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Abstract
Given a simple connected undirected graph G, the Wiener index
W(G) of G is defined as half the sum of the distances over all pairs
of vertices of G. In practice, G corresponds to what is known as the
molecular graph of an organic compound. We obtain a sharp lower
bound for W(G) of an arbitrary graph in terms of the order, size and
diameter of G.

1 Introduction

Let G = (V(G), E(G)) be a simple connected undirected graph with
[V(G)| = n and |E(G)| = m. Given any two vertices u, v of G, let d(u, v)
denote the distance (= the number of edges in a shortest path) between u
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and v. The Wiener index W(G) of the graph G is defined by

W) =5 3 dw ),

u,veV(G)

where the summation is over all possible pairs u, v € V(G). Our notation
and terminology are as in [1].

The Wiener index is one of the oldest molecular-graph-based structure-
descriptors, first proposed by the chemist Harold Wiener [8] as an aid to de-
termine the boiling point of paraffins. In the calculation of graph-theoretic
descriptors, an organic chemical molecule is modeled as a graph, where
atoms are represented by vertices and covalent bonds by edges (double and
triple bonds, if any, are treated as single edges unless specifically mentioned
otherwise). It is now recognized that there are good correlations between
W(G) and a variety of physico-chemical properties (such as boiling point,
heat of evaporation, heat of formation, surface tension, vapor pressure, par-
tition coefficients etc.) of organic compounds representing G. Wiener index
is currently a widely used topological index (see, for example, [9]) and has
applications in modern drug design [5]. For more information about Wiener
index in chemistry and in mathematics, see [6], [2] and [3].

In this paper, for any graph G, we obtain a sharp lower bound for W(G)
in terms of the order, size and diameter of G.

2 Lower bound for W(G)

Let S3(G) be the set of all 2-subsets of V(G) (that is, the set of all unordered
pairs of distinct vertices of G). We can then equivalently define W(G) as

W)= ). dv) (1)

{u.v}€52(G)

Let P = uguy ...uq be a diametral path of G, so that d(uo,uq) = d, the
diameter of G. We partition S3(G) into disjoint sets X,Y and Z defined
as follows:

X = {{u,v} € S2(G)| both u,v € P},
Y = {{u,v} € S2(G)| none of v and visin P}, and
Z = {{u,v} € S2(G)| one of u and v alone is in P}.

It follows that

_ (n_d_l)z(n—d—2); 1Z| = (n—d—1)(d+1).

dd+1
x| = 22ED, )
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From (1), we have

W)= > (2+(dwv)-2)
{u,v}€52(G)
= > 24+ > (duv)-2) @)
{u,v}€S2(G) {u,v}€S52(G)
=nn-1)+ Y ([duwv)-2+ > (du,v)-2)

{u,v}€852(G) {u,v}€S2(G)
d(u,v)=1 d(u, v)>2

(since |S2(G)| = n(n —1)/2)
=(n(n-1)—m) + Z (d(u, v) - 2)

{uu U}Esz (G)
d(u,v)>2

2(mr-1)-m)+ Y. (du,v)-2). (3)

{u,v}eXUZ
d(u,v)>2

For 0 < k < (d—1) in X, there are (d—k) pairs {u, v} with d(u, v) = 1+&.
Hence
> (dw,v)=2) =(d-2)1+(d-3)2+---+1(d—2)

{u,v}eX
d(u,v)>2

_d(d-1)(d-2)

We next obtain a lower bound for the summation term on the right hand
side of equation (3). We first assume that d > 5. Fix one vertex w in
V(G) \ V(P), where V(P) is the set of vertices of P. Then, by triangle
inequality, we have

d(ui, w) + d(w, ug—s) 2 d(ui, ua—i) = d — 2i, (5

for 0<i<(d-3)/2.
Therefore, for each of the (n — d — 1) choices of w, we have
> (dwi, w)-2)
d(ui,w)22
L1472

d
2> (dus, w)~2) 2 Y (dlw, w) + d(ug—i, w) —4)  (6)

i=0 i=o
L452)

2 ) (d-2i-4). (7)

i=o
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Since each summand on the right side of (6) is nonnegative, so is each
summand on the right side of (7). Hence the term on the right side of (6)
is
(d—4)+(d—6)+---+5+3+1 ifdisodd, and
(d—4)+(d—-6)+---+2 ifdiseven.

(“'3)2 if d is odd, and
@‘—21@—'5)- if d is even.

Thus, for each fixed w € V(G) \ V(P) we have

(45%)? ifdis odd, and
dlu, w) —2) =4 {,2
(u%):ez( (o) =2 {'@—%ﬂ if d is even.

In conclusion, for d > 5, we have

w(C (n(n—1)—m+ d(d'l)(d_2) gL =3°  ifnis odd,
(G) 2 (n(n —1) —m) + d(d—l)(d—2) 4+ (pmd-DUEDE=9) i 1 is even,

We now consider the cases whend =2, 3 and 4. If d = 2, d(u, v) = 1or 2.
Hence from (2), we get

W) =n(n-1)+ Y (1-2)

d(u,v)=1
=n(n-1)-m. (8)

Now consider the case when d = 3. Then d(u, v) =1,2 or 3. Hence from (2)
we get

W(G)=nn-1)—m+ Z (d(u, v) - 2)
d(u,v)=3

Zn(’ﬂ—l)—m+1a

dd-1)d-2) _,

as there is at least one pair with d(u, v) = 3. If d = 3, 5

Hence we have

L dd-1)@-2)

W(G) 2n(n-1) - 6
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Finally if d = 4, we have

WG 2n(n-1)-m+ > (d(u,v)-2)
d(u, v)=3

+ Y (d(w,v)-2)
d(u,v)=4
2nn-1)-m+2+2.
(since d(uo, uq) = d = 4, d(up, uz) = 2 = d(u1, u4))
Hence

Ldd-1E-2)

W(@G)2n(n-1)- 5
(as 2=1E=2) _ 4 in this case.)

To conclude, we have proved the following result:

Theorem 1:
If G is any graph of order n, size (= number of edges) m, and d > 2, then
WG > n(n —1) — m + 4= :('1—2) + L'd'l)(d's)z if n is odd.
@)z nn—1)—m+ dd-1 (d L) (“'d'l)(d‘z)(d"‘) if n is even.
(9)
Remark 1:

Let the maximum degree of G be A. The Moore bound (see for example [7])
gives an upper bound for n in terms of A and the diameter d:

(A-1é-1 .

2d+1 ifA=2

From (10), a lower bound for d in terms of n and A can be obtained and if
this is used in (9), a lower bound for W(G) can be obtained in terms of n,
m and A.

Remark 2:
If G is planar and if d is known to be bounded by a constant then we can

compute the exact value of d in time O(n) as shown in [4]. In turn, this
implies that the lower bound on W(G) in (9) can be computed in time O(n)
if G is planar.

We observe that the lower bound given in Theorem 1 is sharp. The
graph C30 K, and the Petersen graph attain the bound. It is easy to
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check that the lower bound is also attained for the following families of
graphs G:

1. G is a path.

2. G is a star with even number of vertices.

3. For any even d, take G to be the graph of Fig. 1.
4. For any odd d, take G to be the graph of Fig. 2

w  w Uiz ug Uy g

Figure 1: A family of graphs with d specified as even.

w W Uap Uep Uap ua

Figure 2: A family of graphs with d specified as odd.
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