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Abstract

The numbers of distinct self-orthogonal Latin squares (SOLS) and
idempotent SOLS have been enumerated for orders up to and includ-
ing 9. The isomorphism classes of idempotent SOLS have also been
enumerated for these orders. However, the enumeration of the iso-
morphism classes of non-idempotent SOLS is still an open problem.
By utilising the automorphism groups of class representatives from
the already enumerated isomorphism classes of idempotent SOLS,
we enumerate the isomorphism classes of non-idempotent SOLS im-
plicitly (i.e. without generating them). New symmetry classes of
SOLS are also introduced, based on the number of allowable trans-
formations that may be applied to a SOLS whithout destroying the
property of self-orthogonality, and these classes are also enumerated.
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1 Introduction

Given a set of n distinct symbols, a Latin square of order n is an n x n
array containing each symbol exactly once in every row and every column.
In this paper we denote the entry in row ¢ and column j of a Latin square
L by L(i, j) and take the n symbols from the set Z, = {0,...,n — 1}, We
also use Z,, as index set for the rows and columns of a Latin square. The
transpose of a Latin square L, denoted by L7, is a Latin square such that
LT(3,5) = L(j,i) for all 4,j € Z,. Two Latin squares L and L’ are said
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to be orthogonal if each ordered pair (L(%, j), L'(4,7)) is unique as % and j
vary over Z,. If a Latin square L is orthogonal to its transpose, then Lis
said to be a self-orthogonal Latin square (SOLS). Finally, a Latin square L
is idempotent if L(i,%) =t for all i € Zq.

The existence of a SOLS is guaranteed for every order n € N, except for
n =2,3,6 [1]. For orders 2 and 3 the non-existence of SOLS is easily veri-
fiable, and it is well known that there exists no pair of mutually orthogonal
Latin squares (MOLS) of order 6 [9]. Graham and Roberts [4] have recently
enumerated SOLS and idempotent SOLS of order n for all 1 <n <9, and
they have also classified idempotent SOLS into isomorphism classes. Hence
the isomorphism classes of idempotent SOLS have been enumerated. How-
ever, the enumeration of the isomorphism classes of non-idempotent SOLS
is still an open problem.

In this paper we complete the isomorphic classification of SOLS by
enumerating, in addition to the isomorphism classes of idempotent SOLS,
the isomorphism classes of non-idempotent SOLS. In §2 a number of well
known classes of Latin squares are introduced, and a number of new sym-
metry classes are additionally defined for the purpose of classifying Latin
squares that are either orthogonal or equal to their conjugates in a minimum
number of classes. This includes SOLS, and these newly defined classes (of
SOLS) are enumerated in §3 together with the isomorphism classes of SOLS
for orders 4 < n < 9. The paper closes with a summary of contributions
and possibilities for future work in §4.

2 Classes of SOLS

Two Latin squares L and L' are isotopic if L(i,j) = s~}(L'(r(s),c(4)))
for all 4,5,k € Z, and some triple (r,¢,s) € S3 (where S, denotes the
symmetric group on n elements). The notation L' = L"*? js henceforth
used to denote the fact that (r,¢,s) € S2 maps L to L'. In simpler terms,
7 is a permutation applied to the rows of L, c is a permutation applied to
the columns of L and s is a permutation applied to the symbols of L. If
L' = L®P?) then L and L' are isomorphic, and the notation L' = L? is
used instead. A Latin square L may be represented by the set of triples
T(L) = {(i,j,k) | L(i,§) = k for 4,5,k € Z,}, and these triples may be
permuted in six different ways, resulting in six Latin squares (not necessarily
distinct from L) known as the conjugates or parastrophes of L. Two Latin
squares L and L’ are paratopic and in the same main class if L is isotopic
to a conjugate of L’. For more details on the classification of Latin squares
the reader may consult Dénes and Keedwell (3, §4].

It is easy to verify that a main or isotopy class may consist of SOLS
and Latin squares which are not self-orthogonal, while an isomorphism class
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either contains only SOLS or no SOLS at all (i.e. self-orthogonality is an
isomorphism class invariant). Hence of these three classes it only makes
sense to enumerate the isomorphism classes of SOLS. Graham and Roberts
(4] have enumerated the isomorphism classes of idempotent SOLS of orders
4 < n <9 (it is also easy to verify that idempotency is an isomorphism
class invariant), and their results are reproduced in Table 2.1. They have
also enumerated distinct SOLS and idempotent SOLS of these orders.

i Isomorphism classes of
n  Distinct SOLS  Idempotent SOLS idempotent SOLS

4 48 2 1
5 1440 12 2
6 0 0 0
7 19353600 3840 8
8 4180377600 103 680 8
9 25070769 561600 69 088 320 283

Table 2.1: Enumeration of various classes of SOLS [4].

In order to enumerate the isomorphism classes of non-idempotent SOLS,
it is necessary to define another class of Latin squares. Two Latin squares L
and L' are RC-paratopic if either L(3, j) = ¢~ (L' (p(4), p(4))) or L(3,5)T =
g (L' (p(i),p(4))) for all ¢,5,k € Z, and some (p,q) € S2. Hence the
permutations applied to the rows and columns are restricted to be equal,
and the operation of transposition is allowed. It may be noted that the
transpose of a Latin square L is the conjugate of L resulting when the
first two elements of the triples in T'(L) are swapped, i.e. the roles of rows
and columns are reversed. It is easy to verify that self-orthogonality is an
RC-paratopism class invariant, and that this is the largest class of Latin
squares under which self-orthogonality is preserved. It is interesting to
note that symmetry (a Latin square is symmetric if L = LT) is also an
RC-paratopism invariant and that this is the largest class of Latin squares
under which symmetry is preserved.

Denote by L™! the conjugate of L obtained by reversing the roles of
columns and symbols. Furthermore, denote by =1L the conjugate obtained
by reversing the roles of rows and symbols (Dénes and Keedwell (3] intro-
duced this notation). In view of RC-paratopism classes of Latin squares,
two other classes may also be defined, namely CS-paratopism classes, where
the permutations applied to the columns and symbols are restricted to be
equal and the transformation from L to L™! is allowed, and RS-paratopism
classes, where the permutations applied to the rows and symbols are re-
stricted to be equal and the transformation from L to ~1L is allowed. In
the same way self-orthogonality and symmetry are preserved under an RC-
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paratopism, the properties of orthogonality and equality between L and
L™ are CS-paratopism invariant and the properties of orthogonality and
equality between L and ~!L are CR-paratopism invariant. These are also
the largest classes over which these properties are preserved. These classes
therefore play an important role in the classification of Latin squares that
are either orthogonal or equal to some of their conjugates.

The RC-paratopism classes of SOLS may actually be enumerated di-
rectly from the results of Graham and Roberts. The following lemma
provides a means for achieving this. Let two Latin squares L and L'
be transpose-isomorphic if L’ is isomorphic to either L or L7. Hence a
transpose-isomorphism is a special case of an RC-paratopism where the
permutations applied to the rows, columns and symbols are equal.

Lemma 2.1 If two idempotent Latin squares are RC-paratopic, then they
are transpose-isomorphic.

Proof: For any two idempotent Latin squares L and L', let either
L(,5) = g~ (L' (p(3),p(5))) or L(3, )T = ¢~ (L' (p(3), p(5))) for all i, j, k €
Z., and some (p,q) € S2. Then either L(i,i) = i = ¢~} (L'(p(3), p())) =
q(p(3)) or L7 (i,3) = i = ¢"1(L'(p(2),p(1))) = ¢~ (p(?)), and therefore
pP=q. .

Each RC-paratopism class of SOLS contains exactly one transpose-
isomorphism class of idempotent SOLS (it is easy to see that every RC-
paratopism class of SOLS contains an idempotent SOLS), and therefore
the number of RC-paratopism classes of SOLS is equal to the number of
transpose-isomorphism classes of idempotent SOLS. Since two SOLS L and
L’ are transpose-isomorphic if L’ is isomorphic to either L or LT, and
since Graham and Roberts [4] provide information regarding which idem-
potent SOLS are isomorphic to their transposes, the number of transpose-
isomorphism classes of idempotent SOLS (i.e. the number of RC-paratopism
classes of SOLS) may be derived from the results in [4]. If one isomorphism
class contains the transpose of a SOLS from another isomorphism class,
then those two classes are counted as one transpose-isomorphism class. For
instance, one of the two isomorphism classes of idempotent SOLS of order 5
contains the transpose of an idempotent SOLS found in the other class [4],
and therefore there is only one transpose-isomorphism class of idempotent
SOLS of order 5. The number of RC-paratopism classes of SOLS found in
this way is shown in Table 2.2.

The above results were also verified independently via computer gener-
ation of RC-paratopism class representatives of SOLS in [2]. The problem
of enumerating the transpose-isomorphism and isomorphism classes of all
SOLS (not only idempotent SOLS) has so far not yet been addressed, and
this is done in the next section.
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Table 2.2: Enumeration of RC-paratopism classes of SOLS.

3 Transpose-isomorphism classes and isomor-
phism classes of SOLS

In order to enumerate the transpose-isomorphism and isomorphism classes
of SOLS, we utilise a theorem of McKay et al. [8] which counts the number
of isomorphism classes within a given isotopism class of Latin squares by
using a class representative from that isotopy class. We adapt the theorem
here in order to count the number of transpose-isomorphism and isomor-
phism classes within a given RC-paratopism class. In what follows, an
RC-paratopism is denoted by an ordered triple (p,q,t) € S2 x Sz, where
p is the permutation applied to the rows and columns of a SOLS, q is the
permutation applied to the symbols of a SOLS and ¢ permutes the roles of
rows and columns.

An RC-autoparatopism is an RC-paratopism that maps a SOLS L to
itself and a transpose-automorphism is a transpose-isomorphism that maps
L to itself. For any two RC-paratopisms a = (p,q,t) and 8 = (¢',¢, ')
the notation af@ = (pop’,qoq’,tot’) is used to denote the action of first
applying G and then . Furthermore, a~! = (p~1,¢=1,¢t~1). It should
be noted that each RC-autoparatopism of an idempotent SOLS is in fact,
by Lemma 2.1, a transpose-automorphism. Denote by A(L) the set of all
RC-autoparatopisms (i.e. transpose-automorphisms) admitted by an idem-
potent SOLS L. The elements of A(L) are therefore either of the form
(p,p,t) € S x Sz or of the form (p,t) € S, x S, determined by the context
in which it is used.

All the transpose-isomorphism classes in a single RC-paratopism class
are orbits of the group S, x S2 and we may find the number of orbits
by the Cauchy-Frobenius lemma, [5] stating that if F(o) is the number of
SOLS (in a single RC-paratopism class) fixed by the transpose-isomorphism
o € S, x Sz, then the number of transpose-isomorphism classes of SOLS
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in that class is

F(o)

GeSnXSQ |Sn X S2|

In other words, the number of transpose-isomorphism classes in a single
RC-paratopism class of SOLS is the sum of the number of transpose-
automorphisms of all SOLS in the class divided by the total number of
possible transpose-isomorphisms.

A permutation p of order n is of type (a1, az,...,ax) if it has a; cycles of
length i for 1 < i < n. If two permutations p; and p; are of the same type
(a1,az,...,an), then they are called conjugates and there exist [Th; astie
permutations g such that go p; o ¢~! = pz. For any a = (p,p,t) € A(L),
let y(a) = [Ti, a:li® if p is of type (a1,a2,...,0n).

Theorem 3.1 Let Z(n) be a set of class representatives, one from each
RC-paratopism class of SOLS of order n. Furthermore, let each element of
I(n) be idempotent. Then the number of transpose-isomorphism classes of

SOLS of order n is .
>, TAD)| > dla). 1)

LeZ(n) acA(L)

Proof: Let o be an RC-paratopism and let a € A(L) for some L €
Z(n). Then the RC-paratopism oao~! is an RC-autoparatopism of some
SOLS in the RC-paratopism class of L, and any RC-autoparatopism of a
SOLS in the RC-paratopism class of L may be written in this form for some
RC-paratopism o and some o € A(L).

Let ¢ = (p,q,7) and & = (s,s,t). For ogao~! to be a transpose-
automorphism it must hold that poso p~! = gosog~l. The total num-
ber of RC-paratopisms ¢ for which cag™! is a transpose-automorphism
is 2nly(a). This number may be found by noting that p may be cho-
sen in n! ways, ¢ may be chosen in []i., a:!i** ways, given that s is of
type (a1, @z,--.,an), and finally 7 may be chosen in two ways. We thus
count Y ¢ A(L) 2nly(a) transpose-automorphisms over all SOLS in the
RC-paratopism class of L, although we may have counted some transpose-
automorphisms more than once.

It is therefore necessary to find the number of equivalence classes of
pairs (o, @), where o is an RC-paratopism for which ogao~! is a transpose-
automorphism and a € A(L). Here two pairs (0,a) and (¢’, ') are equiv-
alent, denoted by (0,a) ~ (¢/,a), if as™! =o’a’0’"! and o and o’ both
map L to the same SOLS. If we let 8 € A(L), o' = 08 and o' = 1o,
then caog~! = o’a’o’~!. Furthermore, o € A(L) and ¢’ and o both map
L to the same SOLS. We may therefore find, for every 8 € A(L), a pair
(¢’,c') such that (o,a) ~ (o', '), and these equivalence classes have car-
dinality at least |A(L)|.
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Conversely, let cac™! = o’a’0’~! be transpose-automorphisms such
that ¢’ and o both map L to the same SOLS and a,o’ € A(L). Further-
more, let # =0~ 10’ € A(L). Then cao~! = ’e/0’~! = ¢fc/f~10-! and
o = ~apB. We now have the equivalence found above, and therefore the
equivalence classes have size exactly |A(L)|.

The number of distinct transpose-automorphisms over all SOLS in the
RC-paratopism class of L is therefore

Z 2nlyY(a)
weniry A
Since |S, x S2| = 2n!, the above expression should, by the Cauchy-
Frobenius lemma, be divided by 2n! in order to count the number of
transpose-isomorphism classes of SOLS in the RC-paratopism class of L.
To find the total number of transpose-isomorphism classes of SOLS of order
n we sum over all the elements of Z(n). ]

The following theorem shows how the set Z(n) may be used to count
the isomorphism classes of SOLS if it is known which elements of Z(n)
are isomorphic to their transposes, and which are not. Let I’(n) C I(n)
consist of all elements of Z(n) which are isomorphic to their transposes and
let Z"(n) = Z(n)\Z'(n).

Theorem 3.2 The number of isomorphism classes of SOLS of order n is

1 2
2. Ey 2 Vet X g 3 )

LeTI'(n) acA’(L) LeZ!(n) a€A(L)

where A'(L) C A(L) is the set of the transpose-automorphisms of L which
do not transpose L.

Proof: Let L € I'(n). Then there exists some RC-paratopism (p, p, ¢) €
S, x Sz that maps L to LT, where ¢ is the identity element of S5, i.e. it
does not transpose L. If L’ is any SOLS in the RC-paratopism class of L
and the RC-paratopism (q,r,7) maps L to L' (where T is the operation
of transposition), then the RC-paratopism (g,r,¢) maps LT to L’. Hence
the RC-paratopism (gp,rp,:) maps L to L', and any SOLS in the RC-
paratopism class of L may therefore be mapped to L via an RC-paratopism
that does not use the operation of transposition.

If the steps of Theorem 3.1 are followed again, this time only considering
RC-paratopisms which do not use the operation of transposition, then the
number of isomorphism classes of SOLS in the RC-paratopism class of L is

1
2y 2 e

LeZI'(n) a€A'(L)
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Next suppose L € I"(n). Let some SOLS L' in the RC-paratopism class
of L be isomorphic to its transpose via some isomorphism p € Sy, and let
the RC—paratopxsm (g,7,t) € Sp x Sy map L to I Then (g,7, 1) also maps
LT to L'T and hence the RC-paratopism (¢~ 'pg,r'pr,.) maps L to y i
Since both L and LT are idempotent, it follows that they are 1somorph1c,
contradicting the property of the elements of Z”(n). Hence no SOLS in the
RC-paratopism class of L is isomorphic to its transpose, and therefore each
transpose-isomorphism class in the RC-paratopism class of L splits into two
disjoint isomorphism classes, where one contains the tranposes of the SOLS
in the other. Consequently there are twice as many isomorphism classes as
transpose-isomorphism classes in the RC-paratopism class of L. o

Idempotent RC-paratopism class representatives of SOLS of orders 4 <
n < 9 are available online [6], and these may be used as the set Z(n) in
(1) for 4 < n < 9. Information on whether or not these representatives are
isomorphic to their transposes are also provided in [6]. In order to obtain
the transpose-automorphism groups of these SOLS, the computer program
nauty [7] was used. Since nauty takes only graphs as input, we construct
a graph in such a way that the isomorphisms of the graph correspond to
the transpose-isomorphisms of the SOLS under consideration. McKay et
al. [8] describe the construction of graphs for isomorphism, isotopy and
main classes of Latin squares, and we use a similar graph representation
approach for the transpose-isomorphism classes of idempotent SOLS.

311 f13
\
£29 521 foy a3
\ o o

(fa0  fn  fw  fa)

Figure 3.1: The graph G(L4) with some edges omitted. The automorphisms of
this graph correspond to the transpose-automorphisms of La.
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Let L be a SOLS of order  and let G(L) be a vertex-coloured graph with
vertex set V(G) = {ry,c;,8:,4;5 | 4,5 € Z,} U {R, C}, where one colour is
assigned to {ry, c;, s; | ¢ € Z,}, another to {R, C} and a third colour to {£;; |
i,j € Z}. Furthermore, G(L) has edge set E(G) = {rilij, c;lij, sklij |
L(i,j) = k} U {Rry,Ce;,riciyTisi,ci8i | 1 € Z,} and the isomorphisms of
G(L) are colour-preserving. For illustrative purposes a part of G(L4) is
shown in Figure 3.1 for the SOLS

Ly =

= Wo
O W N
=N oW
WO N~

The transpose-automorphism group of L may be derived from the auto-
morphism group of G(L) by the similarity in structure of the two designs.
This approach may be used, together with Theorems 3.1 and 3.2, to count
the number of transpose-isomorphism classes of SOLS and the number of
isomorphism classes of SOLS. It may be noted that these counts include
classes containing idempotent SOLS. The results are shown in Table-3.3.
The computation of the autotopism groups via nauty was immediate for
4 < n < 8 and required a total of 0.92 seconds computing time for all 175
cases corresponding to n = 9.

n  transpose-isomorphism classes isomorphism classes

4 5 6
5 11 22
6 0 0
7 1986 3972
8 52060 104120
9 34564 884 69112956

Table 3.3: The number of transpose-isomorphism classes and isomorphism
classes of SOLS.

4 Conclusion

In this paper we presented three new classes of Latin squares, namely
RC-, RS- and CS-paratopism classes, which may be used to catalogue
Latin squares that are either orthogonal or equal to some of their con-
jugates, and it was shown how the number of RC-paratopism classes of
SOLS of orders 4 < n < 9 may be derived from the results of Graham and
Roberts [4]. Utilising available repositories of class-representatives from the
newly defined RC-paratopism classes of SOLS, we enumerated the number
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of transpose-isomorphism and isomorphism classes of SOLS utilising the
Cauchy-Frobenius lemma and a theorem of McKay et al. [8].

Due to the lack of class-representatives of RC-paratopism classes of
SOLS for orders greater than 9, the number of transpose-isomorphism and
isomorphism classes of SOLS of these orders have not been enumerated.
An attempt to enumerate and generate class representatives of the RC-
paratopism classes of SOLS of order 10 was undertaken in {2], and it was
shown that the methods used in [2] are not able to complete the enumera-
tion within a realistic time frame. The results of this paper show, however,
that if the difficult problem of generating an exhaustive list of class repre-
sentatives of RC-paratopism classes of SOLS of orders larger than 9 may be
solved, then the transpose-isomorphism and isomorphism classes of SOLS
of these orders may be enumerated without much difficulty, largely due to
the speed with which nauty [7] computes graph-automorphisms.
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