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Abstract

The Zagreb indices are topological indices of graphs, which de-
fined as, Mi(G) = Y. (d(v))?, M2(G) = 3> (dw)d(v)). In
veV(G) uv€ B(G)
this paper, we determine the upper and lower bounds for the Zagreb
indices of unicyclic graphs in terms of their order and girth. In each
case, we characterize the extremal graphs.

1 Introduction

We denote by G a graph of order n = [V(G)| and size m = | E(G)|. For any
v € V, N(v) denotes the neighbors of v, and d(v) = |N(v)] is the degree
of v. A leaf is a vertex of degree one and a stem is a vertex adjacent to
at least one leaf. The stems and their corresponding leaves consist of the
pendent edges of the graph. The girth of a graph G is the length of the
shortest cycle in G. Let E' C E(G), we denote by G — E’ the subgraph
of G obtained by deleting the edges of E'. W C V(G), G — W denotes
the subgraph of G obtained by deleting the vertices of W and the edges
incident with them. The Zagreb indices of G were introduced more than 30
years ago [1], they were given by different names in the literatures, such as
the Zagreb group indices, the Zagreb group parameters, and most often the
Zagreb indices. In the early work of the Zagreb Mathematical Chemistry
Group on the topological basis of the m-electron energy, two terms appeared
in the topological formula for the total m-energy of conjugated molecules
[1,12], where the first used as branching indices and later as topological
indices in QSPR / QSAR studies [3]. The original Zagreb indices, which

defined as
My(G)= ) (dv)y?, (1)
veEV(G)
MyG)= Y (d(u)d(v)) 2)
uv€E E(G)
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Recently, the Zagreb indices and their variants have been used to study
molecular complexity,chirality, ZE-isomerism and heterosystems in [4]. The
Zagreb indices are referred to in most books reporting topological indices
and their uses in QSPR and QSAR. The research background of Zagreb
indices together their generalization appears in chemistry or mathematical
chemistry and can be found in the literatures [5-18].

A graph is called unicyclic if it is connected and contains exactly one
cycle, a graph is unicyclic if and only if it is connected and has size equal to
its order. In this paper, we investigate the unicyclic graph with the largest,
the second largest and the smallest Zagreb indices, and the corresponding
extremal unicyclic graphs achieve the bounds also been characterized.

2 Preliminaries

For convenience of our discussion, we first need to introduce two transfor-
mations.

Transformation A: Let u;v be an edge G, Ng(v) is the neighborhood
of v and Ng(v) — {wi} = {v1,v2,--+,v}, Go = G — Ng[v] + ui. G =
G — {vv1,vv2,- ++,vv,} + {uiv1, usve, - -, %Us}, as shown in Figure 1.

Figure 1. Transformation A

Lemma 2.1. Let G’ is obtained from G by transformation A, then
Mi(G') > Mi(G)(i = 1,2).

Proof. From Figure 1, we let d(ui—1) = p, d(w) = g, d(uis1) =7
(g > 3) in G, and d(ui—1) = p, d(u;) = ¢+ 8, d(uiy1) =7, in G'. By the
definition of the Zagreb indices, we have

Ay = My(G)-My(C)
= @+(s+1) - (s+q* -1
= 2s(1-9q)

Ay = My(G) - My(G)

(@+8)(s+1)+alp+7)—(s+1)(g+s) - (p+7)(g+59)
= —s(p+7)

Therefore A; < 0, Ay < 0.

So the proof is completed.
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Remark: Repeating transformation A, any unicyclic graph can be
changed into an unicyclic graph such that all the edges not on the cycle
are pendent edges, and the Zagreb indices increase.

Transformation B: Let u and v be two vertices in G. u;,us, - - -, u, are
the leaves adjacent to u, vy, vy, - - -, v; are the leaves adjacent tov. G/ = G—
{uwy, vug, -+ un,} + {vug, vug, -+, vu.}, G = G — {vvy,vve,- -, v} +
{uvy,uv3,- -, uw}. wui_1, uis;1 be the adjacent vertices of u in Gp, and

Vi-1, Vi+1 be the adjacent vertices of v in Gy, as shown in Figure 2.

Figure 2. Transformation B.

Lemma 2.2. Let the graphs G’ and G” are obtained by transforma-
tion B on G as shown in Figure 2, then M;(G’) > M;(G), or M;(G") >
Mi(G)(i = 1,2).

Proof. From Figure 2, we let:

d(ui-1) = a, d(u) = b+ s, d(uit1) = ¢, d(vi—1) = d, d(v) = e + ¢,
d(viy1) = fin G;

d(ui-1) = a, d(u) = b, d(uiy1) = ¢, d(vi—1) = d, d(v) = e+ s +¢,
d(v.-+1) = f in G’;

d(ui-l) = a, d(u) =b+s+ t, d(’“i-{-l) =6 d(vt'—l) = ds d(’U) =€,
d(viy1) =fin G”.

(1) By the definition of the Zagreb indices, we have

Ay = M(G') - Mi(G)
= (e+s+t)2+b2—(b+3s)?—(e+1)?
= 2s(e+t-b)

A My(G") - My(G)

(b+s+t)2+e®—(b+s)?—(e+1)?
2t(b+s—e)
IfA, < 0, such that b > e +¢, then A3 > 2t(s+¢t) > 0.
(2) Let d(u,v) = k, there are three cases about M,(G)
Subcase I: k > 3
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A

Ay

M3(G') — M2(G)
ab+be+dle+s+t)+flets+t)+(s+t)e+s+t)
—[a(d+s) +c(b+s) +s(b+s) +d(e+1t)+ f(e+1t) +t(e +1)]
s[(d+e+ f)—(a+b+c) +2st

M3(G") — M2(G)
alb+s+t)+clb+s+t)+(s+t)(b+s+t)+de+ef
—[a(b+8) +c(b+3) + s(b+s) +d(e+t) + f(e+t) + t{e +1)]
tlla+b+c)—(d+e+f)) +2st

IfA3<0 thend+e+ f<a+b+c—2t, thusA4>2t2+2st>0
Subcase II: k = 2,that’s ui41 = v;-1 = w, let d(w) =

Ag

Aq

M(G') — M2(G)
ab+bg+eg+gle+s+t)+(s+t)e+s+t)+ flet+s+t)
—la(b+s)+g(b+3) +s(b+s)+gle+t)+tle+t)+ fle+t)]
sl(e+ f) — (a+ b)) + 2st

M,(G") — M2(G)
alb+s+t)+glb+s+t)+(s+t)(b+s+t)+ge+ef
—[a(d+ 8) + g(b+ s) + s(b+ s) + gle +t) + t(e + t) + f(e + 1))
tl(a+b) — (e + f)] + 2st

IfA3<O then e+ f < a+b+ c—2t, thus A4 > 2t 4 2st > 0.
Subcase III: k = 1, that’s u, v are adjacent

A

A

Mg(G’)—Mz(G)
ab+ble+s+t)+(s+t)e+s+t)+ fle+s+t)
—~[a(b+s)+s(b+3)+ (b+s)(e+t)+t(e+t)+ fle+1)]
sft+ f —q

M3(G") — M3(G)
alb+s+t)+elb+s+t)+(s+t)(b+s+t)+ef
—[-[a(b+s)]+s(b+s)+(b+s)(e+t)+t(e+t)+f(e+t)]
tla+s—f

If A3 <0, then a <t+ f, thus Ay > t?+st>0.
All these cases showed that(i) M(G') > Mi(G), or M1(G") > M1(G);

(ii) Ma(G") > My(G), or M(G") > Ma(G).

The proof of Lemma 2.2 is completed.
Remark:Repeating transformation B, any unicyclic graph can be changed

into an unicyclic graph such that all the pendent edges are attached to the
same vertex of the cycle, and the Zagreb indices increase.

3 Extremal Zagreb indices of unicyclic graphs

Theorem 8.1. Let G be an arbitrary unicyclic graph of girth k(k > 3),
then

M;i(G) < Mi(Hnk)(i=1,2).
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The equalities hold if and only if G & H, x, where H, ; denote the unicyclic
graph constructed by attaching n—k leaves to one vertex on a cycle of length
k as shown in Figure 3(a).

"
n,3

(e)

Figure.3

Proof. For G be an arbitrary unicyclic graph of the cycle length k,
after many times transformation A on G, the graph G can be changed into
G, in which the edges not on the cycle Cy are attached to the vertex of
the cycle, and (i) M1(G) < My(G'); (ii) M2(G) < M2(G'). Then repeating
the transformations B on graph G’, we can get a graph G” such that all
the pendant edges attached to the same vertex v. G” 2 H,, i, and we have
(i) My(G") < My(Hn); (ii) M2(G') < Ma(H, x). At last, we will get (1)
My(G) < My(Hn); (ii) Ma(G) < My(Hny).

The proof is completed.

Theorem 3.2. Let H, x(k—1 > 3) be the graph described above, then
Mi(Hp k) < Mi(Hpk-1)(E = 1,2).

Proof.From above proof and the definition of Zagreb indices, we have

A1 = Mi(Hpx)— My(Hpg-1)
= (k) +(n—k+2)2+22— (n—k+1)— (n—k+3)2
= =2(n—-k)-2<0
Ay = My(Hpi) — Ma(Hpx-1)
= (n—k)n—k+2)+4n—k+2)+4—(n—k+1)(n—k+3)
—4(n—-k+3)
= —2n—k)-3<0

Therefore, Ml(Hn,k) < Ml(Hn,k—l), Mz(H,.'k) < Mz(Hn,k_l)
So the proof is completed.
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Note that by the definition of the Zagreb indices, we can calculate the
Zagreb indices of Hy 3 as following

Ml(Hn,3) = n2 -n+ 6: MZ(Hn,3) = n2 +3

Theorem 3.3. Let G be an arbitrary unicyclic graph with n vertices,
then

(i) M1(G) £ n? —n +6; (i) M2(G) < n? +3,

the equalities hold if and only if G & Hy 3. (see Figure 3(b));

(iif) M1(G) 2 4n; (iv) M2(G) 2 4n,

the equalities hold if and only if G = C,.

Proof. By theorem 3.2 (i), (ii)can be easily proved. We will prove (iii),
(iv) in the following.

Let G be an arbitrary unicyclic graph and G ¥ C,, then the cycle
length of G must less than n, let C denote the cycle. There must be a
vertex %, such that d(:) > 3, and there is a tree T; located at i, repeating
transformation A and B on G, G can be changed into the graph G’, where
the tree T; is changed into the path, let Py denote the path, and by Lemma
2.1 and 2.2, we have M,(G’) < M;(G),M2(G’) < M2(G). Let vi be the
endpoint of Py, then d(vi) = 1. The vertex j be the adjacent vertex of ¢ in
the cycle, such that ij € E(C), define G” = G’ — {45} + {jux}, the graph
G" has order n and is unicyclic. By the definition of the Zagreb indices,
we have

My (G") - My(G')
= (d(s)-1)2+2%—-(d()*-1
= -2d(i)+4<0

Let z be the adjacent vertex of i in C, y be the adjacent vertex of v
in Py, and d(z) =a

My(G") - My(G')
= 2d(5) + 4 + a(d(¢) — 1) — d(3)d(j) — ad(i) — 2
= (2-d(@))d(y)+2—-a<0

Therefore M1(G") < M1(G'), Ma(G") < M2(G’), that’s to say G has
smaller Zagreb indices than G’.

Repeating above proof, at last the graph G is changed into Cp,.

So the proof is completed.

Theorem 3.4. Let G be an arbitrary unicyclic graph with n vertices.
If G % Hy 3, then

(i) My(G) < n? — 3n + 14, the equality holds if and only if G = Hy 5;

(ii) M2(G) < n® — n+ 17, the equality holds if and only if G = Hy 5.

Proof.Let C), = v1v9v3 - - - U1, if k = 5, then it follows from the proof
of Theorem 3.2 that M(G) < M;(H,4) = n? — 3n + 12. Hence we may
suppose k < 4

If k = 4, then by Theorem 3.3

My(G) < My(Hna) =n® — 30+ 12, Mp(G) € Ma(Hn4) =n® —2n+8
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and equalities hold if and only if G & H, 4.

Now suppose k = 3. That’s Ci = v1vav3v;, the assumption G ¥ H, 3,
implies that the pendent edges not all connected to one vertex of Cs. Now,
it suffice to consider the following cases.

(1)d(v1) = 3, d(v2) = d(v3) = 2. In this case, G ¥ H, 3, repeating
transformation A and B on G, then G can be changed the graph G’, where
G' = H, 3(see Figure 3(c)). By Lemma 2 1 and 2 2, we have M;(G) <
M\ (H,, 3) = n? — 3n + 12;M5(G) < M(H,, 3) = n? — n + 4 and equalities
hold if and only if G = HJ, 4

(2)d(v1),d(v) > 3, d(vs) = 2. In this case,G % H, s, repeating trans-
formation A on G, then G can be changed the graph H 2 '3(see Figure 3(e)),
where d(v1) = s1,d(v2) = s2(81,82 2> 1), and s; + s, = n — 3, for simple
we denote H;'s by G'(see figure 3(e)). For G’ # H, 3, we apply transfor-
mation B on G” then G’ can be changed into the graph G” = Hy 5(see
Figure 3(d)). By Lemma 2.2, we have M1(G) < My(H}) 3) = n? - 3n+ 14
M(G) < My(H! 3) = n®—n+7 and equalities hold if and only if G = n3

(3)d(v1), d(’Uz) d(v3) 2> 3. This case is similar to case (2).

Compare all the cases, we know H} ; has the second maximal Zagreb
indices among all the graphs G, which G ¥ H,, 3.

So the proof of theorem is completed.
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