On competition polysemy and m-competition polysemy*

Yongqiang Zhao[†]
Department of Mathematics
Shijiazhuang College
Shijiazhuang 050035, P.R. China
yqzhao1970@yahoo.com

Gerard J. Chang[‡]
Department of Mathematics
National Taiwan University
Taipei 10617, Taiwan
Taida Institute for Mathematical Sciences
National Taiwan University
Taipei 10617, Taiwan
National Center for Theoretical Sciences
Taipei Office, Taiwan
gjchang@math.ntu.edu.tw

Abstract

In 2004, Fischermann et al. [2] generalized bound polysemy to competition polysemy by using digraphs instead of posets. They provided a characterization of competition polysemic pairs and a characterization of the connected graphs G for which there exists a tree T such that (G,T) is competition polysemic. In this paper we continue to study the competition polysemy and characterize the connected graphs G for which there exists a triangle-free unicyclic graph G' such that (G,G') is competition polysemic. Furthermore,

^{*}This work was done while the first author was visiting the Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan.

[†]Supported in part by the National Science Council under Grant NSC95-2816-M-002-014.

[‡]Supported in part by the National Science Council under Grant NSC95-2115-M-002-013-MY3.

we generalize competition polysemy to *m*-competition polysemy and prove a characterization of *m*-competition polysemic pairs.

2000 Mathematics Subject Classification: 05C20, 05C62, 06A07. Keywords: Competition graph; m-Competition graph; Competition polysemy; m-Competition polysemy

1 Introduction

All graphs considered in this paper are finite and simple. Let G = (V, E) be a graph with vertex set V and edge set E. The neighborhood of a vertex $v \in V$ is the set $N(v) = \{u \in V : uv \in E\}$. A clique of G is the vertex set of a (not necessarily maximal) complete subgraph of G. An edge clique cover of G is a collection $\mathscr C$ of cliques such that for every edge $uv \in E$ some clique in $\mathscr C$ contains both vertices u and v. An m-edge clique cover of G is a collection of subsets C_1, C_2, \ldots, C_k of V such that $xy \in E$ if and only if there exist m of the sets C_i that contain both x and y. A block of G = (V, E) is a maximal 2-connected subgraph of G and a vertex $u \in V$ for which $G - u = G[V \setminus \{u\}]$ (the subgraph of G induced by $V \setminus \{u\}$) has more components than G is a cutvertex.

In 2000, Tanenbaum [6] introduced the notion of bound polysemy. He called a pair (G_1,G_2) of graphs $G_1=(V,E_1)$ and $G_2=(V,E_2)$ on a common set of vertices V bound polysemic, if there exists a reflexive poset $P=(V,\leq)$ on the set V such that for all $u,v\in V$ with $u\neq v,uv\in E_1$ if and only if there is some $w\in V$ such that $u\leq w$ and $v\leq w$ and $uv\in E_2$ if and only if there is some $w\in V$ such that $w\leq u$ and $w\leq v$. In this situation the graphs G_1 and G_2 are called the upper bound graph and the lower bound graph of P, respectively. Upper bound graphs were introduced by McMorris and Zaslavsky in [5].

In 2004, Fischermann et al. [2] generalized bound polysemy to competition polysemy by using digraphs instead of posets. They called a pair (G_1, G_2) of graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on a common set of vertices V competition polysemic, if there exists a digraph D = (V, A) on the same set of vertices such that for all $u, v \in V$ with $u \neq v, uv \in E_1$ if and only if $N_D^+(u) \cap N_D^+(v) \neq \emptyset$ and $uv \in E_2$ if and only if $N_D^-(u) \cap N_D^-(v) \neq \emptyset$. In this situation D is called a realization of (G_1, G_2) . Clearly, the graphs G_1 and G_2 are the competition graph (see [1]) and common enemy graph (see [4]) of D, respectively. Competition graphs were introduced by Cohen [1] and have been studied by various authors. For any digraph D = (V, A), in fact, the common enemy graph of D is the competition graph of D, where D = (V, A) and $A = \{\overline{vu} : \overline{uv} \in A\}$.

Fischermann et al. [2] provided a characterization of competition polysemic pairs and a characterization of the connected graphs G for which

there exists a tree T such that (G,T) is competition polysemic. In this paper we continue to study the competition polysemy and generalize competition polysemy to m-competition polysemy. For positive integer $m \geq 1$, we call a pair (G_1,G_2) of graphs $G_1=(V,E_1)$ and $G_2=(V,E_2)$ on a common set of vertices V m-competition polysemic, if there exists a digraph D=(V,A) on the same set of vertices such that for all $u,v\in V$ with $u\neq v,\ uv\in E_1$ if and only if $|N_D^+(u)\cap N_D^+(v)|\geq m$ and $uv\in E_2$ if and only if $|N_D^-(u)\cap N_D^-(v)|\geq m$. Clearly, the graph G_1 is the m-competition graph (see [3]) of D. Furthermore, we call the graph G_2 the m-common competition graph of D. Obviously, 1-competition polysemic is just the competition polysemic.

Section 2 provides a characterization of the connected graphs G for which there exists a triangle-free unicyclic graph G' such that (G, G') is competition polysemic. Section 3 generalizes competition polysemy to m-competition polysemy and proves a characterization of m-competition polysemic pairs.

2 Competition polysemy

For given graph G=(V,E), if $\mathscr{C}=\{C_1,C_2,\ldots,C_p\}$ is an edge clique cover of G with $p\leq |V|$, then we can choose a set of p different vertices $R=\{v_1,v_2,\ldots,v_p\}\subseteq V$. We call R a set of distinct representatives of the cliques in \mathscr{C} (Note that we do not require $v_i\in C_i$ for $1\leq i\leq p$). Fischermann et al. [2] provided a characterization of competition polysemic pairs of graphs as follows.

Theorem 1 (Fischermann et al. [2]) A pair (G_1, G_2) of graphs with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is competition polysemic if and only if there exist edge clique covers $\mathscr{C}_1 = \{C_{1,1}, C_{1,2}, \ldots, C_{1,p}\}$ of G_1 and $\mathscr{C}_2 = \{C_{2,1}, C_{2,2}, \ldots, C_{2,q}\}$ of G_2 for which there exist sets of distinct representatives $R_1 = \{v_{1,1}, v_{1,2}, \ldots, v_{1,p}\}$ and $R_2 = \{v_{2,1}, v_{2,2}, \ldots, v_{2,q}\}$, $p, q \leq |V|$, such that

- (i) $v_{2,i} \in C_{1,j}$ if and only if $v_{1,j} \in C_{2,i}$,
- (ii) if $C_{1,i} \cap C_{1,j} \neq \emptyset$, then there is some $1 \leq l \leq q$ such that $v_{1,i}, v_{1,j} \in C_{2,l}$ and
- (iii) if $C_{2,i} \cap C_{2,j} \neq \emptyset$, then there is some $1 \leq l \leq p$ such that $v_{2,i}, v_{2,j} \in C_{1,l}$.

Recall that a unicyclic graph is a graph which is connected and has exactly one cycle, and a spiked cycle is a graph that is a cycle upon removal of all pendant edges. In the following we characterized the connected graphs

G for which there exists a triangle-free unicyclic graph G' such that (G,G') is competition polysemic.

Theorem 2 Let $G = (V, E_G)$ be a connected graph. There is a triangle-free unicyclic graph $G' = (V, E_{G'})$ such that (G, G') is competition polysemic if and only if

- (i) exactly one block of G is not complete,
- (ii) every cutvertex of G lies in exactly two blocks of G and
- (iii) if B_0 is the block of G that is not complete, then the vertex set of B_0 is the union of some cliques of G, these cliques can be labeling as C_1, C_2, \ldots, C_t such that $|C_i \cap C_{i+1}| = 1$ for $1 \le i \le t$, and the vertex in $C_i \cap C_{i+1}$ for each $1 \le i \le t$ lies in no other block of G, where $t \ge 4$ and $C_{t+1} = C_1$.

Proof. Suppose that (G,G') is competition polysemic with realization D, where $G=(V,E_G)$ is a connected graph and $G'=(V,E_{G'})$ is a triangle-free unicyclic graph. Let $V=\{v_1,v_2,\ldots,v_n\}$ and, for $1\leq i\leq n$ let $v_{1,i}=v_{2,i}=v_i, C_{1,i}=N_D^-(v_{1,i})$ and $C_{2,i}=N_D^+(v_{2,i})$. Let $\mathscr{C}_1=\{C_{1,1},C_{1,2},\ldots,C_{1,n}\}$ and $\mathscr{C}_2=\{C_{2,1},C_{2,2},\ldots,C_{2,n}\}$. As in the proof of Theorem 5 is follows that $\mathscr{C}_1,\mathscr{C}_2,R_1$ and R_2 are as in the statement of Theorem 5 for the case m=1.

Since G' is a triangle-free unicyclic graph, \mathscr{C}_2 contains exactly n different cliques of cardinality 2. Therefore,

$$|C_{2,i} \cap C_{2,i}| \le 1$$
, where $i, j \in \{1, 2, ..., n\}$ and $i \ne j$. (1)

If $v_{2,i} \in C_{1,j} \cap C_{1,k} \cap C_{1,l}$ for some $1 \le i \le n$ and $1 \le j < k < l \le n$, then $v_{1,j}, v_{1,k}, v_{1,l} \in C_{2,i}$, which implies a contradiction to $|C_{2,i}| = 2$. Hence,

every vertex of
$$G$$
 lies in at most two cliques of \mathscr{C}_1 . (2)

If $v_{2,s}, v_{2,t} \in C_{1,i} \cap C_{1,j}$ for some $1 \le i < j \le n$ and $1 \le s < t \le n$, then $v_{1,i}, v_{1,j} \in C_{2,s} \cap C_{2,t}$, a contradiction to (1). Thus,

$$|C_{1,i} \cap C_{1,j}| \le 1$$
, where $1 \le i < j \le n$. (3)

Suppose $v_{j_1}v_{j_2}...v_{j_t}v_{j_1}$ is the unique cycle of G'. Then $v_{j_1}v_{j_t}, v_{j_t}v_{j_{t+1}} \in E(G')$ for $1 \le i \le t-1$, and $t \ge 4$ since G' is triangle-free. Let $C_{2,f_i} = \{v_{j_i}, v_{j_{i+1}}\}$ for $1 \le i \le t-1$ and $C_{2,f_t} = \{v_{j_1}, v_{j_t}\}$. By Theorem 1 and (3), $\{v_{2,f_t}\} = C_{1,j_t} \cap C_{1,j_{t+1}}$ for $1 \le i \le t-1$ and $\{v_{2,f_t}\} = C_{1,j_1} \cap C_{1,j_t}$. So G contains a cycle $v_{2,f_1}v_{2,f_2}...v_{2,f_t}v_{2,f_1}$ which is covered by t cliques $C_{1,j_1}, C_{1,j_2},..., C_{1,j_t}$.

For any cycle of G that is not covered by a single clique in \mathscr{C}_1 , there are $s \geq 2$ cliques $C_{1,k_1}, C_{1,k_2}, \ldots, C_{1,k_s} \in \mathscr{C}_1$ such that $C_{1,k_i} \neq C_{1,k_{i+1}}$ for every $1 \leq i \leq s-1$ and $C_{1,k_s} \neq C_{1,k_1}$ and s vertices $v_{g_1}, v_{g_2}, \ldots, v_{g_s}$ such that $\{v_{g_i}\} = C_{1,k_i} \cap C_{1,k_{i+1}}$ for every $1 \leq i \leq s-1$ and $\{v_{g_s}\} = C_{1,k_s} \cap C_{1,k_1}$ with $g_i \neq g_j$ for $i \neq j$.

We obtain $\{v_{1,k_i},v_{1,k_{i+1}}\}=C_{2,g_i}$ and $\{v_{1,k_s},v_{1,k_1}\}=C_{2,g_s}$, where $1\leq i\leq s-1$. Therefore $v_{1,k_i}v_{1,k_{i+1}}\in E(G')$ for every $1\leq i\leq s-1$ and $v_{1,k_s}v_{1,k_1}\in E(G')$. Since G' has exactly one cycle, we have that s=t and $v_{1,k_1}v_{1,k_2}\cdots v_{1,k_s}v_{1,k_1}$ is the unique cycle $v_{j_1}v_{j_2}\ldots v_{j_t}v_{j_1}$ of G'.

Hence, every cycle in G that is not covered by a single clique in \mathscr{C}_1 is covered by the t unique cliques $C_{1,j_1}, C_{1,j_2}, \ldots, C_{1,j_t}$ for which $v_{1,j_1}v_{1,j_2}\cdots v_{1,j_t}v_{1,j_1}$ is the unique cycle of G'.

This implies that every clique $C_{1,i}$ with $v_{1,i} \notin \{v_{1,j_1}, v_{1,j_2}, \ldots, v_{1,j_t}\}$ is the vertex set of a complete block in G, and if some block B of G is not complete, then $V(B) \subseteq C_{1,j_1} \cup C_{1,j_2} \cup \cdots \cup C_{1,j_t}$. Since every block of G which contains two vertices of a clique contains the whole clique, we obtain that $V(B) = C_{1,j_1} \cup C_{1,j_2} \cup \cdots \cup C_{1,j_t}$. Thus, exactly one block of G is not complete and Condition (i) holds.

Since every cutvertex of G lies in at least two blocks of G, we get, by (2), that every cutvertex of G lies in exactly two blocks of G and Condition (ii) holds.

Now, Suppose B_0 is the block of G that is not complete. Then, $V(B_0)=C_{1,j_1}\cup C_{1,j_2}\cup \cdots \cup C_{1,j_t}$ and $C_{2,f_i}=\{v_{1,j_i},v_{1,j_{i+1}}\}$ for every $1\leq i\leq t-1$ and $C_{2,f_t}=\{v_{1,j_t},v_{1,j_1}\}$. Therefore, $\{v_{f_t}\}=C_{1,j_t}\cap C_{1,j_{i+1}}$ for every $1\leq i\leq t-1$ and $\{v_{f_t}\}=C_{1,j_t}\cap C_{1,j_1}$. By (2), for $i\in\{1,2,\ldots,t\}$, v_{f_t} lie in no clique $C_{1,k}$ with $k\neq j_i,j_{i+1}$ and in no block of G besides B_0 , where $j_{t+1}=j_1$. Hence Condition (iii) holds. This completes the first part of the proof.

Now, let $G = (V, E_G)$ be a connected graph such that the Conditions (i)-(iii) hold. Let S be the set of cutvertices of G.

Let B_0 be the block of G that is not complete, let C_1, C_2, \ldots, C_t be the cliques of G such that $V(B_0) = C_1 \cup C_2 \cup \cdots \cup C_t$ and $|C_i \cap C_{i+1}| = 1$ for every $1 \le i \le t-1$ and $|C_t \cap C_1| = 1$. Let $\{x_i\} = C_i \cap C_{i+1}$ and $\{x_t\} = C_t \cap C_1$, where $1 \le i \le t-1$. Define $N_i = C_i$ for $1 \le i \le t$.

It is easy to see that for $1 \le i \le |S|$ we can (recursively) choose vertices $x_{t+i} \in S \setminus \{x_j : t+1 \le j \le t+i-1\}$ and define sets

$$N_{t+i} = \{x_{t+i}\} \cup \left(\{u \in V : ux_{t+i} \in E_G\} \setminus \bigcup_{j=1}^{t+i-1} N_j\right)$$

such that every set N_i for $0 \le i \le t + |S|$ is a clique of G and if $i \ge t + 1$, then N_i is the vertex set of a block in G. Furthermore, for $i \ge t + 1$ every cutvertex x_i of G lies in N_i and N_j for some unique j < i.

Now, we define the digraph D = (V, A) with vertex set V and arc set

$$A = \{\overrightarrow{ux_i} : u \in N_i, 1 \le i \le t + |S|\} \cup \{\overrightarrow{uu} : u \in V\}$$

Let E_1 and E_2 be the edge sets of the competition graph and the common enemy graph of D, respectively. Note, that for every $x \in V$ we have $x \in N_i \setminus \{x_i\}$ and $N_D^+(x) = \{x, x_i\}$ for some $1 \le i \le t + |S|$. Especially $N_D^+(x_i) = \{x_i, x_{i+1}\}$ for every $1 \le i \le t - 1$ and $N^+(x_t) = \{x_t, x_1\}$. Thus, for $u, v \in V$ with $u \ne v$ we obtain that $uv \in E_2$ if and only if $\{u, v\} = N_D^+(x)$ for some $x \in V$ if and only if $\{u, v\} = \{x, x_i\}$ and $x \in N_i \setminus \{x_i\}$ for some $1 \le i \le t + |S|$. Hence, we obtain that $G_2 = (V, E_2)$ is a triangle-free unicyclic graph, since $t \ge 4$ and for every block B of G the subgraph $G_2[V(B)]$ induced by V(B) in G_2 is a star, if B is complete and a spiked cycle, if $B = B_0$ the block not complete.

Now, it remains to prove that $G_1=(V,E_1)=(V,E_G)=G$. Note that $N_D^-(x)=N_i$ if $x=x_i$ for $1\leq i\leq t+|S|$ and $N_D^-(x)=\{x\}$ if $x\in V\setminus\{x_1,x_2,\ldots,x_{t+|S|}\}$. Let uv be an edge of G. If $uv\in E(B_0)$, then $u,v\in N_i$ for some $i\in\{1,2,\ldots,t\}$ which implies that $u,v\in N_D^-(x_i)$ for some $i\in\{1,2,\ldots,t\}$ and thus $uv\in E_1$. If $uv\in E(B)$ for some block $B\neq B_0$, then B is complete and contains at least one cutvertex. If $i=\min\{t+1\leq j\leq t+|S|:x_j\in V(B)\}$, then $u,v\in N_i=V(B)$ and $u,v\in N_D^-(x_i)$ which implies that $uv\in E_1$. This yields that $E_G\in E_1$.

Conversely, let $uv \in E_1$. We have $u, v \in N_D^-(x)$ for some vertex $x \in V$ with $|N_D^-(x)| \geq 2$. This implies that $x = x_j$ and $u, v \in N_j$ for some $1 \leq j \leq t + |S|$. Since N_j is a clique in G, we obtain that $uv \in E_G$. Hence $E_G = E_1$ and the proof is complete.

Let $V = \{v_1, v_2, \ldots, v_n\}$, $E_S = \{v_1v_i|2 \le i \le n\}$, $E_F = E_S \cup \{v_iv_{i+1}|2 \le i \le n-1\}$ and $E_W = E_F \cup \{v_2v_n\}$. We call graphs $S = (V, E_S)$, $F = (V, E_F)$ and $W = (V, E_W)$ the star graph, the fan graph and the wheel graph of order n, respectively. Fischermann et al. [2] proved that $(\overline{K_n}, K_n)$ is competition polysemic. Now we generalize it as follows.

Theorem 3 For $n \geq 2$, the pair (G, K_n) is competition polysemic if G is the empty graph, the star graph, the fan graph or the wheel graph of order n, respectively.

Proof. Let $V = \{v_1, v_2, \ldots, v_n\}$, $A_S = \{\overline{v_1v_i}, \overline{v_iv_i}|1 \leq i \leq n\}$, $A_F = A_S \cup \{\overline{v_iv_{i+1}}|2 \leq i \leq n-1\}$ and $A_W = A_F \cup \{\overline{v_nv_2}\}$. It is straightforward to verify that the pair (S, K_n) is competition polysemic with realization $D_S = (V, A_S)$, the pair (F, K_n) is competition polysemic with realization $D_F = (V, A_F)$, and the pair (W, K_n) is competition polysemic with realization $D_W = (V, A_W)$, respectively.

3 m-Competition polysemy

We start this section with the following characterization of m-competition graphs due to Kim et al. [3].

Theorem 4 (Kim et al. [3]) A graph G = (V, E) is the m-competition graph of some digraph if and only if there exists an m-edge clique cover $\mathscr{C} = \{C_1, C_2, \ldots, C_p\}$ of G with $p \leq |V|$.

The following theorem is the main result in this section.

Theorem 5 A pair (G_1, G_2) of graphs with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is m-competition polysemic if and only if there exist m-edge clique covers $\mathscr{C}_1 = \{C_{1,1}, C_{1,2}, \ldots, C_{1,p}\}$ of G_1 and $\mathscr{C}_2 = \{C_{2,1}, C_{2,2}, \ldots, C_{2,q}\}$ of G_2 for which there exist sets of distinct representatives $R_1 = \{v_{1,1}, v_{1,2}, \ldots, v_{1,p}\}$ and $R_2 = \{v_{2,1}, v_{2,2}, \ldots, v_{2,q}\}$, $p, q \leq |V|$, such that

- (i) $v_{2,i} \in C_{1,j}$ if and only if $v_{1,j} \in C_{2,i}$,
- (ii) if $v_{2,s}, v_{2,t} \in \cap_{k=1}^{l} C_{1,i_k}$ and $|C_{2,s} \cap C_{2,t} \setminus \{v_{1,i_1}, v_{1,i_2}, \dots, v_{1,i_l}\}| \ge m-l$, then there exist $C_{1,i_1}, C_{1,i_2}, \dots, C_{1,i_m}$ such that i_1, i_2, \dots, i_m are distinct and $v_{2,s}, v_{2,t} \in C_{1,i_j}$, where $0 \le l \le m$ and $j = 1, 2, \dots, m$, and
- (iii) if $v_{1,s}, v_{1,t} \in \cap_{k=1}^{l} C_{2,i_k}$ and $|C_{1,s} \cap C_{1,t} \setminus \{v_{2,i_1}, v_{2,i_2}, \dots, v_{2,i_l}\}| \ge m-l$, then there exist $C_{2,i_1}, C_{2,i_2}, \dots, C_{2,i_m}$ such that i_1, i_2, \dots, i_m are distinct and $v_{1,s}, v_{1,t} \in C_{2,i_j}$, where $0 \le l \le m$ and $j = 1, 2, \dots, m$.

Proof. First, we assume that (G_1, G_2) with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is *m*-competition polysemic with realization D = (V, A) and prove the existence of $\mathcal{C}_1, \mathcal{C}_2, R_1$ and R_2 as in the statement of the theorem.

Let $V=\{v_1,v_2,\ldots,v_n\}$ and for $1\leq i\leq n$ let $v_{1,i}=v_{2,i}=v_i,C_{1,i}=N_D^-(v_{1,i})$ and $C_{2,i}=N_D^+(v_{2,i})$. Clearly, $u,v\in C_{1,i}=N_D^-(v_{1,i})$ holds for $u,v\in V$ with $u\neq v$ and $1\leq i\leq n$ if and only if $v_{1,i}\in N_D^+(u)\cap N_D^+(v)$. Furthermore, there exist m sets $C_{1,i_1},C_{1,i_2},\ldots,C_{1,i_m}$ in $\mathscr C_1$ such that $u,v\in \cap_{k=1}^m C_{1,i_k}$ if and only if $v_{1,i_k}\in N_D^+(u)\cap N_D^+(v)$ for $k=1,2,\ldots,m$, or equivalently $uv\in E_1$. This implies that $\mathscr C_1=\{C_{1,1},C_{1,2},\ldots,C_{1,n}\}$ is an m-edge clique cover of G_1 . By symmetry, $\mathscr C_2=\{C_{2,1},C_{2,2},\ldots,C_{2,n}\}$ is an m-edge clique cover of G_2 .

By the definitions of $C_{1,i}$ and $C_{2,j}$, it is easy to see that $v_{2,j} \in C_{1,i} = N_D^-(v_{1,i})$ holds if and only if $v_{1,i} \in N_D^+(v_{2,j}) = C_{2,j}$, which implies (i).

Suppose $v_{2,s}, v_{2,t} \in \cap_{k=1}^{l} C_{1,i_k}$ and $|C_{2,s} \cap C_{2,t} \setminus \{v_{1,i_1}, v_{1,i_2}, \dots, v_{1,i_l}\}| \ge m-l$ for some $0 \le l \le m$. Then there are $x_1, x_2, \dots, x_{m-l} \in C_{2,s} \cap C_{2,t} \setminus \{v_{1,i_1}, v_{1,i_2}, \dots, v_{1,i_l}\}$. Let $v_{1,i_{l+j}} = x_j$ for $j = 1, 2, \dots, m-l$ and by (i)

we have $v_{2,s}, v_{2,t} \in C_{1,i_{l+j}}$, which implies (ii) and, by symmetry, also (iii). This completes the first part of the proof.

Now, let (G_1, G_2) be a pair of graphs with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ and let $\mathscr{C}_1, \mathscr{C}_2, R_1$ and R_2 be as in the statement of the theorem. Let the digraph D have vertex set V and arc set $A = A_1 \cup A_2$ where $A_1 = \{\overrightarrow{uv_{1,i}} | u \in C_{1,i}, 1 \leq i \leq p\}$ and $A_2 = \{\overrightarrow{v_{2,j}u} | u \in C_{2,j}, 1 \leq i \leq q\}$. We prove that (G_1, G_2) is m-competition polysemic with realization D.

Let $uv \in E_1$ for $u, v \in V$ with $u \neq v$. Since \mathscr{C}_1 is an m-edge clique cover of G_1 , there are some $1 \leq i_1 < \cdots < i_m \leq p$ such that $u, v \in \bigcap_{k=1}^m C_{1,i_k}$. This implies that $\overrightarrow{uv_{1,i_k}}, \overrightarrow{vv_{1,i_k}} \in A_1$ and $v_{1,i_k} \in N_D^+(u) \cap N_D^+(v)$ for $k = 1, 2, \ldots, m$, i.e., $|N_D^+(u) \cap N_D^+(v)| \geq m$.

Now, let $x_1, x_2, \ldots, x_m \in N_D^+(u) \cap N_D^+(v)$ for $u, v \in V$ with $u \neq v$. We have that $\overrightarrow{ux_i}, \overrightarrow{vx_i} \in A_1 \cup A_2$ for i = 1, 2, ..., m. For $i \in \{1, 2, ..., m\}$, if $\overrightarrow{ux_i}, \overrightarrow{vx_i} \in A_1$, then $x_i = v_{1,j}$ and $u, v \in C_{1,j}$ for some $1 \leq j \leq p$. If $\overrightarrow{ux_i} \in A_1$ and $\overrightarrow{vx_i} \in A_2$, then $x_i = v_{1,j}$ and $u \in C_{1,j}$ for some $1 \le j \le p$; $v = v_{2,k}$ and $x_i = v_{1,j} \in C_{2,k}$ for some $1 \le k \le q$. Condition (i) implies that $v = v_{2,k} \in C_{1,j}$. Thus $u, v \in C_{1,j}$. By symmetry, if $\overrightarrow{ux_i} \in A_2$ and $\overrightarrow{vx_i} \in A_1$, then $x_i = v_{1,j}$ and $u, v \in C_{1,j}$ for some $1 \leq j \leq p$. Without loss of generality, suppose that for each $i \in \{l+1, l+2, \ldots, m\}$ we have $\overrightarrow{ux_i}, \overrightarrow{vx_i} \in A_2$, and for each $i \in \{1, 2, ..., l\}$ at most one of $\overrightarrow{ux_i}$ and $\overrightarrow{vx_i}$ is in A_2 , where $0 \le l \le m$. Write $x_i = v_{1,j_i}$ for $i \in \{1,2,\ldots,l\}$. If l=m, then by the discusses above, $u,v\in C_{1,j_i}$ for each $i\in\{1,2,\ldots,m\}$, which implies $uv \in E_1$. If l < m, then there exist $1 \le s < t \le q$ such that $u = v_{2,s}, v = v_{2,t}$ and $v_{2,s}, v_{2,t} \in \bigcap_{k=1}^{l} C_{1,j_k}$ and $x_i \in C_{2,s} \cap C_{2,t}$ for each $i \in \{l+1, l+2, ..., m\}$. Condition (ii) implies that there exist $C_{1,i_1},C_{1,i_2},\ldots,C_{1,i_m}$ such that i_1,i_2,\ldots,i_m are distinct and $v_{2,s},v_{2,t}\in$ C_{1,i_j} , where $j=1,2,\ldots,m$, which implies $uv \in E_1$.

Till now we obtain that $uv \in E_1$ for $u, v \in V$ with $u \neq v$ if and only if $|N_D^+(u) \cap N_D^+(v)| \geq m$. Which means that G_1 is the m-competition graph of D. By symmetry, G_2 is the m-common enemy graph of D and hence (G_1, G_2) is m-competition polysemic with realization D. The proof is complete.

For competition polysemy, M. Fischermann et al. [2] proved the following result.

Theorem 6 (M. Fischermann et al. [2]) Let $G = (V_G, E_G)$ be a graph. There exists a graph $H = (V_H, E_H)$ of order at most $|E_G|$ such that $(G \cup H, G \cup H)$ is competition polysemic where $G \cup H = (V_G \cup V_H, E_G \cup E_H)$ and $V_G \cap V_H = \emptyset$.

For m-competition polysemy, we have a similar result as follows.

Theorem 7 Let $G = (V_G, E_G)$ be a graph. There exists a graph $H = (V_H, E_H)$ of order at most $m|E_G|$ such that $(G \cup H, G \cup H)$ is m-competition

polysemic where $G \cup H = (V_G \cup V_H, E_G \cup E_H)$ and $V_G \cap V_H = \emptyset$.

Proof. Let $\mathscr{C}=\{C_1,C_2,\ldots,C_p\}$ be an m-edge clique cover of $G=(V_G,E_G)$ such p is the minimum. Since collection $\{m\cdot\{u,v\}:uv\in E_G\}$ $(m\cdot\{u,v\})$ denotes that $\{u,v\}$ is repeated m times in the collection) is also an m-edge clique cover of $G=(V_G,E_G)$, then $p\leq m|E_G|$. Let $D=(V_D,A_D)$ be the digraph with vertex set $V_D=V_G\cup\{v_1,v_2,\ldots,v_p\}$, where $V_G\cap\{v_1,v_2,\ldots,v_p\}=\emptyset$, and arc set $A_D=\cup_{i=1}^p\{\overrightarrow{wv_i},\overrightarrow{v_iw}:w\in C_i\}$. Let $G_1=(V_D,E_1)$ and $G_2=(V_D,E_2)$ be the m-competition graph and m-common enemy competition graph of D, respectively. Since $N_D^+(v)=N_D^-(v)$ for every vertex $v\in V_D$, we have $G_1=G_2$. For $u,v\in V_G$ with $u\neq v$ we have $uv\in E_G$ if and only if $u,v\in \cap_{j=1}^m C_{i_j}$ for some $1\leq i_1<\cdots< i_m\leq p$ if and only if $|N_D^+(u)\cap N_D^+(v)|\geq m$ if and only if $uv\in E_1$. For $u\in V_G$ and $v\in \{v_1,v_2,\ldots,v_p\}$ we have $|N_D^+(u)\cap N_D^+(v)|=\phi$ and hence $uv\notin E_1$. Let $H=(V_D\setminus V_G,E_1\setminus E_G)$. Then H has $p\leq m|E_G|$ vertices and $G_1=G_2=G\cup H$. This completes the proof.

Suppose (G_1, G_2) with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is *m*-competition polysemic with realization D = (V, A). Let D' = (V, A'), where $A' = A \cup \{\overrightarrow{vu} : \overrightarrow{uv} \in A, u \neq v\}$. Then A' = A' and the following theorem follows.

Theorem 8 If a pair (G_1, G_2) of graphs with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is m-competition polysemic, then $G = (V, E_1 \cup E_2)$ is a graph such that (G, G) is m-competition polysemic.

The following result is also easy to be proved.

Theorem 9 For $n \geq 3$ the pairs $(K_{1,n}, C_n \cup I_1)$ is m-competition polysemic for $2 \leq m \leq \lfloor \frac{n}{2} \rfloor$, where $K_{1,n}, C_n$ and I_1 denote the star of order n+1, the cycle of order n and one isolated vertex, respectively.

Proof. Let $V=\{x,v_0,v_1,\ldots,v_{n-1}\}$, denote $K_{1,n}=(V,E_1)$ and $C_n\cup I_1=(V,E_2)$ in which $E_1=\cup_{i=0}^{n-1}\{xv_i\}$ and $E_2=\cup_{i=0}^{n-2}\{v_iv_{i+1}\}\cup\{v_0v_{n-1}\}$. Then it is easy to check that $(K_{1,n},C_n\cup I_1)$ is m-competition polysemic with realization $D=(V,A_m)$ for $2\leq m\leq \lfloor\frac{n}{2}\rfloor$, where $A_m=\cup_{i=0}^{n-1}(\cup_{j=1}^m\{\overrightarrow{xv_i},\overrightarrow{v_iv_{i+j-1}}\})$ and i+j-1 is taken modulo n.

Acknowledgement

The authors are grateful to the anonymous referees for their careful comments and valuable suggestions.

References

- [1] J.E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corp., Santa Monica, CA, 1968.
- [2] M. Fischermann, W. Knoben, D. Kremer, D. Rautenbach, Competition polysemy, Discrete Math. 282 (2004) 251-255.
- [3] S.-R. Kim, T. McKee, F.R. McMorris, F.S. Roberts, p-competition graphs, Linear Algebra Appl. 217 (1995) 167-178.
- [4] J.R. Lundgren, J.S. Maybee, Food webs with interval competition graphs, in: F. Harary, J.S. Maybee (Eds.), Graphs and Applications: Proceedings of the First Colorado Symposium of Graph Theory, Wiley, New York, 1984, pp. 245-256.
- [5] F.R. McMorris, T. Zaslavsky, Bound graphs of a partially ordered set,J. Combin. Inform. System Sci. 7 (1982) 134-138.
- [6] P.J. Tanenbaum, Bound graph polysemy, Electron. J. Combin. 7 (2000) R43, 12pp.