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Abstract

For two vertices » and v in a strong digraph D, the strong distance
sd(u,v) between u and v is the minimum size (the number of arcs) of a
strong sub-digraph of D containing u and v. The strong eccentricity se(v)
of a vertex v of D is the strong distance between v and a vertex farthest
from v. The strong radius srad(D) (resp. strong diameter sdiam(D)) of
D is the minimum (resp. maximum) strong eccentricity among all vertices
of D. The lower (resp. upper) orientable strong radius srad(G) (resp.
SRAD(G)) of a graph G is the minimum (resp. maximum) strong radius
over all strong orientations of G. The lower (resp. upper) orientable strong
diameter sdiam(G) (resp. SDIAM(G)) of a graph G is the minimum
(resp. maximum) strong diameter over all strong orientations of G. In this
paper, we determine the lower orientable strong radius and strong diameter
of the Cartesian product of complete graphs, and give the upper orientable
strong diameter and the bounds on the upper orientable strong radius of
the Cartesian product of complete graphs.
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1 Introduction

In [1], Chartrand et al. defined the strong distance sd(u,v) between two
vertices © and v in a strong digraph D as the minimum size (the number
of arcs) of a strong sub-digraph of D containing u and v. A (u,v)-geodesic
is a strong sub-digraph of D of size sd(u,v) containing » and v. Here we
consider only strong oriented graphs of simple graphs. Clearly, if u # v
then sd(u,v) > 3. And sd(u,v) = 3 if and only if 4 and v belong to a
directed 3-cycle in D. Fig. 1 shows a strong digraph with sd(w,v) = 3,
sd(u,w) =5, sd(u,z) = 6.

y
Figure 1: Strong distance in a strong digraph.

The strong eccentricity se(v) of a vertex v in a strong digraph D is
se(v) = maz{sd(v,z)| z € V(D)}.

The strong radius srad(D) of D is srad(D) = min{se(v)| v € (D)},
while the strong diameter sdiam(D) of D is sdiam(D) = maz{se(v)| v €
V(D)}.

The strong radius and strong diameter of a strong digraph satisfy the
following inequality.

Theorem 1 [1]. For every strong digraph D, srad(D) < sdiam(D) <
2srad(D).

In [1], Chartrand et al. showed that, for any integers 7, d with 3 < r <
d < 2r, there exists a strong oriented graph D such that srad(D) = r and
sdiam(D) = d, and gave an upper bound on strong diameter of a strong
oriented graph D.

Theorem 2 [1]. If D is a strong oriented graph of order n > 3, then
sdiam(D) < 271 |
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In {4], Dankelmann et al. observed the structure of a (u,v)-geodesic
for any two vertices u and v in a strong digraph D, and gave the following
result.

Theorem 3 [4]. Let D be a strong digraph. For u,v € V(D), let Dy, be a
(u,v)-geodesic. Then Dy, = PUQ, where P and Q are a directed (u,v)-
path and a directed (v, u)-path, respectively, in D,,. There exist directed
cycles Cy, Cs, ..., Cy C Dy, such that

(i) u € V(Ch), v € V(Ck);

(i) Uiy Ci = Dus;

(iii) each C; contains at least one arc that is in P but not in Q, and at least
one arc that is in @ but not in P;

(iv) CiNCitq is a directed path fori =1, 2, ..., k—1;

M V(EC)NV(C;j)=0for1<i<j—-1<k-1.

In [4], Dankelmann et al. presented the upper bounds on strong diam-
eter of D in terms of order n, directed girth g > 2, and strong connectivity
k as sdiam(D) < [1"—"1@] and sdiam(D) < §(1 + 252). They also
gave an upper bound on the strong radius of a strong oriented graph D.

Theorem 4 [4]. For any strong oriented graph D of order n, srad(D) < n,
and this bound is sharp.
In [6), for a connected graph G, Lai et al. defined the lower orientable
strong radius srad(G) of G as
srad(G) = min{srad(D)| D is a strong orientation of G},
while the upper orientable strong radius SRAD(G) of G is
SRAD(G) = maz{srad(D)| D is a strong orientation of G},
they also defined the lower orientable strong diameter sdiam(G) of G as
sdiam(G) = min{sdiam(D)| D is a strong orientation of G},
while the upper orientable strong diameter SDIAM(G) of G is
SDIAM(G) = maz{sdiam(D)| D is a strong orientation of G}.
In (3], the present authors investigated the lower and upper orientable
strong diameter of graphs satisfying the Ore condition.

Theorem 5 [3]. Let G = (V, E) be a bridgeless simple graph with girth g
and order n. If 02(G) = min{deg(z) + deg(y)| V zy ¢ E(G)} > n, then
sdiam(G) =2 g, n < SDIAM(G) < n + 1, and the bounds are sharp.

177



The lower orientable strong radius and diameter, and the upper ori-
entable strong diameter as well as bounds for the upper orientable strong
radius of complete k-partite graphs were given in [7].

Theorem 6 [7]. Let £ > 3 and 1 < m; < mg £ -+ < my. Then
3, ifl=m; Sma <+ Smyg

S'I‘ad(K(mlng,"‘smk))= 4, f2<mi<my<.--<my

Theorem 7 (7). Let k¥ > 3,1 < m; < mg < -++ < my, where my > 2, and
let m = my + mg + -+ + mg-1. Then

m
4, if m 2 My

sdiam(K (my,mg,...,mg)) = L%J
5, if m < myg.

3]

Theorem 8 [7]. Let £ > 3,1 < my < mg < -+ < my, and let m =
my +mg + -+ mg—1. Then

SDIAM(K(my,ma,. .., mx)) = { m+2,  ifm<my

m+me+1, ifm2>my.
Theorem 9 [7]. Let k > 3,1<m; <ma <---<mx and m=my +mg +
.+« 4 my_1, then

SRAD(K(mhmz,...,mk))Z{ m+1, if m < my;

|24me | + 1, if m 2> mg.
SRAD(K (my,ma,...,mg)) < { min{2m + 2,m +my}, ifm <mi;
m+ my, if m > mg.
For a graph G, let D(G) be the family of strong orientations of G, and
define 2(G) = min{d(D)| D € D(G)}, where d(D) denotes the diameter of
the digraph D. In [5], Koh et al. obtained the exact values of d (K x K»),
form>2andn > 2.

Theorem 10 [5]. For m > 2 and n 2 2,

- 4, if (m,n)=(3,2);
d(KMXK")={ 3 otl(lerwi?se &2

Some other results about strong distance can be found in [2, 8].

In this paper, we determine the lower orientable strong radius and
strong diameter of the Cartesian product of complete graphs, and give the
upper orientable strong diameter and the bounds on the upper orientable
strong radius of the Cartesian product of complete graphs.
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2. The lower orientable strong radius and di-
ameter of the Cartesian product of com-
plete graphs

In this section, we consider the lower orientable strong radius and diameter
of the Cartesian product of complete graphs.

The Cartesian product G = G; x G2 of two vertex-disjoint graphs G,
and Gy has vertex set V(G) = V(G1) x V(G2) and two vertices (u, u2) and
(v1,v2) of G are adjacent if and only if either u; = v; and uqvq € E(G,)
or ug = vy and uyv; € E(Gy).

- For the Cartesian product K, x K,, of complete graphs K,, and K,
withm > 2, n > 2, let V(K x Kp) = {(4,5)] 1 <i<m, 1 <j < n}
Thus, two vertices (3,5) and (#/, ;') are adjacent in K, x K, if and only
if i =4 or j = j'. In the following, without loss of generality, we assume
that 2<m < n.

For any strong orientation D of K3 x Kj, every vertex of D has strong
eccentricity 4, so srad(K> x K3) = SRAD(K; x K3) = sdiam(K; x K3) =
SDIAM(K, x K3) = 4. Hence we only need to consider the case of n >
m2>2andn > 2.

Let D be any strong orientation of K, x K,. For any vertex (i, )
of Km x Kp, there is a vertex (¢/,j5) with ¢ # 4/, j # j'. Clearly,
sdp((3,4), (7", 5')) = 4, so sep((,7)) = 4 and srad(D) > 4, implying that
srad(Kmx Ky) > 4. In the following, we will prove that srad(K, x K,) = 4
for2<m<n.

Theorem 11. srad(Ky, x K,) = 4 for 2 < m < n, sdiam(K,, x K,;) =5
for 2=m < n, and 5 < sdiam(K,, x K,) <6 for 3<m < n.

Proof. Since srad(Km xKy) > 4, in order to prove srad(K, xK,,) = 4, we
only need to give a strong orientation D of K., x K, such that srad(D) = 4.

Let D be a strong orientation of K, x K, such that A(D) =
{19, @, N <i<j<n}u{((s,5),(s,9)1<i<j<n, 2<s< m}u
{(GD,G1)N <i<j<m}U{((i,8),(5,9)1<i<j<m, 2<s<n).

Consider the vertex (1,1) € V(K,» x K,). For any vertex (4,5) €
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V(Km x Kp) with ¢ > 2, j > 2, (1,1) and (i,j) are contained in the
directed 4-cycle (1,1)(1, 7)(3, 7)(¢,1)(1,1). Clearly, this directed 4-cycle also
contains (¢,1) and (1,5). So, sep((1,1)) = 4, and srad(D) = 4. Hence
srad(Km x Kp) =4for2<m < n.

If n > m =2, it is not difficult to see that sep((1,1)) = sep((2,1)) =
4, sep((3, 7)) = 5 for any (¢, 7) € V(K2xKn)\{(1,1),(2,1)}. So sdiam(D) =
5.

To prove sdiam(K2 x K,) = 5, it suffices to prove sdiam(D) > 5
for any strong orientation D of Ky x K,,, where n > 2. Assume there
is a strong orientation D of Kp x K, such that sdiam(D) = 4. Then
sep((i,5)) = 4 for any (i,j) € V(Kmn x Kn). So sdp((1,1),(2,2)) =
sdp((1,1),(2,3)) = 4, (1,1) and (2,2) are contained in a directed 4-cycle
in D, say (1,1)(1,2)(2,2)(2,1)(1,1). Then (1,1) and (2,3) must be in the
directed 4-cycle (1,1)(1,3)(2,3)(2,1)(1,1). However, in this orientation,
(1,3) and (2,2) can’t be contained in any directed 4-cycle, a contradiction.

By a similar argument to that given above, we have sdiam(KmxKn) >
5 for 3 < m < n. On the other hand, by Theorem 10, we know that there
exists a strong orientation D' of K, x K, such that d(D’) = 3, where
d(D') denotes the diameter of the digraph D’. Thus, for any two vertices
(i,5),(,5") € V(Km x Ky), there exists a directed ((3,7), (¢',j'))-path
P of length at most 3 and a directed ((¢',j'), (¢,7))-path Q of length at
most 3, and so sdp:((4, ), (¥,3')) < |A(PUQ)| £ 6. Now it follows that
5 < sdiam(Kp, x K;,) < sdiam(D') <6for3<m<n. O

We have the following conjecture.

Conjecture 12. sdiam(Km x K;,) =6 for 3 <m < n.

3 The upper orientable strong radius and di-
ameter of the Cartesian product of com-

plete graphs

For a vertex v of a graph G, let Ng(v) denote the set of the vertices adjacent
tovin G.
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Lemma 13. Let D be any strong orientation of K,, x K, withn >m > 2
and n > 2. Then sdiam(D) < mn + 1.

Proof. For any strong orientation D = (V(D), A(D)) of Krn x Ky, let
u, v € V(D) be two vertices such that sdp(u,v) = sdiam(D). We will
prove that sdp(u,v) < mn + 1.

Assume uv € E(K,, x K,,), then without loss of generality, assume that
(v,u) € A(D). Let P be a shortest directed (u,v)-path and C = P + (v, u).
Clearly, C is a directed cycle containing u and v. So sdp(u,v) < |A(C)| £
mn.

Assume wv ¢ E(K, x Kn); Let D,, be a (u,v)-geodesic in D.
By Theorem 3, we have D,, = PU Q, where P is a directed (u,v)-path
and @ is a directed (v, u)-path in D,,. Furthermore, there exist directed
cycles Cy,Cy,...,C\ in D,, such that D,, = Uf=1 C; satisfying (i)-(v) in
Theorem 3.

If k =1, then sdp(u,v) = [A(C1)| = |[V(C1)| < mn.

If k = 2, then sdp(u,v) = [A(CLUC)| = |[V(CLUC,)|+1 < mn+1.

If £k > 3, by Theorem 3 (iv), let P, = C; N Ciy; be a directed
path starting from the vertex a; of P;, i = 1,2,...,k — 1. Take § =
{u, @2,84;- .+ Gp( kx1 1_1),1)}. By Theorem 3 (iii) and the minimality of
Dyy, for any z = (4,5) and y = (¢,5') in S, zy ¢ E(Kn x K,), and
soi # i, j # j'. Then, for any z € S — v, z and v have exactly two
common neighbors and Nk, xk,(2) N Nk,.xk,(v) N V(Dyy) = 0 by The-
orem 3 (iii) and the minimality of D,,. Moreover for ¥ > 5 and any
z,2' € S=v, (Nk,. x k., (2)NNk,. x k. (¥))N(Nk,. x k., (2’ )Nk, xx, (v)) =0
since 22',zv, z'v ¢ E(Km x Ky). Thus there are at least 2|S—v| = 2(| 451 ])
vertices adjacent to v and not in Dy, implying that mn — [V(D,,)| >
2([”%’])7 [V(Du)l < mn - 2(l.k_;1‘J) Hence, sdp(u,v) = |A(Dy)| =
[V(Duy)|+k—1< mn— 2["—;—1J +k—1 < mn+1. The proof is completed.
o
Theorem 14. SDIAM (K, x Kp)=mn+1forn>m>2and n > 2.

Proof. By Lemma 13, we only need to give a strong orientation D of
K x K, such that sdiam(D) = mn + 1.

Let P be the Hamiltonian path of K, x K, starting from z = (1,1)
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such that if m is odd (resp. even) then the terminating vertex y of P is equal
to (m,n) (resp. (m,2)). Let D be a strong orientation of K, x K, such
that the path P is a shortest directed (z,y)-path. Let Dy = P'UQ' be a
(z,y)-geodesic, where P is a directed (z, y)-path and Q' is a directed (y, z)-
path. Since zy ¢ E(Km x K,), sdp(z,y) = |A(P)| + |A(Q") \ A(P')| 2
|A(P)|42 = mn+1. On the other hand, by Lemma 13, sdp(z,y) < mn+1.
So sdp(z,y) = mn + 1, consequently, sdiam(D) = mn + 1, which implies
that SDIAM (K, x Kp)=mn+1forn>m>2and n > 2. (]

Finally, by Theorem 1, Theorem 4 and Theorem 14, we can give the
bounds on the upper orientable strong radius of K, x K.

Theorem 15. Let n > m > 2 and n > 2. Then
[ﬂ';—ﬂ] < SRAD(K,, x K,) < mn.
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