoted by s(G), is the small-
est integer k such that L¥(G) is supereulerian. Obviously, the line graph
L(G) of a supereulerian graph is supereulerian and is hamiltonian. Thus,
Theorem 1.1 equivalently states that $(G) < k if and only if SUL(G) # @
for an integer k > 0 and for any graph G.

A graph G is collapsible if for any subset X C V(G) of even size, there
is a connected spanning subgraph H C G such that the set of vertices
v with odd degree dy(v) is precisely X. Catlin [4] obtained the following
theorem which is very important in supereulerian graph theory.

Theorem 1.2. [4] Let G be a graph and H a collapsible subgraph of G.
Then G is supereulerian if and only if G/H is supereulerian, i.e., 3(G) = 0
if and only if s(G/H) = 0, where G/H is the graph obtained from G by
identifying the vertices of H as a (new) vertex, by discarding the resulting
loops but keeping all multiple edges.

If F is a subgraph of a graph G, then a vertex z is said to be a
attachment vertex of F in G if z € V(F) and x has a neighbor in V(G) \
V(F). Ag(F) denotes the set of all attachment vertices of a subgraph F in
G, and G| denotes the graph obtained from G by identifying the vertices
of F as a (new) vertex vr, and by replacing the created loops by pendant
edges (i.e. edges with one vertex of degree 1) attached to vr, and we say
that G|r is obtained from G by contracting the subgraph F (observe that
|E(G)| = |E(G]F)|)- Let X be a subset of V(G) and A a partition of X,
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Then E(.A) denotes the set of all edges a;a; (not necessarily in E(G)) such
that a1, ag are in the same element of A, and G4 denotes the graph with
vertex set V(GA) = V(G) and edge set E(G4) = E(G) U E(A). Note that
E(G) and E(A) are considered to be disjoint, i.e., if &1 = a102 € E(G)
and e; = ajag € E(A), then ey, ez are parallel edges in GA. A graph G
is X -contractible if, for every even subset Y C X and for every partition
A of Y into two-element subsets, the graph G4 has a dominating closed
trail (abbreviated DCT) containing all vertices of X and all edges of E(A).
Note that this definition allows A to be empty, in which case G4 = G.
Also, if G is X-contractible, then G is X'-contractible for any X' C X,
since every subset Y of X' is a subset of X. Let

dr(G) = max{ |S| : S C E(G) and there is a closed trail T C G such that
every edge e € S has at least one vertex on T'}.

Theorem 1.3. [14] Let F be a connected graph and let A C V(F). Then
F is A-contractible if and only if d7(G) = dr(G|F) for every graph G with
F C G and Ag(F) = A.

Note that G|r may contain multiple edges even if G is simple. How-
ever, it is easy to observe that a multiple edge is a contractible subgraph
and hence, by a series of subsequent contractions, it is always possible to
reduce G|r to a certain simple graph G’ with dr(G') = dr(G|r) = d7(G).

A simple graph G is claw-free if G does not contain a copy of K 3 as
an induced subgraph. A subgraph is called a factor if it contains all vertices
of G. A [2,4)-factor is a connected factor in which every vertex has degree
either two or four. It is well-known that every line graph is claw-free. The
following result explore the relation between supereulerian claw-free graphs
and connected [2,4]-factors in claw-free graphs.

Theorem 1.4. [6] [9] Let G be a claw-free graph. Then G is supereulerian
if and only if G has an [2,4]-factor.
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Let G be a claw-free graph. A vertex z € V(G) is locally connected if
G[N(z)] is a connected graph. For z € V(G), the graph G, with vertex set
V(G;) = V(G) and edge set E(G%) = E(G)U{uv| u,v € N(z)} is called the
local completion of G at z. It was shown in [12] that the local completion
of a claw-free graph G at z is again claw-free, and if z is a locally connected
vertex, then ¢(G}) = ¢(G) (where ¢(G) denotes the circumference of G, i.e.
the length of a longest cycle in G). Let cl(G) be a graph obtained from G by
recursively performing the local completion operation at locally connected
vertices with noncomplete neighborhood, as long as this is possible. The
graph cl(G) is called the closure of the graph G. The following theorem
summarizes basic properties of the closure operation.

Theorem 1.5. [12] Let G be a claw-free graph. Then

o cl(G) is uniquely determined,
¢ c(cl(G)) = ¢(G),
o cl(G) is the line graph of a triangle-free graph,

e G is hamiltonian if and only if cl(G) is hamiltonian.

If C is a class of graphs, I is a graph operation on C and P is a graph
property, then P is said to be stable under I if, for any G € C, G has P if
and only if I'(G) has P. Similarly, a graph invariant 7 is said to be stable
under [ if for any G € C we have n(G) = n(I'(G)). In this terminology,
Theorem 1.2 say that the existence of a spanning closed eulerian subgraph
is stable under the operation of contraction of a collapsible subgraph H, and
Theorem 1.5 say that the circumference and hamiltonicity are stable under
the closure operation on claw-free graphs. Very recently, [17] extended the
result and obtained that the hamiltonian index (i.e., the smallest intger &
such that L¥(G) is hamiltonian) is stable under the closure operation on
claw-free graphs. Stability of some further graph properties and invariants
under the closure operation was studied e.g. in [2], [13], [8] or [11] (also see
the survey paper [3]).
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In this paper, our motivation is to extend Theorem 1.2. We investigate
the stability of the supereulerian index under the operation of contraction
of an Ag(F)-contractible subgraph F' and under the closure operation on

claw-free graphs.

2 Supereulerian index of a subgraph

In this section, we will show that adding an edge between two vertices with
degree sums at least three in a graph cannot increase its supereulerian

index.

Theorem 2.1. Let G be a connected graph with at least three edges other
than a path. Then s(G) > s(G + ab) for any two vertices a,b of V(G) with
dg(a.) + dc(b) >3.

Proof. Let G' = G + ab. Then s(G’) 2> 0 since s(G) > 0. Suppose that
dg(a) + dg(b) > 3. By Theorem 1.1, there is a subgraph H € SU,(c)(G).
Let H' be the subgraph of G’ with the vertex set V(H') = V(H)U{v €
{a,b} : dg'(v) > 3} and the edge set E(H') = E(H).

We will show that H' € SU,)(G'), i.e., H' satisfies the conditions
(I) - (V) of the definition of SU,(g)(G’) (for the graph G’ and k = s(G)).
Obviously, H' satisfies conditions (I) and (II).

If one of a,b has degree 1 in G, say, dg(a) = 1, then dg(b) > 2 since
dg(a) + dg(b) > 3. The branch (denoted by P) of By(G) containing a will
become a new branch P’ = Pb in B(G') \ (By(G') U B1(G')) of length
|E(P)| +1 < s(G) + 1. The other branches of B(G') \ Bx/(G) are the same
as those of B(G) \ By (G) except the only case that dg(b) = 2 and b is
not in V(H); in this exceptional case, the branch containing b turns into
two shorter branches in B(G’) \ By+(G'). This shows that H' satisfies (IV)
and (V). If both a and b have degree at least 2 in G, then the branches in
B(G")\Bp:(G') are the same as those in B(G)\ Bu(G) except the case that
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a or b (or both) have degree exactly 2 in G and they are not in V(H); in
this exceptional case, the branches in B(G’) \ By:(G') will be shorter than
those in B(G) \ By(G). This shows that H' satisfies (IV) and (V).

It remains to show that H’ satisfies (III). Suppose there is a subgraph
Hj of H' such that de/(H{, H' — H{) 2 s(G)+1 > 2. It is easy to see that
V(H{)NV(H) and V(H'~ H{)NV(H) cannot be both empty. Suppose first
that V(H{)NV(H) =0 and V(H' — H{) N V(H) # 0 (note that the case
that V(H])NV(H) # 0 and V(H' — H{)NV(H) = 0 is symmetric). Then
V(H]) C {a,b}. If V(H]) = {a,b}, then dg(a),dc(b) < 2 since {a,b} N
V(H) =0 and H satisfies (II). By the definition of H’, dg/(a),dg(b) > 3.
Hence dg(a) = dg(b) = 2, implying that both a and b are on some branches
of B(G) \ By (G). Since H satisfies (IV) and (V), dg({a, b}, H) < 8(G); in
this case, any shortest ({a, b}, H)-path in G is also an (H{, H' — H})-path
in G'. Hence dg/(Hy, H' — H}) < de({a,b}, H) < 3(G), a contradiction.
This implies that H] has exactly one vertex, say, V(H]) = {a}. Similarly,
de({a}, H) < 5(G) and any shortest ({a}, H)-path in G is an (H}, H' - H})-
path in G’, implying that dg:(H{, H' — H{) < dg({a}, H) < 3(G), & contra-
diction. Finally, suppose that both V(H{)NV(H) and V(H' — H})NV (H)
are nonempty, and set H; = H{NH. In this case, any shortest (H;, H— H;)-
path in G is also an (Hj, H' — Hj)-path in G'. Hence dg/(H},H' — H}) <
dg(Hq,,H — Hy) < 3(G), a contradiction. This shows that H’ satisfies
(IIT). Thus H' € SUy)(G"), implying s(G’) < s(G). Therefore the proof
of Theorem 1 is completed. D

Remark 2.2. An example from [17] shows that the assumption dg(a) +
dg(b) > 3 in Theorem 2.1 cannot be relaxed.

The following corollary is easily obtained from Theorem 2.1.

Corollary 2.3. Let G be a connected graph with at least three edges other
than a path and G’ be a graph obtained from G by recursively adding the
edges whose ends a and b satisfy d(u) + d(v) > 3. Then s(G) > s(G").
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3 Supereulerian index is stable under con-
traction |

We begin this section with the following well-known result which will be
used in our proofs. Here a bond of a graph G is a minimal edge cut set.
Note that a graph may have different bonds with different values.

Theorem 3.1. [10] A connected graph is eulerian if and only if each bond
contains an even number of edges.

The following lemma will be used in our proof, and its proof is easy and
omitted here.

Lemma 3.2. Let G be a graph. Then for any H € EUyg)(G) and any
subgraph H; of H, if the distance between H; and H — H) is at least 2,
then the shortest path of G between H; and H — H; is a branch of G,
whose ends are adjacent in G.

If G is a supereulerian graph (i.e. s(G) = 0) and F' C G is a nontrivial
subgraph of G, then G| cannot be supereulerian (since it has connectivity
1), and it is easy to observe that any closed spanning eulerian subgraph H
in G turns into a DCT in G|r. Hence s(G) = 0 implies s(G|r) = 1 for any
nontrivial subgraph F C G. However, the following theorem shows that
for 8(G) > 1, i.e. for nonsupereulerian graphs, the supereulerian index is
stable under contraction of a contractible subgraph.

Theorem 3.3. Let G be a nonsupereulerian graph other than a path and
F be an Ag(F)-contractible subgraph of G. Then s(G) = s(G|r).

Proof. Let G' = G|F. Obviously, s(G) > 1 if and only if s(G') > 1. It
is sufficient to consider the case that s(G) > 1. Hence s(G’) > 1. We first
prove that s(G’) < s(G). By Theorem 1.1, we can take a subgraph H in
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SUyc)(G). Let H' be the graph obtained from H|r by deleting the new
pendant edges. We prove that H' is in SU,g)(G'), i.e., H' satisfies the
conditions of the definition of SUyg)(G") for the graph G’ and k = s(G).
By Theorem 3.1, H' satisfies (I) and (II) in the definition of SU,g)(G").
From the definitions of Ag(F) and A-contractible graph, every vertex in
Ag(F) has degree at least 3 in G. Using Lemma. 3.2, we easily obtain that
H' satisfies also the other conditions in the definition of SUg(G’), and
hence s(G') < s(G).

We now prove that s(G) < s(G’). Since s(G’) > 1, by Theorem 1.1,
we can take a subgraph H' in SU,(g/)(G’). Let r(z) denote the number of
branches of By/(G) with an end-vertex z. Let

Vo(H') = {z € F : z is an endvertex of a branch of By (G)}
V¢ = {z € Vo(H') : r(z) = j (mod 2)}.

Since H' satisfies (I), 3-;eva 7(2) + Xpevp (%) = Loey, (%) = dir (vr)
is even. Since Zzevz r(z) is even, it follows that Zzevl r(z) is also even.
Hence |V}}| is even. Let X = V;!. Take one partition "A of X into two-
element subsets. Since F' is Ag(F)-contractible, F4 has a DCT T con-
taining all vertices of Ag(F) and all edges of E(A). Let H be the graph

with vertex set V(H) = V(H') U ( U Vi(G)) U V(T) and the edge set
E(H) = E(H') U (E(T) \ E(A)).

We prove that H € SU,(¢)(G). Obviously, H satisfies the conditions
(I) and (II) in the definition of SU,(g)(G). Since T is a DCT which contains
all vertices of Ag(F) and all edges of E(A), by Claim 1, H satisfies (IV)

and (V). By Lemma 3.2, H satisfies (III). Hence H € SUye)(G), implying
8(G) < s(G"). This completes the proof of Theorem 3.3. []

The following corollary extends Theorem 1.2, which follows from The-
orem 1.2 and Theorem 3.3.

Corollary 3.4. Let G be a graph and H be a collapsible subgraph of G.
Then s(G) = s(G/H).
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4 Supereulerian index of a claw-free graph is
stable under the closure

In this section, assume that all graphs are simple (i.e. without multiple
edges). In order to prove our results, we start with the following basic

result.

Theorem 4.1. Let G be a claw-free graph and v a locally connected vertex
of G such that G[N(v)] is not complete and let N’ = {zy ¢ E(G): z,y €
N(v)} and G’ be a graph with vertex set V(G) and the edge set E(G') =
E(G)UN'. Then G has a [2,4]-factor if and only if G’ has a [2,4]-factor.

Proof. Obviously, G’ has a [2,4]-factor if G has a [2,4]-factor. Now
assume that G’ has a [2,4]-factor F. We will prove that G has a [2,4]-factor
F'.Let A={z € V(G): dp(z) =4} and N" = {zy € E(F): zy e N'}. If
N’ =0, then we are done. Thus N’ # 0. If A =@, then F is a hamiltonian
cycle of G’. From [12], G has a hamiltonian cycle and so we are done.
Thus A # @. Assume that F is a [2,4]-factor with the minimum number
m := |N"| and zy € N'. Then zv,yv € E(G). Furthermore assume that
F is a [2,4)-factor with the minimal vertices of degree 4 in F' among all
[2,4]-factors with m edges of N'. Consider two cases according to the value
of dp(v).

Case 1. dp(v) = 2.

If zv, yv ¢ E(F), then removing the edge zy from F and adding zv, yv
into F, we obtain a [2,4]-factor F’ with |N”'|—1 edges of N, a contradiction.
Thus zv € E(F) or yv € E(F) (say zv € E(F)). We can assume that v,
z and y are in the same cycle of F since otherwise v and y are in two
different cycles of F, respectively, and we have dr(z) = 4. Removing the
edges zy, zv and adding the edge vy we obtain a new connected [2,4]-factor
F' with [N”| — 1 edges of N’ and dp(z) = 2, a contradiction. Assume
that C is such a cycle of F such that y, z and v is in order on C. Since
A # 0 and dp(v) = 2, there is a vertex w on F such that zvw is a path
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on C and w ¢ {z,y,v}. Then, from Glv,w,z,y] # K13 and zy ¢ E(G),
wz € E(G) or wy € E(G). Further, we have wy € E(G) since otherwise
wz € E(G) and then removing the edges zy and wv from F and adding
the edges wz and vy into F we obtain a new [2,4]-factor F’ with [N”| —1
edges of N', a contradiction, which also shows that wz ¢ E(G). Since v is
locally connected, there is a vertex z such that zz € E(G) and z € N(v).

We first have dr(z) # 2 since otherwise removing the edges zy from
F and adding the new edges vz, vy and zz into F, we obtain a new [2,4]-
factor F' with [N”| — 1 edges of N’ such that dp/(z) = 4 and dp/(v) =4,
a contradiction. Thus dp(z) = 4. Without loss of generality assume that
z € V(C) ( the proof of other case z ¢ V(C) is similar). Since wz ¢ E(G),
w # z. Let Np(2) = {21, 22, 23,24} and the cycle C = (z1220...yzVW...21)
and the cycle (23224...23) meet at the vertex z. Then z; 23, 2,24 ¢ E(G) and
2223, 2224 ¢ E(G) since otherwise, e.g., z123 € E(G), removing the edges
21z, 23z, 7y, wv from F and adding 2, 23, wy, vz, 2z into F, we obtain a new
(2,4]-factor with |N”'| —1 edges of N’ such that dp(2) = 4, a contradiction.
It follows that z; 23, 2324 € E(G). Removing the edges zy, zz; and 2z, from
F and adding the edges z; 2, vz, 22, vy into F, we obtain a new (2,4]-factor
with [N”| — 1 edges of N’ such that df/(v) = 4 and d+(2) = 4 and zvz is
a cycle of F”, a contradiction. Thus Case 1 is proved.

Case 2. dp(v) =4.

Let Np(v) = {v1,v2,v3,v4} and C; := (v1vv5...v1) and C; := (vavvg...v3)
be two cycles of F' meeting at the vertex v. If {z,y} = {v1,v2} or {z,y} =
{vs,v4} (say 2 = v and y = vp), then, from Gv,z,y, vs] # K3, z(=
v1)vs € E(G) or y(= v2)vs € E(G) (say zvs € E(G)). Removing vyv, vus
from F and adding vv3 into F' we can obtain a new [2,4]-factor F’ with m
edges of N’ such that dps(v) = 2, a contradiction. Thus {z,y} # {v1,v2}

and {a:, y} # {1’31”4}'

Since F' is connected, there is a path in F' connecting z and one of
{v1,v2,vs,v4}( say v;) but not going through v. If vyvy € E(G), then re-
moving vy, vva, zy from F and adding the edges v; vz, zv, yv into F, we ob-
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tain a new [2,4]-factor with |N”'|—1 edges of N’ such that d+(v) = 4, a con-
tradiction. Thus v,v; ¢ E(G). Since G[v,v1,v2,vs] # Ki,3, v1vs € E(G)
or vous € E(G). If vju3 € E(G) for ¢ = 1,2, then removing vv;, vvs, Ty
from F and adding v;vs, zv, vy into F' we obtain a new [2,4]-factor F’ with
|N"| — 1 edges of N’ such that dp(v) = 4, a contradiction. Thus Case 2 is
proved. Therefore we complete the proof of Theorem 4.1. []

Theorem 4.1 equivalently states that G is supereulerian if and only
if its closure is supereulerian. The following result, which generalizes this
result and is the main result of this section, shows that the supereulerian
index is stable under the closure operation on claw-free graphs.

Theorem 4.2. Let G be a connected claw-free graph with at least three
edges other than a path. Then s(G) = s(cl(G)).

Proof. Since G C cl(G) and V(G) = V(cl(G)), we have s(G) =
5(cl(G)) by the definition of cl(G) and by Theorem 2.1. It remains to
prove that s(G) < s(cl(G)). It is sufficient to prove that s(G) < s(G + zy)
for any pair of vertices = and y with zy ¢ E(G) such that they have a
common neighbor in G which is a locally connected vertex of G.

Let G' = G + zy and let u be a locally connected common neighbor of |
z and y. Then there is an (z,y)-path P in G[N(u)] such that |E(P)| > 2
and E(P) C E(G[N(u))). It is easy to see that the internal vertices of
P have degree at least 3 in G. Thus, by the definition of ¢l(G) and by
Theorem 2.1, $(G") > 8(cl(G)). By Theorem 1.1, SUyg)(G') # 0. Taking
an H € SUy)(G'), we construct a subgraph H' of G as follows:

V(H") =V(H)\ {v € {z,v} : de(v) = 2 and dc'(v) =3 and dy(v) =0},

, E(H) if zy ¢ E(H),
E(H) = { (E(H)AE(P)\ (a3} if oy € E(ED.

where E(H)A(E(P) denotes the symmetric difference (E(H) \ E(P)) U
(E(P)\ E(H)).

We show that H' € SU,g)(G), i.e., H' satisfies the conditions of the
definition of SUyg)(G) for the graph G and k = s(G"). Obviously, H'
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satisfies conditions (I) and (II). By the definition of G + zy and Claim 1,
all branches of length at least 2 in G are the same as in G’ except the
case when z or y (or both) have degree 2 in G; in this exceptional case,
each of z,y is on a branch in B(G) \ B1(G) with adjacent end vertices and
length exactly 2. Hence by Claim 1 and Lemma 3.2, H' satisfies the other
conditions of the definition of SUyc)(G), implying H' € SUyen(G). By
Theorem 1.1, s(G) < s(G’), which proves Theorem 4.2. |
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