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Abstract

We show that a finite linear space with b = n% + n + 1 lines,
n 2> 2, constant point-degree n+1 and containing a sufficient number
of lines of size n can be embedded in a projective plane of order
n. Using this fact, we also give characterizations of some pseudo-
complements, which are the complements of certain subsets of finite
projective planes.
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1 Introduction

Let us first recall some definitions and results. For more details, (see
(1], (2]).

A finite linear space is a pair S = (P, L), where P is a finite set of
points and £ is a family of proper subsets of P, which are called lines, such
that

(L1) Any two distinct points lie on exactly one line,
(L2) Any line contains at least two points,
(L3) There exist at least two lines.

It is clear that (L3) could be replaced by an axiom (L3)': There are
three lines of S not incident with a common point. In any case, (L3) and
(L3)" are ‘non-triviality’ conditions. Systems satisfying (L1) and (L2) but
not (L3) are called trivial linear spaces.

In a finite linear space S = (P, L), v and b denote the total number
of points and lines, respectively. The degree b(p) of a point p is the total
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number of lines through p, and the size v(l) of a line ! is the total number
of points on I. Thus; if v(l) = k then ! is called a k—line. The total number
of k—lines is denoted by by.

The integer n defined by n + 1 = max{b(p) : p € P } is the order of a
linear space. It is clear that any line of size 7 + 1 meets every other line in
a linear space of order n.

The numbers v, b, v(l) and b(p) will be called the parameters of S.

A projective plane 7 is a linear space in which all lines meet and in
which all points are on n+1 lines, n > 2. The number n is called the order
of m.

An affine plane A is a linear space in which, for any point p not on a
line I, there is a unique line on p missing [, and in which all points are on
n+ 1 lines, n > 2.

For any line ! of a linear space S of order =, the difference n + 1 — v(l)
is called a deficiency of I, denoted d(l). Since the size of any line cannot
exceed n + 1, the deficiency of any line is non-negative.

Let 1 and A be the respective minimum and maximum deficiencies
among those lines of S which have size less than n.

Let S = (P,L) be a linear space and let X' be a subset of P con-
taining three non-collinear points. Then we can define the linear space
S'=(X{lnX:leLl|inX|>2}). fC=7P - X, then &' is called the
complement of C in S and we say that &’ is obtained by removing C from
S. We denote the complement of C in S by S - C.

Let X be a set of points in a projective plane 7 of order n. Suppose
that we remove X from 7. We obtain a linear space 7 — X having certain
parameters (i.e., the number of points, the number of lines, the point-
degrees and line-degrees) (see [1]).

We call any linear space, which has the same parameters as 7 — X, a
pseudo-complement of X in .

We have already encountered the notation of a pseudo-complement, -
namely the pseudo-complement of one line. This is a linear space with
n2 points, n? + n lines in which any point has degree n + 1 and any line
has degree n. We know that this is an affine plane, which is a structure
embeddable in a projective plane of order n.

A linear space with n2+4+n—m?—m points, b = n?+n+1 lines, constant
point-degree n + 1 and containing at least m2 + m + 1 lines of size n — m
will be called the pseudo-complement of a projective subplane of order m
in a projective plane of order n. It is clear that m <n.

A linear space with n2 +n+1—m2 points, b = n%+n+1 lines, constant
point-degree n + 1 and containing at least m2 +m lines of sizen+1—-m
will be called the pseudo-complement of an affine subplane order m in a
projective plane of order n. It is clear that m < n.
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Two lines ! and I’ are parallel if L =1 or IN I’ = ¢. Two lines ! and I’
are disjoint if IN1' = ¢.

A parallel class in the linear space (P, L) is a subset of £ with the
property that each point of P is on a unique element of this subset.

Let § = (P,L) and &' = (P, L') be two finite linear spaces. We say that
S can be embedded in S’ if PC P'and L={I'NP :I' € L' and |l’r‘lP| > 2}
Hall proved in [10] that every finite linear space can be embedded in an
infinite projective plane.

The complementation problem with respect to a projective plane is the

following:
Remove a certain subset of points and lines from the projective plane.
Determine the parameters of the resulting space. Now assume that you
are starting with a space having these parameters. Does this somehow
force this subset to reappear, thus giving an embedding in the original
projective plane? A number of people have considered complementation
problems ([1],(2], (3], ...,[13]). In 1970, Dickey solved the problem for the
case where the configuration removed was a unital [7]. Batten [2] gave
characterizations of linear spaces which are the complement of affine or
projective subplanes of finite projective planes.

In this article, we show that a linear space of order n whose parameters
are those of the complement of a point subset in a finite projective plane
m of order n such that no line is removed and a sufficient number of lines
lose only one point, is embeddable in 7. Using this fact, we also give a new
characterization of pseudo-complements which are complements of affine
or projective subplanes of finite projective planes.

In this paper, for any two disjoint lines [ and I/, which have size less than
n in a finite linear space, we will use m (l,!’) and m, ({,I’) to denote the
total number of lines and n—lines, respectively, meeting { or I’ excluding {
and !’ themselves.

2 Main Results

Lemma 2.1 Let S = (P, L) be a finite linear space with b lines, v points,
constant point-degree n + 1 and conlaining at least one n—line , n > 2.
Then the following statements hold for any two disjoint lines | and I’ which
have size less than n in S:

(i) m(L, V') = n? — (d(l) - 1) - (d(¥') - 1),
(#) mn (L,V) <12 = (u = 1) — by,

(i) if b—v—A > 0 and each point on any line k which has size less than n
is on at most b—v—d(k) lines of sizen, my (I,I') <2(n+1— ) (b—v — p).
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Proof: Assume that S = (P, L) is a finite linear space with constant
point-degree 7+ 1 and contains at least one n—line,, n > 2. Let | and ' be
two disjoint lines which have size less than n in S. Therefore, b(p) =n+1
for all points p, d(!) > p and d(I') > p.

Let z be the number of lines meeting ! (excluding { itself); let ¥ be the
number of lines meeting I’ (excluding !’ itself); and let z be the number of
lines meeting both I and . The following three equations are obtained by
a simple counting method :

z=n(n+1-d()),

y=n(n+1-d(l)),

and

z=(n+1-d(1))(n+1-d(1")).
Therefore, z + y — z = n? — (d(l) - 1) (d(I') - 1).
Since, m (I,l') = z + y — 2z, we have

m (1) = n? - (d()) - 1) (d(I") = 1) < n? = (- 1)%,

which proves (). Since any line of size n + 1 meets every other line, all the
lines of size n + 1 meet both ! and I’. Therefore, since by > 0, d(l) > p
and d(l') > p, we have

mmn (0,1) < m1) = bpgr € n? = (= 1)* = bny,

which proves (iz).

If b—v — X > 0 and each point on any line k& which has size less
than n is on at most b — v — d(k) lines of size n, then there are at most
(n+1—d(1)) (b — v — d(l)) lines of size n meeting [, and there are at most
(n+1—d(")) (b— v — d(I")) lines of size n meeting I'. Since d(I) > p and
d(l') > p, we have my, (I,1') < 2(n + 1 — p) (b — v — ), which proves (ii3).

Theorem 2.1 Let S = (P, L) be a finite linear space with b=n?+n +1
lines,n > 2, constant point-degree n+ 1. If bp > n? — (u— 1)2 —bp41 20,
then S can be embedded in a projective plane of order n.

Proof: Assume that S is a finite linear space with b = n® + n +1
lines, n > 2, constant point-degree n+1 and b, > n?—(u— 1)2 —bpy1 2 0.
That is,

(1) b=n?+n+1,
(2) b(p) = n+ 1, for all points p,
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(3) b >n%— (=1)% = bpy1 > 0.

Using (2) it is easy to see that lines have at most n + 1 points and that
every line meets an (n+ 1)-line. By (3) b, > 1. Thus, there exists at least
one n-line.

For every n—line [, we define

II; = {{} U {z : z is a line disjoint to I}.

Since each point has degree n + 1 = v(I) + 1, each point outside ! lies on
exactly one line which is parallel to I. This shows that II; is a partition of
the points of S into disjoint lines, and II; induces an equivalence relation
among the lines in S of size n. We will refer to this equivalent relation on
the lines of size n as parallelism. Since ! meets n? other lines, |II;| = n + 1.
Hence, each n-line induces a partition of the points into n + 1 lines which
we will refer to as the parallel class associated with that n—line.

Suppose that [ and !' are two different n-lines which meet. Then {' meets
n lines of IT;, so I, NITy| = 1.

We let each such parallel class corresponds to a "new point”. Consider
the structure S* = (P*, L*) where P* is P along with the new points, and
L* consists of the lines of £ "extended” by those parallel classes to which
they belong. We first of all prove that S* is a linear space. It is clear that
two old points (points of P) are on a unique line of £*. Since any old point
is on exactly one line contained in the parallel class corresponding a new
point, an old point and a new point are on a unique line of £*. Let z and y
be distinct new points. We show that they determine a unique line of £*.
Let I, and /, be n—lines which determine the parallel classes corresponding
to z and y. If l; and l, do not meet, then = y which is a contradiction.
So I; and ly meet. By (2) each point of I, is on a unique line of the parallel
class determined by I;.This leaves precisely one line of the parallel class
parallel to both I; and l,. This is the required line. It follows from our
method of construction that each point of S* is on n + 1 lines.

Finally we prove that any two lines of S* always meet. Let { and I’ be
lines of §* which do not meet in 8. Then neither ! nor {’are n + 1—lines.
To prove that they meet in §*, it suffices to find an n-line parallel to both.

If either [ or I is an n-line, then both of them belong to same parallel
class, and they meet in S*.

If neither I nor !'are n—lines, v(!) < » and v(l') < n. Hence by lemma
2.1 (i) and (3), mn (L,I) < 02 = (= 1)2 = bty < bp. There is at least
one n—line parallel to both. Therefore S* is a projective plane of order n.

Theorem 2.2 Every pseudo-complement of a projective subplane of order
m in a projective plane of order n can be embedded into a projective plane as
the complement of a projective subplane order m. Moreover, either n = m?2
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(if there is no (n+1)-lines), or n > m?+m (if there is at least one (n+1)-
line).

Proof: Let S be the pseudo-complement of a projective subplane of
order m in a projective plane of order n. So, S is a linear space with
n2 + n — m2 — m points, b = n? + n + 1 lines, constant point-degree n + 1
and contains at least m2 + m + 1 lines of size (n — m).We show that S
contains m2 +m + 1 lines of size n — m, (n — m)(m? + m + 1) lines of size
n and n? — (m? 4+ m)n + m3 lines of size n + 1.

Since b; is the number of i-lines in S, by a simple counting method, we
have

() Tbi=n?+n+1,
(i) Fibs = (n+ 1)v = (n+1)(n® + n —m? —m),

(iii) Zz(z— 1)b; = v(v —1).

Hence,
(iv) Z(n +1—i)(n—i)b = (m® +m)(m® + m+1).

However, 8 has at least m? + m + 1 (n — m)-lines, and each of them
contributes m2 + m to the left hand side of the equality (iv) above. Thus
b =0, fori ¢ {n—m,n+ 1,n} Therefore, by (i)-(iv), S contains

2 + m + 1 lines of size n — m, (n — m)(m? + m + 1) lines of size n and
n2 — (m? + m)n + m?3 lines of size n + 1.

To prove the embedding, we must show that all conditions of Theorem
2.1 hold.

Since A\=p=m+1,

bn=(n—m)(m2+m+1)>n2—(p,-l)z—bn.,.l.

Thus, condition of Theorem 2.1 valid in S. By theorem 2.1, S can be
embedded in a projective plane 7 of order n.

Let m — S be the complement of Sin 7. 7 —Shasb—v=m?2+m+1
points. Since lines of 7 — S are the complements of (n m) —lines of S in
m, lines of m — S have m + 1 points. So, there are m?2 4+ m + 1 such lines in
m — S, as noted above.

Let p be a point of 7 — S. Since there are no (n + 1) — lines in the
parallel class corresponding to p, there are exactly n — m lines of size n in
this parallel class. So, there are exactly m + 1 lines of size n — m in this
parallel class. Therefore, there are m + 1 lines on p in 7 — S. So all lines
meet, and 7 — S is a projective plane of order m.

The fact that n = m2 or n > m? + m follows from Bruck’s theorem [4].

158



Theorem 2.8 Every pseudo-complement of affine subplane of order m in
a projective plane of order n can be embedded into a projective plane as the
complement of a affine subplane order m.

Proof: Let S be the pseudo-complement of affine subplane of order m
in a projective plane of order n. Then S is a linear space with n2+n+1—m?2
points, b = n? + n + 1 lines, constant point-degree n + 1 and contains at
least m2 + m lines of size n + 1 - m.

We show that S contains m? + m lines of size n + 1 — m, m2(n — m)
lines of size n and n2 — (m? — 1)(n + 1 — m) lines of size n + 1.

By equations (4), (i¢) and (i) in the proof of Theorem 2.2,

(iv) Z(n+1-i)(n—i)b; = m? - m2,

However S has at least m? 4 m lines of size n+ 1 — m, and each of them
contributes m? —m to the left hand side of the equality above. Thus b; = 0,
t #n+1-—m,n,n+ 1 Therefore, by equations (i), (ii) and (iii) in the
proof of Theorem 2.2 and (iv), S contains m? + m lines of size n + 1 — m,
m2(n — m) lines of size n and n? — (m2 — 1)(n + 1 — m) lines of size n + 1.
Since S is the linear space with n2+n+1 lines, constant point-degree n+1,
I1; is the parallel class with n + 1 lines for each n—line 1.

To prove the embedding, we must show that S has exactly m? parallel
classes. Let a be the number of n-lines in a fixed class. then

an+(n+1l-a)(n+1-m)=n24+n+1-m? impliesa=n—m.

Since b, = (n — m)m?2, the number of distinct parallel classes is m2.

Consider the structure 7 = (P*, £*) where P* is P along with the new
points, and £* consists of the lines of £ "extended” by those parallel classes
to which they belong. Thus « is a linear space with n? +n + 1 points and
n? + n + 1 lines. By [4], 7 is a projective plane of order n.

Let 7 — S be the complement of S in w. The structure 7 —S has b—v =
m? points. Since lines of 7 — § are the complements of (n+1—m) —lines
of S in 7, lines of 7 — S have m points. So, there are m2 + m such lines in
w — S, as noted above.

Let p be a point of # — S and let a be total number of n—lines in the
parallel class corresponding to p. Since there are no (n + 1) — lines in this
class, a = n — m, as noted above. So, there are exactlyn+1 —a=m+1
lines of size n+ 1 —m in this class. Therefore there are m + 1 lines on p in
7 — 8. So, m — & is a linear space in which for any point p not on a line I,
there is a unique line on p missing {, and in which all points are on m + 1
lines n > 2. Therefore, # — S is an affine plane of order m.

The author is grateful to the referees for useful advice.

159



References

[1) Batten , L.M. and Beutelspacher, A. ; Combinatorics of points and
lines, Cambridge University Press, 1993.

[2] Batten, L.M. ; Embedding pseudo-complements in finite projective
planes, Ars Combin. 24 (1987), 129-132.

[3] Bose , R.C. and Shrikhande, S.S. ; Embedding the complement of
a oval in a projective plane of even order, Discrete Math. 6 (1973),
305-312.

[4) Bruck, R. H. ; Existence problems for classes of finite projective planes,
Lectures delivered to the Canadian Math. Congress, Sask., Aug.1963.

[5] De Brujin N.G and Erdos, P. ; On a combinatorial problem, Nederl
Akad. Wetemsch. proc. Sect. Sci. 51 (1948), 1277 - 1279.

[6] De Witte, P. ;The exceptional case in a Theorem of Bose and
Shrikhande, J. Austral. Math. soc. 24 (Series A) (1977), 64-78.

[7] Dickey, L. J. ; Embedding the complement of a unital in a projec-
tive plane, Atti del convegno di Geometria Combinatoria e sue Appli-
cazioni, Perugia, 1971, pp. 199-203.

[8] Giinaltih, I. and Olgun, S. ; On the embedding some linear spaces in
finite projective planes. J.geom. 68 (2000) 96-99.

(9] Giinaltih, I., Anapa, P. and Olgun, $. ; On the embedding of comple-
ments of some hyperbolic planes. Ars Combin. 80 (2006), pp. 205-214.

[10] Hall, M. ; Projective planes, Trans. Amer. Math. Soc. 54 (1943) 229-
2717.

(11] Kaya, R. and Ozcan, E. ; On the construction of B-L planes from
projective planes, Rendiconti del Seminario Matematico Di Bresciot
(1984), pp. 427-434.

[12] Mullin, R.C. and Vanstone, S.A. ; Embedding the pseudo-complements
of a quadrilateral in a finite projective plane, Ann.New York
Acad.Sci.319, 405-412.

[13] Totten, J. ; Embedding the complement of two lines in a finite projec-
tive plane, J. Austral. Math.Soc. 22 (Series A) (1976), 27-34.

160



