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Abstract

We study V- and A-patterns which generalize valleys and peaks,
as well as increasing and decreasing runs, in permutations. A com-
plete classification of permutations (multi)-avoiding V- and A-patterns
of length 4 is given. We also establish a connection between restricted
permutations and matchings in the coronas of complete graphs.

Keywords: valleys and peaks, permutations, partially ordered pat-
terns, avoidance, matching, corona of a complete graph

1 Introduction

A wvalley (resp. peak) of a permutation a; - - - a, is a value of i, 2 < i < n—1,
such that a;—; > a; < a;41 (resp. @i-1 < a@; > a;41). In the literature,
valleys are sometimes called minima or local minima, and peaks are called
mazima or local mazima. Further one says that a; is a modified mazimum
if ;-1 < a; > ai41 and a modified minimum if a;_, > a; < a;y, for
i=1,...,n, where ag = ap41 = 0.

An increasing run in a permutation @ = a; - -- a, is an increasing sub-
sequence a; < @i+1 < ... < a; that is not contained in a larger such
subsequence. Decreasing runs are defined similarly. An n-permutation is
monotone if it has increasing or decreasing run of length n. We say that i is
an accent (resp. descent) in a permutation a if a; < a;4; (resp. a; > a;4q).

*Institute of Mathematics, Reykjavfk University, Ofanleiti 2, IS-103 Reykjavik, Ice-
land; E-mail: sergey@ru.is
tSobolev Institute of Mathematics, Acad. Koptyug Ave. 4, Novosibirsk 630080,

Russia; E-mail: artem@math.nsc.ru
tThe work was partially supported by grants of the Russian Foundation for Basic
Research (project code 05-01-00395) and INTAS (project code 04-77-7173)

ARS COMBINATORIA 97(2010), pp. 203-215



We call i a double rise (resp. double fall) if i — 1 and i are both accents
(resp. descents).

Before defining V- and A-patterns studied in this paper, we provide
some known results related to the objects defined above. For some other
results related to the topic of our discussion see, e. g., (7] and [9].

It is shown in [4] (problem 3.3.46(c) on page 195) that the number of
permutations in S, with i; modified minima, i modified maxima, i3 double
rises, and ¢4 double falls is
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where oy = ujug, @) + a2 = uz + ug.
The bivariate generating function for the distribution of peaks (valleys)
in permutations is obtained in [6, Cor 23]:

1.1 1
1-=+=y/ —1~tan(a:\/ —1+arctan( ))
vy yV? Y vy-1

where y is responsible for the number of peaks in a permutation and z for
the length of the permutation. This result is an analogue to a result in (3]
where the circular case of permutations is considered, that is, when the first
letter of a permutation is thought to be to the right of the last letter in
the permutation. It is shown in [3] that if M(n, k) denotes the number of
circular permutations in S, having k¥ maxima, then
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where z = /1 — .

In this paper we generalize the concepts of valleys, peaks, and increasing
and decreasing runs of given length by introducing V- and A-patterns in
permutations. We say that a factor a;_x---a;--aiye of a permutation
a;---an is an occurrence of the pattern V(k,£) (resp. A(k,£)) if ai—x >
Qicky1 > 00 > 8 < Qg <00 < Qige (resp. @i—k < Gj—g41 < - < @ >
@iy1 > -+ > Gire). As the matter of fact, V(k,¢) and A(k, £) are instances
of so called partially ordered patterns (POPs) (see [6]). Moreover, V (k, £) is
nothing else but a co-unimodal pattern introduced in [1]. A specific result
from [1] on a joint distribution that involves co-unimodal patterns can be
found in [6, Section 2.1). So, our work is a contribution into the POPs
theory. However, we do not define POPs in the paper.

If # = ajaz---ay, is an n-permutation, then the reverse of 7 is n" :=
@ -+ G201, and the complement of 7 is the permutation #° such that 7f =
n+1—a; foralli € {1,...,n}. We call 77, 7°, and (77)¢ = (7€)" trivial
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bijections. Note that V'(k,€) and A(k, £) have the same distribution (simply
use the complement operation). In particular, these patterns are equivalent
in sense of avoidance, study of which is the goal of this paper.

Our main concern is (multi-)avoidance of V'(k, £) and A(k, £) patterns of
length 4, and we give a complete classification in this case. Many patterns
or combinations of patterns to avoid are equivalent because of the trivial
bijections. This reduces significantly the number of cases to consider in
our classification. We provide in all but one cases exponential generating
functions (see Sections 2 and 3); in the remaining case we give a recurrence
relation to calculate the number of permutations in question (see Theo-
rem 6). However, in Subsection 2.2 we discuss a general approach to study
avoidance of a single pattern V(k,£) or A(k,£). Independent interest in
study V- and A-patterns arises in their connection to matchings in certain
graphs discussed in Section 4.

Throughout the paper, we call a permutation good if it avoids all the
patterns under consideration in a given subsection. Also, given any se-
quence b = b; - - - b, of distinct integers, we let the reduced form of b be the
permutation that results by replacing the i-th largest integer that appears
in b by .

2 Avoidance of V(k,?)

The case k = £ = 1 was studied in [5] where it was shown that there
are 2"~! good n-permutations. Thus, the exponential generating function
(EGF) for the number of permutations avoiding V'(1,1) is (2= + 1)/2.

In Subsection 2.1 we consider the case k¥ = 2 and ¢ = 1. The pattern
V(2,1) is a representative for the only equivalence class when avoiding a
single pattern of length 4. In Subsection 2.2 we discuss a general approach
to study avoidance of V'(k, £).

2.1 Permutations avoiding V(2,1)

The following theorem gives the EGF for the number of permutations avoid-
ing V/(2, 1) thus settling one of the problems in [6, Table 1] (see the pattern
ijkm there).

Theorem 1. The EGF A(x) for the number of permutations avoiding
V(2,1) is given by

T
14 exp (3—2:':-) sec (-\/-gf + %) / exp (—32—1‘) cos (@ + %) du.
(i}
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Ezxpanding A(z) one gets the initial values for the number of good permu-
tations: 1, 2, 6, 21, 90, 450, 2619, 171334, ....

Proof. Denote by A, the set of good permutations in this case, and by 8,
— the set of good permutations ending with an accent. Let A, = |A,| and
B,, = |B,|. Wedefine Ag=A4; =By=B; =1.

Consider an arbitrary permutation a € A,4+, where n > 1 and suppose
that a;;; = 1 for some . Let a;, and ag be the reduced forms of a; - - - a; and
@42 -+ Qny1 Tespectively. If i = n then ap = @ and ap € A,. Otherwise,
we have a valley at i+ 1 and in order to avoid V'(2,1), ay, is either of length
less than 2, or a;, must end with an accent (i. e., az € B;) while ap € An—;.
There are (7) ways to choose elements of a. Thus,

n-1
n
Apy1 = Zo (i)BiAn—i + A,. (1)
1=
Let us now find the EGF B(z) = Y _,50Bnz"/n!. Let b € B,y and
bi+1 = 1 where, clearly, i < n— 1. Define bz, and bg similarly to az, and ar
above. Then by € B; by the same reason as above and bg € B,,—; since b
must end with an accent. Therefore,

n-1 n
Buy1=Y (':) BiBni=Y, (’:) BiBn_i - Bn.

i=0 i=0
The formula above works for all n > 1. We multiply both parts of the
equation above by z"/n! and sum over all n > 1 to get

B'(z) = B¥(z) - B(z) + 1 (2)
subject to the initial condition B(0) = 1. Solution to (2) is given by
1 V3 V3z o«
B(x)—-2-+7tan(—2-+€) (3)

The initial terms of By, for n > 1 are 1, 1, 3, 9, 39, 189, 1107, ... and this
sequence is [8, A080635]. We can now solve (1):

n—1 n
Anir= 3 (7) Bitncs+ A0 = Y (7) Bittes + 40 -

i=0 i=0
Biz' Ap_iz"™*
ZAn+l_ _ZZ il (n—'l«)‘ +Z(A Bn)
n20 n>0 i=0
A'(z) = A(z)B(z) + A(z) — B(:c). (4)
The initial condition for differential equation (4) is A(0) =1 and B(z) is
given by (3). We solve this equation to get the desired formula. -0
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2.2 General approach to study avoidance of V(k,¢)

Note that the EGF's for the number of permutations avoiding V'(k,£) for
arbitrary k£ and £ can be found by a similar way to that we proceed with
V(2,1). However, the larger k and ¢ become, more and more functions get
involved in the recurrences, and therefore the systems of differential equa-
tions in question are harder and harder to solve. So, when illustrating the
general approach, we will only construct the recurrences for the number of
good permutations. These recurrences can be easily turned to differential
equations involving EGF's.

Example 1. In order to increase k, we have to consider not only the
set of good permutations ending with an accent, but also the set of good
permutations having the rightmost accent in position n — i for all ¢ =
1,...,k — 1. Let us construct the recurrences for the case £k = 3. Let
An be the set of good permutations (i. e., permutations avoiding V(3,1)),
B, be the set of good permutations ending with an accent, and C, be
the set of good permutations with the last accent at position n — 2 (i. e.,
Cn-2 < Cp1 > Cp). Let A, = |A,|, By = |By,|, and C, = |C,|. Clearly
Ao =A; =1, Ay =2, and B, = 1. Also, we define By = B; =C; =1
and Cp = C; = 0. We choose the initial values for B, and C, in such a
way that C, N B, =0 for all n and C, U B, = A, for n < 2. In particular,
C, = {21}. Now consider n > 2.

Let @ € Ap4+1 and ;41 = 1. If i = n then ay € A,,. Otherwise, in order
to avoid V(3,1) we must require that a;_; is not a double fall. This means
that az € B; or ay € C; while ap € A,_;. We have

n—1
Anpr1 = Z <7:) (Bi + Ci)An—i + An. (5)
=0
If b € B4y and b4 = 1 then ¢ < n — 1. Analogously, we get a recurrence

for B4t
n-1

n
Brn=3 (i)(B* +Ci)Ba_s. ®)
IfceChy1 and ¢4 =1 then i #n—1. If i = n then ¢z, must end with an
accent, so ¢g, € B,. The case i < n—1 is dealt similarly as above. We have

n-2
Cn+1 = z: (1:) (Bn + Ci)cn—t' + Bn- (7)

=0
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Example 2. In order to increase £ we have to consider not only the set
of good permutations having the rightmost accent in position n — ¢ for
all i = 1,...,k — 1, but also the set of good permutations having the
leftmost descent in position j for all j =1,...,¢ — 1, and all their mutual
combinations. Thus, in case k = £ = 2 we need four sets:

A, — the set of good (avoiding V'(2,2)) permutations;

B,, — the set of good permutations starting with a descent;

C, — the set of good permutations ending with an accent;

D,, — the set of good permutations starting with a descent and ending
with an accent.

Again, we define A, = |Ap|, Bn = |Bnl|,Cn = [Cn|, and Dy, = |Dy|. Let
alsoA.-=B,~=C;=D; =1 fOl‘i=0,1.

Consider a € A4 with a;4; =1 for some n > 1. If a; ends with an
accent (i. e., ar € C;) then ap may be an arbitrary good permutation of
length n — i. Otherwise, agr must start with a descent in order to avoid

V(2,2). So,

n

toi =3 (1) Gt A= COBic. ®)

i=0

Let b € Bpy1 and b;y1 = 1 where clearly ¢ # 0. Then either b; ends with
an accent (this is equivalent to by € D;) and bg € An_; or by € B;\ D;
and bg starts with a descent (i. e., bp € Bn—i). We have

n

Bpy1= E (T:) (DiAn-i + (Bi — Di)Bn—;). 9)

i=1

The recurrences for Cp 41 and Dy are obtained in a similar way. Omitting
the details, we provide the following formulae:

n—1

Cn+1 = Z (1:) (C,;Cn-i + (Ai - Ci)Dn—i)- (10)
=0
n-—1 n

Dasr = 3 (})(DiCani + (Bi= DODn-) (11)

=1

3 Avoidance of V- and A-patterns of length 4

A permutation mma ... %y is alternating (resp., reverse alternating) if my >
Mg <73 >+ (resp., m <mp >y <---). Itis well known that the EGF
for the number of (reverse) alternating permutations is E(z) = tanz+secz.
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Let E, denote the number of (reverse) alternating n-permutations; E,, are
~ known as Euler (zigzag) numbers.

If we prohibit all four V- and A-patterns of length 4 (V(1,2), V(2,1),
A(1,2), and A(2,1)), then a good permutation is nothing else but either
monotone or alternating or reverse alternating permutation. Thus the EGF
for the number of good permutations in this case is given by

2(tanz + secz) + 2¢* — 2% — 3z — 3.

In Subsections 3.1 and 3.2 we consider avoidance of three or two patterns
of length 4 respectively.

3.1 Avoidance of three patterns

In this subsection we study simultaneous avoidance of V'(1,2), V(2,1), and
A(1,2). All other combinations of three patterns are equivalent to this one
due to the trivial bijections..

Theorem 2. The EGF A(z) for the number of permutations avoiding si-
multaneously the patterns V(1,2), V(2,1), and A(1,2) is given by

%(e” + (tanz + secz)(e” + 1) — (1 + 2z + z?)).

The initial values in question are 1,2,6,15,47,178, 791, 4025, 23057, ....

Proof. One can easily see that any good permutation 7 = a; - - - a,, is either
the monotone decreasing permutation n(n —1)---1 or it has the following
structure: 7 starts with an increasing run of length i, 1 < i < n (fol-
lowed by a descent a; > a;41) and @i41 -+ a, forms a reverse alternating
permutation.

Suppose Af denotes the number of good n-permutations starting with
the increasing run of length 7. Let A, denote the number of (all) good
permutations. Then Ap = A; = 1, A2 = 2, A3 = 6, and for n > 3,
An =1+ 7, A%, where 1 is responsible for the decreasing permutation.

Clearly, AL = A2 = E,, A»! =n—1and A" = 1. Moreover, for
1<i<n-—2andn >3, we have

Al = (’:) En_; — A2,

Indeed, we can choose the first ¢ letters for the increasing run in ("‘) ways
and there are E,_; ways to choose a reverse alternating permutation on
the remaining n — ¢ letters. However, we do not necessarily have a descent
in position i after that. If not, then we get a permutation counted by A+2,
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So, we subtract Ait? since all the good n-permutations starting with the
increasing run of length i + 2 can be obtained in this way.
Summing over ¢ from 1 to n — 2 both parts of the formula above, one
gets .
n-2 n n—2 . n .
> (D)
i=1 i=1 i=3

Thus

n—2 n
24n =) (’;)En_i+2+Ag‘1 +AR+AL+AZ =) (?)En—i'i'En‘l'l-

i=1 i=0

We used Ep = E; =1 above. We now multiply both parts of the equation
above by 2" /n! and sum over all n > 3 to get

2A(z)-1-z—2%) = (E'(:l:)e‘°—1—23:—2:1:2)+(E(:z:)—1—3:—%2-).;.(3z _1_2;_222_),

which leads to the desired formula. a

3.2 Avoidance of two patterns

There are three classes of equivalence in case of avoidance of two patterns.
We choose the following representatives for the classes: V'(1,2) and A(1,2),
V(1,2) and A(2,1), and V(1,2) and V(2,1).

3.2.1 Avoidance of V(1,2) and A(1,2) simultaneously.

One can see that a good permutation in this case belongs to one of the
following classes. We say that a permutation belongs to the first class if it
starts with an increasing run followed by a reverse alternating permutation
(possibly of the empty length). If a permutation starts with a decreasing
run followed by an alternating permutation (possibly of the empty length)
then it belongs to the second class. Note that reverse alternating and
alternating permutations belong to both of these classes at the same time.

If we remove alternating and reverse alternating permutations from the
classes then the complement operation sets a natural bijection between the
sets of remaining good permutations in these classes. Moreover, we have
already counted the number of permutations of the first class in Theorem 2.
Thus, the EGF in our case is 2(A(z) — € — E(z)) + 3 + 3z + 2. Here,
A(z) is given by Theorem 2; subtracting e® corresponds to not counting
the decreasing permutation; subtracting E(z) corresponds to not counting
the alternating and the reverse alternating permutations twice; adding 3 +
3z + z2 corresponds to adjusting the initial values for n < 2 since the fact
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that the number of good n-permutations is given by 2(4, — 1 — E.), where
A, is as in Theorem 2, works only for n > 3.
We have just proved the following

Theorem 3. The EGF A(xz) for the number of permutations avoiding si-
multaneously the patterns V(1,2) and A(1,2) is given by

1+ z+ (tanz +secz — 1)(e” - 1).
The initial values in question are 1,2,6, 18, 60, 232, 1036, 5278, 30240, ....

3.2.2 Avoidance of V(1,2) and A(2,1) simultaneously.

If a good permutation has a double rise then it cannot have any peak
or valley. So, it must be a monotone increasing permutation. On the
other hand, any permutation without double rises clearly avoids V(1,2)
and A(2,1). The number of permutations without double rises is given by
the following theorem, proved in [2).

Proposition 4. The EGF for the number of permutations with no double

rises is given by
V3 T V3 T
- exp (5) sec 5 T+ 8/

Using this result and adjusting the values for n < 2, we get the following
corollary.

Corollary 5. The EGF A(z) for the number of permutations avoiding
simultaneously the patterns V(1,2) and A(2,1) is given by

V3 T v3 o« z z?
Texp(i)sec Tz+§ +e —<1+x+7).

The initial values in question are 1,2,6,18,71, 350, 2018, 13359, 99378, ....

3.2.3 Avoidance of V(1,2) and V(2,1) simultaneously.

It is easy to see that any good permutation has the shape similar to that in
Figure 1. That is, a good permutation consists of three blocks (the second
of them may be empty): it begins with an increasing run followed by a
reverse alternating factor of odd length, and it ends with a decreasing run.

We let A7'; denote the number of good permutations having the initial
increasing run of length ¢ and the final decreasing run of length j. For
example, the permutation corresponding to the shape in Figure 1 would be
counted by A3%. By definition,  and j are non-zero. Also, if the reverse-
alternating block is empty, then 7 + j = n + 1 since the peak element is
counted twice in this case.
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Figure 1: The shape of a permutation avoiding V(1,2) and V/(2,1).

Theorem 6. The number of n-permutations avoiding V(1,2) and V(2,1)
stmultaneously is given by

n—i+1

Z > Aiy
t=1 J—l
n—1i—7 is odd
with
(i21) ifn2ix1 a;zd
n—i—j=-1,
Al = n\ (n— n— n— . . X
4 M -G -3 -G fn—i-j=1,

() (n_ ) En—ij Az+2,_1 Aljya— Alyzjee Fn—i—j23isodd

where recall that E, is the number of alternating permutations. The initial
values for A, are given by 1,2,6,18,66,252,1176, 5768, 34216, ....

Proof. Suppose a good permutation a; - - - a, has the initial increasing run
of length ¢ and the final decreasing run of length j. In particular, we have
a; > ai+1 and aj—1 < a;. Since the reverse-alternating block must end with
a descent, it is of odd length. Hence, n — i — j must be odd. Using the
structure of good permutations, we distinguish three cases:

1. The reverse-alternating block is empty, that is, i+j = n+1. The ele-
ment 7 is both in the increasing and decreasmg runs, so we choose the
remaining elements of the increasing run in (7-]) ways and (uniquely)
order all the elements in the permutation.

2. The reverse-alternating block contains one element, that is, n—i—j =
1. We use an inclusion-exclusion argument to count A7; in this case.

We claim that

n\ fn—i
Al = (,) ( j ) = A1+ — Az — Aljee

212



where A%, ) 11, ATy ; and A%, can be found using Case 1. Indeed,

) (" *} is the number of ways to choose elements in the increasing
run, and then in the decreasing run. The remaining element then goes
into the reverse-alternating block. However, some of the permutations
we count are “bad.” They are those where either a; < ajy1, Or G5y >
aj, or both. The number of bad permutations corresponding to these
cases is given by A7y, ;, A%, 5 and A2, .., respectively.

3. The reverse-alternating block contains more than 2 elements, that is,
n—i—j > 3 and n—i—j is odd. We use the same considerations as in
Case 2. Namely, we choose elements in the increasing and decreasing
blocks to get (7)(";°)En-i-; permutations, and then we subtract
Altajy Aljpo and A’_,_2 +2 corresponding to the bad overcounted
permutations where either a; < a;41, or aj_; > a;, or both.

O

4 Restricted permutations and matchings in
the coronas of complete graphs

It is always interesting to establish a connection between restricted per-
mutations and other combinatorial objects. Such connections are not only
interesting from finding a bijection point of view, but also, they sometimes
allow enumerating certain statistics.

There are many combinatorial objects that appear in the literature
in connection with restricted permutation (Catalan numbers, Dyck paths,
Motzkin paths, involutions, two-dimensional faces in a unit cube, etc) and
our example below contributes yet another connection. However, this con-
nection beyond involving a V-pattern involves the consecutive pattern 213.
One says that a;a;;1ai42 is an occurrence of the consecutive pattern 213
in a permutation a; - - - ap, if as41 < a; < @i4s.

Let K, denote the corona of the complete graph K, (it is the graph
constructed from K, by adding for each vertex v a new vertex v’ and the
edge vv'). Let M, denote the number of matchings in K7, including the
empty one. For example, M3 = 14 because K} has one empty matching, six
matchings with one edge, six matchings of cardinality two and one matching
containing three edges. Sequence M,, appears as [8, A005425].

Theorem 7. The set of (n + 1)-permutations avoiding simultaneously the
patterns 213 and V(1,2) is in one-to-one correspondence with the set of all
matchings of K.
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Proof. To describe a recursive bijection between the objects under consid-
eration, we note that the good permutations involved can be calculated
using the recurrence A1 = 24n + (n — 1)Ap—_1, and the matchings can
be calculated using M,, = 2M,_1 + (n — 1)M,_2. We now explain where
the recurrences come from and then provide a bijective map.

One can see that, in & good (n + 1)-permutation, the elements of the
permutation to the left of (n + 1) must be in increasing order. Moreover, if
n+1 occupies position i, then n is either in the position i—1, or i+1, or i+2.
In the first two cases we can safely remove n + 1 to get an n-permutation
which is good (basically we can identify » and n + 1 together and denote
this new letter by n). In the third case above, we choose a letter between
n+1and n in n — 1 ways, and then identify these three letters denoting
the resulting letter n — 1 to get a good (n — 1)-permutation. We may do
this since the letters n + 1 and n are the largest letters in the permutation.
So, Apy1 = 24, + (n - l)An_l.

To see that the same recurrence works for K},, we mark the vertices of
K, by 1,2,...,n and the other vertices adjacent to them by 1’, 2. re-
spectively. Let us count the number of matchings in K! . Clearly, there are
M,,_, matchings that do not involve n, My, matchings involving the edge
nn' and M,,_o matchings involving the edge ni for every i € {1,2,...,n—1}.
Hence, M, = 2M,_1 + (n — 1) Mp_2.

It is easy now to describe a recursive bijective map. If the node n is not
involved in a matching of K, then the good permutation corresponding to
this matching contains (n+ 1)n (n stays next to the right of (n+1)). If the
edge nn' is involved in a matching then the permutation contains n(n + 1)
(n stays next to the left of (n + 1)). Finally, if the edge n¢ is involved in a
matching then the good permutation contains the segment (n+1)in. Then
we proceed by induction. The reverse to this map is easily seeing.

For example, the matching {11’,22',33',44'} corresponds to the permu-
tation 12345, whereas the matching {13,22'} corresponds to the permuta-
tion 25413. (]

We now get the following corollary to Theorem 7.

Corollary 8. The EGF for the number of permutations avoiding the pat-
terns 213 and V(1,2) is given by

Alg) =1+ / 2T gt
0

The initial values in question are 1,2,5,14, 43,142,499, 1850,7193, ....

Proof. One can either use the EGF for the matchings which is known ([8,
A005425], observe the shift coursing appearance of the integral sign), or to
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derive the EGF from the recurrence for the number of good permutations
given in the proof of Theorem 7. a
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