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Abstract

In 2004, Fischermann et al. [2] generalized bound polysemy to
competition polysemy by using digraphs instead of posets. They
provided a characterization of competition polysemic pairs and a
characterization of the connected graphs G for which there exists
a tree T such that (G,T) is competition polysemic. In this paper
we continue to study the competition polysemy and characterize the
connected graphs G for which there exists a triangle-free unicyclic
graph G’ such that (G, G’) is competition polysemic. Furthermore,
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we generalize competition polysemy to m-competition polysemy and
prove a characterization of m-competition polysemic pairs.
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1 Introduction

All graphs considered in this paper are finite and simple. Let G = (V, E)
be a graph with vertex set V and edge set E. The neighborhood of a vertex
veVistheset N(v) = {u € V:uv € E}. A cligue of G is the vertex
set of a (not necessarily maximal) complete subgraph of G. An edge clique
cover of G is a collection ¥ of cliques such that for every edge uv € E
some clique in ¥ contains both vertices « and v. An m-edge cligue cover
of G is a collection of subsets Cy,Cs,...,Ck of V such that zy € E if and
only if there exist m of the sets C; that contain both z and y. A block of
G = (V,E) is a maximal 2-connected subgraph of G and a vertex u € V
for which G — u = G[V'\ {u}] (the subgraph of G induced by V'\ {u}) has
more components than G is a cutverter.

In 2000, Tanenbaum [6] introduced the notion of bound polysemy. He
called a pair (G1,G2) of graphs Gy = (V,E;) and G2 = (V,E2) on a
common set of vertices V bound polysemic, if there exists a reflexive poset
P = (V,<) on the set V such that for all u,v € V with u # v,uv € E; if
and only if there is some w € V such that » < w and v £ w and wv € E;
if and only if there is some w € V such that w < v and w < v. In this
situation the graphs G, and G are called the upper bound graph and the
lower bound graph of P, respectively. Upper bound graphs were introduced
by McMorris and Zaslavsky in [5].

In 2004, Fischermann et al. [2] generalized bound polysemy to com-
petition polysemy by using digraphs instead of posets. They called a pair
(G1,Gs) of graphs G, = (V,E;) and G2 = (V, E2) on a common set of
vertices V competition polysemic, if there exists & digraph D = (V, A) on
the same set of vertices such that for all u,v € V with u # v, uv € E, if and
only if Nj)(u) NN} (v) # 0 and uv € E; if and only if Np(u)NNp(v) # 0.
In this situation D is called a realization of (G1,G2). Clearly, the graphs
G, and G, are the competition graph (see [1]) and common enemy graph
(see [4]) of D, respectively. Competition graphs were introduced by Cohen
[1) and have been studied by various authors. For any digraph D = (V, 4),
in factz_the commeon enemy graph of D is the competition graph of B, ,
where D = (V, A) and A = {vd: ud € A}.

Fischermann et al. [2] provided a characterization of competition pol-
ysemic pairs and a characterization of the connected graphs G for which
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there exists a tree T such that (G,T) is competition polysemic. In this
paper we continue to study the competition polysemy and generalize com-
petition polysemy to m-competition polysemy. For positive integer m > 1,
we call a pair (G1, G3) of graphs G = (V, E;) and G, = (V, E3) on a com-
mon set of vertices V' m-competition polysemic, if there exists a digraph
D = (V,A) on the same set of vertices such that for all u,v € V with
u # v, w € E if and only if [N (u) " NE(v)] > m and wv € E, if and
only if |Np(u) N N5 (v)| > m. Clearly, the graph G, is the m-competition
graph (see [3]) of D. Furthermore, we call the graph G5 the m-common
competition graph of D. Obviously, 1-competition polysemic is just the
competition polysemic.

Section 2 provides a characterization of the connected graphs G for
which there exists a triangle-free unicyclic graph G’ such that (G, G’) is
competition polysemic. Section 3 generalizes competition polysemy to m-
competition polysemy and proves a characterization of m-competition pol-
ysemic pairs.

2 Competition polysemy

For given graph G = (V,E), if € = {C1,C,,...,C,} is an edge clique
cover of G with p < |V, then we can choose a set of p different vertices
R = {v,v,...,9} € V. We call R a set of distinct representatives
of the cliques in ¥ (Note that we do not require v; € C; for 1 < i < p).
Fischermann et al. [2] provided a characterization of competition polysemic
pairs of graphs as follows.

Theorem 1 (Fischermann et al. [2]) A pair (G1,G2) of graphs with
G, = (V,E1) and G2 = (V,E;) is competition polysemic if and only
if there erist edge clique covers ¥, = {01_1,01_2,...,01,,,} of G and
% = {C21,C23,...,Ca0} of Ga for which there ezist sets of distinct
representatives By = {v11,%,2,...,01p} and Ry = {va,1,v22,...,v24},
P, q £ |V, such that

(2) Ug; € Cl,j if and only Z:f 1,5 € 02,1:,

(#) if C1: N Ch; # 0, then there is some 1 < | < q such that Vi, V1,5 €
Cs, and

(¢4%) if Co; N Cyj # 0, then there is some 1 < I < p such that Va,i,V2,j €
Ci,.

Recall that a unicyclic graph is a graph which is connected and has
exactly one cycle, and a spiked cycle is a graph that is a cycle upon removal
of all pendant edges. In the following we characterized the connected graphs
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G for which there exists a triangle-free unicyclic graph G’ such that (G, G’)
is competition polysemic.

Theorem 2 Let G = (V, E¢) be a connected graph. There is a triangle-free
unicyclic graph G' = (V, Eg') such that (G,G") is competition polysemic if
and only if

(¢) ezactly one block of G is not complete,
(#3) every cutvertex of G lies in ezactly two blocks of G and

(i) if By is the block of G that is not complete, then the vertez set of
By is the union of some cliques of G, these cliques can be labeling as
C1,Ca,...,Cy such that |C;NCip1] = 1 for 1 <i < t, and the vertez
in C; N Ciyq for each 1 < i < t lies in no other block of G, where
t> 4 and Cg+1 = Cl.

Proof. Suppose that (G, G') is competition polysemic with realization D,
where G = (V, Eg) is a connected graph and G’ = (V, Eg) is a triangle-free
unicyclic graph. Let V = {v;,v2,..., v} and, for1 S i <nletvy; =vp; =
Vi, Cl,i = NB(vl,,-) and Cz,i = Ng(vg'.-). Let € = {01_1,01‘2, . ..,Cl,n}
and % = {C2,1,C22,...,C2,n}. As in the proof of Theorem 5 is follows
that %, %, R1 and R; are as in the statement of Theorem 5 for the case
m=1.

Since G’ is a triangle-free unicyclic graph, %2 contains exactly n different
cliques of cardinality 2. Therefore,

|C2,i N Ca,j| €1, where i,j € {1,2,...,n} and i # j. (1)

Ifvg; € C1,;NC1xNCy, forsomel <i<nandl <j<k<!<mn,then
1,4, 1k, V1,1 € Ca4, Which implies a contradiction to |Ca,i| = 2. Hence,

every vertex of G lies in at most two cliques of %. (2)

Ifvgs,v2s € C1;NCyj forsomel <i<j<n and 1 < s <t<n,then
v1,i,1,j € Ca,s N Ca,;, & contradiction to (1). Thus,

'Cl,i nCl,jl <1l,wherel<i<j<n (3)

Suppose vj, vj, . . . vj,Vj, is the unique cycle of G'. Then v}, vj,,vj, iy, €
E(G') for1 <i<t-1,andt > 4since G’ is triangle-free. Let Cy5, =
{vj;,Vjepr } for 1 < i <t =1 and Cpy, = {vj,,v}. By Theorem 1 and
(3), {vz.1} = O NChyjpy, for 1 < i<t —1and {vp,z} = Oy N Cuji.
So G contains a cycle vy, 5, V2., . . . V2,5, V2,f, Which is covered by ¢ cliques
C1,51,Cljar- -1 C1 g
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For any cycle of G that is not covered by a single clique in &, there
are s > 2 cliques Cj,,Cl k;,...,C1,k, € € such that Crk: # Cr iy, for
every 1 <4 < s—1and Cyx, # Cik, and s vertices vg,,v,, .. .,v,, such
that {vg, } = C1k,NCy k,,, forevery 1 <i < s—1and {v,,} = Cix,NCrx,
with g; # g; for ¢ # j.

We obtain {vy,k,,v1,k4,} = Ca,g, and {vyx,,v1,6,} = Cag,, Where 1 <
t < s — 1. Therefore vy x,v1,k,,, € E(G’) for every 1 < { < s — 1 and
V1,k, Y1,k € E(G’). Since G’ has exactly one cycle, we have that s = ¢ and
Y1,k VLkz * * * V1,k, ULk, i8S the unique cycle vj,v;, ... vj,v;, of G'.

Hence, every cycle in G that is not covered by a single clique in %, is cov-
ered by the ¢ unique cliques C j,, C1,5,, - . ., C1 5, for which vy j, vy 4, - - w1, V1,5,
is the unique cycle of G'.

This implies that every clique Cy; with vy ; ¢ {v1j,,v1,5,,- .. V1,5, } 18
the vertex set of a complete block in G, and if some block B of G is not
complete, then V(B) C Cy,;, UCy,;, U---UCj,. Since every block of G
which contains two vertices of a clique contains the whole clique, we obtain
that V(B) = C1,j, UC1,5, U+ +-UC),;,. Thus, exactly one block of G is not
complete and Condition (i) holds.

Since every cutvertex of G lies in at least two blocks of G, we get, by
- (2), that every cutvertex of G lies in exactly two blocks of G and Condition
(ii) holds.

Now, Suppose By is the block of G that is not complete. Then, V(By) =
C,;; UC; U UCy; and Cp 4, = {1)1,]",01,,"“} forevery 1<i<t-1
and Cz,ﬂ = {vlyjnvl,:il } Therefore, {’Uf‘} = C]_'j‘. N Cl;ji«b-! for every
1<i<t-1and {v;,} =Cy; NCyj. By (2), forie {1,2,...,t}, v, lie
in no clique Cj x with k # j;, ji+1 and in no block of G besides By, where
Jt+1 = j1. Hence Condition (iii) holds. This completes the first part of the
proof.

Now, let G = (V, Eg) be a connected graph such that the Conditions
(i)-(iii) hold. Let S be the set of cutvertices of G.

Let By be the block of G that is not complete, let Cy,Cs, ..., C: be the
cliques of G such that V(By) = C;UCU:--UC; and |C; N Cital =1
forevery 1 < i <t-1and |C;NCy| =1. Let {;} = C; N Ci;, and
{z:}=C:NCi,where1<i<t—1 Define Ny=C;for1<i<t.

It is easy to see that for 1 < i < |S| we can (recursively) choose vertices
Te4i €ES\{z;:t+1<j<t+1i—1} and define sets

t+i—1
Neyi = {zeqa} U ({u €V :uzei € Eg}\ U Nj)

Jj=1

such that every set V; for 0 < <t + S| is a clique of G and if > ¢t + 1,
then NV is the vertex set of a block in G. Furthermore, for ¢ > ¢ + 1 every
cutvertex z; of G lies in N; and N; for some unique j < 3.
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Now, we define the digraph D = (V, A) with vertex set V' and arc set
A={uz;:veN,1<i<t+|S[}U{ut:ueV}

Let E, and E; be the edge sets of the competition graph and the com-
mon enemy graph of D, respectively. Note, that for every z € V we have
z € N;\ {z:} and Nj(z) = {z,z;} for some 1 < i < ¢+ |5]. Especially
Np(z:) = {zi,Zig1} for every 1 < ¢ <t -1 and N*(z;) = {1, 21}
Thus, for u,v € V with u # v we obtain that wv € E; if and only
if {u,v} = N}(z) for some z € V if and only if {u,v} = {z,z;} and
z € N;\ {z;} for some 1 < i < t+|S|. Hence, we obtain that G2 = (V, Ez)
is a triangle-free unicyclic graph, since ¢ > 4 and for every block B of G
the subgraph G2[V(B)] induced by V(B) in G is a star, if B is complete
and a spiked cycle, if B = By the block not complete.

Now, it remains to prove that G; = (V,E1) = (V,Eg) = G. Note
that Np(z) = N; if 2 = z; for 1 < ¢ < t + 5| and Ny(z) = {z} if
z € V\ {z1,%2,...,%t4|s}- Let uv be an edge of G. If uv € E(By),
then u,v € N; for some i € {1,2,...,t} which implies that »,v € Np(z;)
for some i € {1,2,...,t} and thus wv € E;. If uwwv € E(B) for some
block B # By, then B is complete and contains at least one cutvertex. If
i=min{t+1<j <t+]S]:z; € V(B)}, then u,v € N; = V(B) and
u,v € Np(z;) which implies that uv € E;. This yields that Eg € F,.

Conversely, let uv € E;. We have u,v € Np(z) for some vertex z € V
with |[Np(z)| > 2. This implies that z = z; and u,v € N; for some
1< j <t+|S]. Since Nj is a clique in G, we obtain that uv € Eg. Hence
E¢ = E; and the proof is complete. |

Let V = {v1,v2,...,vn}, Es = {niv;]2 < i < n}, Ep = EsU{vivi1|2 <
i <n—1} and Ew = ErU{vavn}. We call graphs § = (V, Es), F = (V, EF)
and W = (V, Ew) the star graph, the fan graph and the wheel graph of order
n, respectively. Fischermann et al. [2] proved that (Kn, K») is competition
polysemic. Now we generalize it as follows.

Theorem 3 For n > 2, the pair (G, K;) is competition polysemic if G is
the empty graph, the star graph, the fan graph or the wheel graph of order
n, respectively.

Proof. Let V = {v1,vs,...,0%}, As = {19, 00|l < i < n}, Ap =
AsU{Titin1|2 < i £ n—1} and Aw = ApU{Un72}. It is straightforward to
verify that the pair (S, K,) is competition polysemic with realization Ds =
(V, As), the pair (F, K,) is competition polysemic with realization Dp =
(V, Ar), and the pair (W, K,) is competition polysemic with realization
Dw = (V, Aw), respectively.
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3 m—Competitioh polysemy

We start this section with the following characterization of m-competition
graphs due to Kim et al. [3].

Theorem 4 (Kim et al. [3]) A graph G = (V, E) is the m-competition
graph of some digraph if and only if there ezists an m-edge clique cover
¢ ={C1,C...,Cp} of G withp < |V|.

The following theorem is the main result in this section.

Theorem 5 A pair (G1, G2) of graphs with Gy = (V, E1) and G, = (V, E)
is m-competition polysemic if and only if there exist m-edge clique covers
% ={C11,C12,...,C1,p} of G1 and € = {Cy,1,Ca2,...,Ca,q} of G for
which there exist sets of distinct representatives R, = {v,1,v1,2,. .., 1,0}
and Ry = {v2,1,v2,2,...,v24}, ,q L |V|, such that

(2) vo,i € C1 5 if and only if vy ; € Cay,

(n) if Ug,s,V2,¢t € nfc,__.lcl'ik and ICQ,s N Cz'g \ {vl,i,,vl,i,,. . ,vl_i,}l >
m~—l, then there exist Cy ;,,Ch iy, ..., Chy,, such thatiy,ia,..., im are
distinct and vy 5,v2,¢ € Cyi;, where 0 <l <m andj =1,2,...,m,
and

(uz) if V1,8, V1, € n£=102,ik and lC’l,s n Cl,t \ {vg,,-,,vg,,-,, e ,’Ug,.',}l >
m—1, then there exist Ca5,,Caiy, . .., Ca,,, such thatiy, i, ..., iy, are
distinct and v1,5,v1,t € Ca,4;, where 0 <l <m and j = 1,2,...,m.

Proof. First, we assume that (Gy,Gz) with G, = (V, E}) and G, = (V, E3)
is m-competition polysemic with realization D = (V, A) and prove the
existence of €1, %2, R; and R» as in the statement of the theorem.

Let V = {'01,’02,... ,'Un} and for 1 <i < nlet Y,i = Vg = v,-,Cl,,- =
NB('UI.:') and Cz,,' = Ng(’vz,i). Clea.rly, u,v € Cl,i = NE(Ul.i) holds for
u,v € V withu # vand 1< < nifand only if v;; € Nj(u) N Nj(v).
Furthermore, there exist m sets Cy ;,, C1,45, - . - yCl,4,, in € such that u,v €
Ni=,C1,:,, if and only if vy, € Ng(u) n Ng(v) for £k = 1,2,...,m, or
equivalently uv € E;. This implies that €, = {C1,1,C1,2,...,C14} is an
m-edge clique cover of G;. By symmetry, 6 = {C3,1,Cs,2,...,C2,} is an
m-edge clique cover of Gs.

By the definitions of Cy; and Cy j, it is easy to see that v, ; € Cy; =
Np (v1,:) holds if and only if vy,; € N (ve,;) = Ca,j, which implies (i).

Suppose va,s,v2,t € Ny C1,i, a0d [C2,sNCo e \ {14, V1,05, - -, V1,4, }] >
m — [ for some 0 < I < m. Then there are z1,2s,...,2Zm—; € Co4 NCye \
{'vl,,-,,vl,g,, N ,vl_i,}. Let Vligy; = Tj for j = 1,2,...,m -1 and by (l)
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we have va 5,2, € C,i,,,, Which implies (ii) and, by symmetry, also (iii).
This completes the first part of the proof.

Now, let (G1,G2) be a pair of graphs with G; = (V, Ey) and G2 =
(V, Ez) and let %1, %2, R1 and R; be as in the statement of the theorem.
Let the digraph D have vertex set V and arc set A = A; U A2 where
A = {wvriju€ Ci,1 <i<p}and Ay = {vz;tlu € Ca,5,1 <i < q}. We
prove that (G1, G2) is m-competition polysemic with realization D.

Let uv € E; for u,v € V with u # v. Since %] is an m-edge clique cover
of Gy, there are some 1 < i3 < -+ < imm < p such that u,v € NTL,Cy 4,
This implies that @14, , 901, € A1 and vy, € Nj(u) 0 Np(v) for k =
1,2,...,m, ie, N} (u) N NE(v)| = m.

Now, let z1,Z3,...,%m € N (u) N NE(v) for u,v € V with u # v. We
have that uz,,vz; € Ay UA;p for i = 1,2,...,m. Fori € {1,2,...,m},
if 4z, vz, € Ay, then z; = vy,; and u,v € Cy; for some 1 < j < p. If
’!ﬁ; € A; and 'l.)?: € Ay, then z; = vy 5 and u € Cl,j for some 1 < j < p;
v = v and z; = vy,; € Cy for some 1 < k < g. Condition (i) implies
that v = vox € C1 ;. Thus u,v € Cy;. By symmetry, if #2; € Az and
vT; € Ay, then z; = v ; and u,v € Cy; for some 1 < j < p. Without
loss of generality, suppose that for each i € {{+ 1,1+ 2,...,m} we have
uT., vz, € Aa, and for each i € {1,2,...,l} at most one of uz; and ¥z;
is in A, where 0 < | < m. Write z; = vy 5, for i € {1,2,...,1}. If
! = m, then by the discusses above, u,v € Cyj, for each i € {1,2,...,m},
which implies uv € E;. If | < m, then there exist 1 < s < ¢t < g such
that © = vg,,v = vz, and vp,,v2¢ € MNi_C1j, and z; € C2,s N Coy
for each i € {I+ 1,l +2,...,m}. Condition (ii) implies that there exist
Cl'i,,Cl,i,, oy Crim such that ij,%2,...,%m are distinct and vg 4,v2,, €
Ci,, where j = 1,2,...,m, which implies uv € Ey.

Till now we obtain that uv € Ey for u,v € V with u # v if and only
if [NJ(u) N N} ()] = m. Which means that G, is the m-competition
graph of D. By symmetry, G is the m-common enemy graph of D and
hence (Gi, G3) is m-competition polysemic with realization D. The proof
is complete.

For competition polysemy, M. Fischermann et al. [2] proved the follow-
ing result.

Theorem 6 (M. Fischermann et al. [2]) Let G = (Vg, Eg) be a graph.
There exists a graph H = (Vy, Ex) of order at most |Eg| such that (GU
H,G U H) is competition polysemic where GUH = (Vg U Vy,Eg U Ep)
and Vg NVy =0.

For m-competition polysemy, we have a similar result as follows.

Theorem 7 Let G = (Vg,Ecg) be a graph. There ezists a graph H =
(Vi, En) of order at most m|Eg| such that (GUH, GUH) is m-competition
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polysemic where GUH = (VgUVy,EgUEyY) and VgNVy = 0.

Proof.. Let € = {C1,Cs,...,Cp} be an m-edge clique cover of G =
(Ve, Eg) such p is the minimum. Since collection {m - {u,v} : uv € Eg}
(m - {u,v} denotes that {u,v} is repeated m times in the collection) is
also an m-edge clique cover of G = (Vg,Eg), then p < m|Eg|. Let
D = (Vp, Ap) be the digraph with vertex set Vp = Vo U {v1,v2,...,%},
where VgN{v1,v2,...,%} =0, and arc set Ap = UL_, {we;, 500 : w € Cy).
Let Gy = (Vp, E1) and G2 = (Vp, E3) be the m-competition graph and
m-common enemy competition graph of D, respectively. Since Nj(v) =
Np(v) for every vertex v € Vp, we have G; = G;. For u,v € Vg
with v # v we have uv € Eg¢ if and only if u,v € N7~ C;; for some
1<4) < < iy < pif and only if INF(u) " N(v)| > m 1f and only 1f
uv € EB). Foru € Vg and v € {v},v3,...,vp} we have |N+(u)ﬂN,’_*,'(v)| =
and hence uv ¢ E;. Let H = (Vp \ Vg, E1 \ Eg). Then H has p < mIEGI
vertices and G, = G, = G U H. This completes the proof. il

Suppose (G1,G2) with G; = (V, E1) and G; = (V, E,) is m-competition
polysemic with realization D = (V,A). Let D' = (V, A’), where A’ =
AU{vd:ud € A,u # v}. Then A" = A’ and the following theorem follows.

Theorem 8 If a pair (G1,G2) of graphs with G, = (V,E;) and Gy =
(V, Ez) is m-competition polysemic, then G = (V, E} U E») is a graph such
that (G, G) is m-competition polysemic.

The following result is also easy to be proved.

Theorem 9 Forn > 3 the pairs (K} 5, CaUI) is m-competition polysemic
for2<m < |3, where Ky »,C, and I denote the star of order n+1, the
cycle of order n and one isolated vertez, respectively.

Proof. Let V = {z, vo,vl, ,Un—1}, denote K1 n=(V,E;)and C,UI} =

(V, Ez) in which E; = U} {:z:v,} and Ep = U} {v.v.+1}u{vov,,_ }. Then

it is easy to check that (K}, CnUI}) is m-competition polysemic with real-
ization D = (V, Am) for 2 < m < | 3], where Ay = URZ! (UL, {70}, Bitiry-1 )
and i+ j — 1 is taken modulo 7. |l
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