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Abstract. Let Py, denote a path of length k& and let Cj
denote a cycle of length k. As usual K,, denotes the complete
graph on n vertices. In this paper we investigate decompositions
of K, into paths and cycles, and give some necessary and/or
sufficient conditions for such a decomposition to exist. Besides,
we obtain a necessary and sufficient condition for decomposing
K., into p copies of Ps and ¢ copies of C; for all possible values
of p>0and ¢ >0.
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1 Introduction

All graphs considered here are finite and undirected, unless otherwise noted.
For the standard graph-theoretic terminology the reader is referred to [11].

As usual K, denotes the complete graph on n vertices and K, » de-
notes the complete bipartite graph with parts of sizes m and n. Let Pyy,
denote a path of length k& and let Ci denote a cycle of length k. Let
L ={H,,H,,...,H.} be a family of subgraphs of G. An L-decomposition
of G is an edge-disjoint decomposition of G into positive integer a; copies
of H;, where i € {1,2,...,7}. Furthermore, if each H; (i € {1,2,...,7})
is isomorphic to a graph H, we say that G has an H-decomposition. It
is easily seen that Y, oze(H;) = e(G) is one of the obvious necessary
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conditions for the existence of a {Hj, Ha, ..., H, }-decomposition of G. For
convenience, we call the equation, Y ;_, cie(H;) = e(G), a necessary sum
condition. The problem of L-decompositions of AK,, is the well-known
Alspach’s conjecture [7] when L is any set of cycles of length at most n sat-
isfying the necessary sum condition and 2|A\(n —1). For the case A = 1, the
Alspach conjecture is also stated for even values of n, where in this case the
cycles should decompose K, minus a one-factor. There are many related
results, but only special cases of this conjecture are solved completely (see
e.q. ES, 6,7, 8,9, 12, 13, 14, 15, 16]). Recent results of Alspach, Gavlas,
and Sajna settle Alspach’s problem in the case where the cycle lengths are
all the same [10, 19]. When L is a set of paths, in this case the problem
of L-decomposition has been investigated by Tarsi [17] who showed that
if (n — 1)\ is even and L is any set of paths of length at most n — 3 sat-
isfying the necessary sum condition, then AK, has an L-decomposition.
The problem of L-decomposition of AKm » has been investigated by M.
Truszczyniski (18] when m and 7 are even and L is any set of paths with
some constraints on length satisfying the necessary sum condition.

It is natural to consider the problem of L-decompositions of K, where
L is a combination of paths, cycles, and some other subgraphs. We will
restrict our attention to L which is any set of paths and cycles satisfy-
ing the necessary sum condition. There are several similarly known re-
sults as follows. A graph-pair of order ¢ consists of two non-isomorphic
graphs G and H on t non-isolated vertices for which G U H is isomor-
phic to K;. If G and H form a graph-pair of order ¢, then Abueida,
Daven, and Roblee [1, 3] completely determine the values of n for which
MK, admits a {G, H}-decomposition, when A > 1 and ¢t = 4,5. In [2],
Abueida and Daven proved that there exists a {Kj, K x}-decomposition
of K, for all k > 3and n = 0,1 (mod k). Abueida and O’Neil [4]
proved that for k = 3, 4, and 5, there exists a {C, K1 k-1}-decomposition
of AK,, for any n > k + 1 except when the ordered triple (k,n,A) €
{(3,4,1), (4,5,1),(5,6,1),(5,6,2),(5,6,4),(5,7,1),(5,8,1)}.

In this paper we investigate decompositions of K, into paths and cycles,
and give some necessary or sufficient conditions for such a decomposition
to exist. Besides, we obtain a necessary and sufficient condition for decom-
posing K, into p copies of Ps; and g copies of Cy for all possible values of
p>0and g=>0.

2 Necessary conditions for decomposing K,
into paths and cycles

For our discussion we need the following notations. Let x1z2...Zg41 de-
note the path Py with vertices z;,z,...,Tk41 and edges 7123, 2223, .. .,
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Tk and let (z1, 3, ..., z«) denote the cycle Cy, with vertices z1, 29, ...,
T and edges Z1X2,T2T3y. .. yLp—1Tk, TkT].

In the following lemma we will show a special case for decomposing
complete graphs into paths and cycles.

Lemma 2.1 If p and q are nonnegative integers such that p+q =9 and
P # 1, then Ky can be decomposed into p copies of Ps and q copies of Cj.

Proof. Let V(Ky) = {z1,%2,...,z0}. We exhibit that Ky can be decom-
posed into p copies of Ps and g copies of Cy, for each pair p, ¢ of nonnegative
integers such that 4(p +q) = (g) (i.e, p+g=29) and p # 1 as follows:
(1)p=0and g=09.

($1,$5,$2,$3), ($2,$6,$3, 224), (373) 37,$4,$5), (24,1'8,.’125, xﬁ)y (335:-'591
T, T7), (T, T1, 7, 28), (X7, %2, T8, Ta), (T8, Z3, T9, 21), (T9, T4, T1,T2)-
(2)p=2andg="T.

TgT1T9T2T4, TeT2T3IT1T4, (T1,%2,%7,%s5), (T1,%6,Z3,27), (T2,Zs5,T9,T6),
(z3,Zs5, T5, T4), (T6, T8, Te, T7), (T4, Ts, T8, Z7), (T3, Tg, T4, Tg).
(3)p=3and g=6.

T4T1Z2T9T7, T4T9TIT8T6, T6T1T9L8T7, (T1, L5, T2, T3), (T2, T6, T3, Ta), (T3,
T7,T4, x5)s (1:41 Zg,Ts5, 176), (25, Ty, Tg, 587), (xl) g, T2, $7).
(4)p=4andg=5.

ZoT1T9TeT6, T2T8T1T7TY, T3T9T4T1T6, TIT8T7T2Te, (T1, T5, X2, Z3), (Z2, Ts,
z3,Z4), (T3, 27,24, 2s5), (24, T8, T5,T6), (Ts, Z9, Ts, T7).

(5) p=>5and g=4.

T2T129T7%5, T2T9T8T7T6, L2TBL3T9T4, L2T7T1T8T6, TaT1T6T9Ls, (1’1,25,
T2,23), (T2, T, T3,%4), (Z3,T7,Z4,%s), (Z4,Zs, Ts5, T6).

(6) p=6and g=3.

T2T1T4T8T3, T2T9T8T7T6, T2TR8L5L9T4, T2T7L1TET5, T3TgT1T8T, T4TeTg
275, (T1,Ts, T2, T3), (T2, Te, £3, T4), (T3, Z7, T4, Ts5).

(Mp=Tand g=2.

T1T9T8L7T5, T2T1T8T6T4, T2T9T4LRE3, TIT7T2T8Ts, T4T1L6X9Ts, T4T5Te
T7T1, T4T7T9T3Ts, (T1,Ts, T2, T3), (T2, Te, T3, Z4).

(8)p=8and g =1.

T1T3TT7T5, T2T4T9T8Ts, T1T9T5L6T8, L2T9TeT7T8, T1TgLaL7L3, TaT5T3
T8T4, TITEL4TEL1, T4TTTITET2, (21, T2, T3, Ty).

(9)p=9and g=0.

T1X7T2TT3, T3T5L4X9T8, L2TT3IT7T4, T4TeT5T9T1, T3T1T4T8TLs, L5L7T6
T9T2, T4T2L5L1T6, T6T8T7T9L3, TeT1T2TIT4. O

The following theorem gives a necessary condition for decomposing com-
plete graphs K, into paths and cycles when n is odd.

Theorem 2.2 Let n, I, and k be positive integers such that n is odd and
n > maz{l,k +1}. If K, can be decomposed into p copies of Pyy1 and q
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copies of C; for nonnegative integers p and g, then pk + ql = e(K,) and
p#1l

Proof. Condition pl + gk = e(K}) is trivial. On the contrary, suppose
that p = 1. Let P denote the only path of length & in the decomposition.
It follows that the end vertices of P have odd degree n — 2 in K,, — E(P).
Therefore, K, — E(P) can not be decomposed into cycles. We obtained a
contradiction. O

In the following lemma we will show another special case for decompos-
ing complete graphs into paths and cycles.

Lemma 2.3 If p and g are nonnegative integers such that p+q = 7 and
p > 4, then Kg can be decomposed into p copies of Ps and q copies of Cy.

Proof. Let V(K3s) = {z1,22,...,2s8}. We exhibit that Kg can be decom-
posed into p copies of Ps and g copies of Cy, for each pair p, g of nonnegative
integers such that 4(p + g) = (3) (i.e., p+ ¢ =7) and p > 4 as follows:
(1)p=4and g=3.

T1T6T2T4T5, T2T5L123%6, L3L5L7L1 L8, T4T6LL2TTs (%1, 72, Z3, z4), (s, Ts,
T7,%8), (T3, 28,4, 7).

(2)p=5andg=2.

T1X3T5T8T7, T2T7T5L4T6, T3TeT8T2T5, T4T2T6T1%5, T5LeL7T1T8, (%1, Z2,
z3,%4), (T3,%8, 24, T7)-

(3)p=6and g=1.

T123X7L8Te, T1T8T2T7T5, T2T6L1T7T4, TIT6T4T5T1, T4T2T5T3T8, T4T8Ts
7, (331,182,(33,34).

(4)p=T7and g=0.

T1T8T2L7Ls, TaT1T5T6L7, L2LeL1L7T4, T2T3T4TL8T6, T3T6L4T5T8, T4T2T5
3T, T4X1T3T7X8. O

The following theorem gives a necessary condition for decomposing com-
plete graphs K, into paths and cycles when n is even.

Theorem 2.4 Let n, |, and k be positive integers such that n is even and
n > mazx{l,k +1}. If K, can be decomposed into p copies of Pxy1 and q
copies of C; for nonnegative integers p and g, then pk + gl = e(Ky,) and
P23

Proof. Condition pl+gk = e(K,) is trivial. Let D be an arbitrary decom-
position of K, into p copies of Pi+1 and g copies of Cy; let P1), P@), .., P(r)
denote those p copies of P4y in D. By assumption, K, — E(P() U
PAy...u P(P)) has a Cj-decomposition. It follows that each vertex of
K, — E(PW U P@ y...u P®) has even degree. Since n is even, each
vertex of K, must be an end vertex of at least one P® (1<i<p). It
implies that 2p > n.
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3 Decompositions of K, into P;,;’s and Ci’s

In this section we investigate the problem of decomposing the complete
graph K, into p copies of P41 and g copies of Cy for all possible values
of p > 0 and ¢ > 0, and obtain some sufficient conditions for such a
decomposition to exist when k is even. Besides, we establish a necessary
and sufficient condition for decomposing K, into p copies of Ps and q copies
of Cj for all possible values of p > 0 and g > 0. Let us first introduce four
results on P4;-decomposition and Ck-decomposition.

Theorem 3.1 (Tarsi [17]) Let k and n be positive integers. K, has a
Pyy1-decomposition if and only if n > k+ 1 and n(n — 1) = 0 (mod 2k).0

Theorem 3.2 (Truszczynski [18]) Let k be a positive integer and let m
and n be positive even integers such that m > n. K, , has a Ppy-
decomposition if and only if m > [E1], n > [£], and mn = 0 (mod k).
O

Theorem 3.3 (Alspach and Sajna [10, 19]) Let n and k be positive inte-
gers. K, has a Cyx-decomposition if and only if n is odd, 3 < k < n, and
n(n — 1) = 0 (mod 2k). O

Theorem 3.4 (Sotteau [20]) Let m, n, and k be positive integers. Ky p
has a Co-decomposition if and only if m and n are even, k > 2, m > k,
n > k, and mn =0 (mod 2k). O

By Theorem 3.2 and Theorem 3.4, we obtain a theorem below.

Theorem 3.5 Let k, s, and t be positive even integers such that k > 4 and
t>s. Ifk <2(t—s) and k < 2s, then there ezists a decomposition of K.
into s copies of Pry1 and t — s copies of Ck.

Proof. It is easily seen that K. can be decomposed into Ki s and
Kp,t—s. Since k < 2s and both k and s are even, by Theorem 3.2, K, can
be decomposed into s copies of Pi4;. On the other hand, since k < 2(t—s)
and both k and t — s are even, by Theorem 3.4, K ;_, can be decomposed
into ¢t — s copies of Cy. O

In the following theorems we will obtain some sufficient conditions for
decomposing K,, into p copies of Pr41 and g copies of Cj for all possible
values of p > 0 and ¢ > 0 when n is odd and k is even. We need the
following lemma for our discussion.

Lemma 3.6 Let r be a nonnegative integer and let k, s, and t be positive
integers such that 0 < 71 < k-1,2<t<s, k>4, andk, r, and t are
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all even. If K1 can be decomposed into p copies of Pry1 and g copies
of Ci, for each pair p, q of nonnegative integers such that k(p + q) =
e(Kiks1) and p # 1, then Kopyri1 — E(K(o~t)ksr+1) can be decomposed
into p copies of Pry1 and £(tk 4+ 1) +t(s — t)k + tr — p copies of Cy for
0<p< L(thk+1)+t(s—t)k+tr andp # 1.

Proof. It is easily seen that Kgkqri1 — E(K(s—t)k+r+1) can be viewed
as an edge-disjoint union of Kiq1 and Ky (s—t)ksr. Since e(Kips1 U
Kok (a—tyipr) = SEEDE L gkl(s — t)k + 7], we get 0 < p < §(tk+1) +
t(s — t)k + tr and p # 1. Now we consider three cases below.

Case 1. 0 <p< &(tk+1)and p # 1.

By assumption, we can obtain p copies of Py and £(tk + 1) — p copies of
Cy, from Kix41. As to the remaining graph, by Theorem 3.4, Ky (s—t)k+r
has a Ci-decomposition.

Case 2. (tk+1)+1 < p < t(s—t)k+tr. (When (tk+1) > t(s—t)k+ir,
we skip this case.)

ek _tk _tk _tk
Let [ = | 252 | if [25% | iseven and [ = | 252 | — 1 if I_”—tij is odd. It is
easily seen that Ky (s—¢yk+r can be decomposed into t copies of K (s—t)k+r-
Since > |£EEHIH=% |1 _ (1 1)k + ] +1]-1> & (note that ¢ > 2

iseven), (s—t)k+r—-12>(s—-t)k+r— ﬁ’—_t)—’:ﬂ = -’23, and both !
and (s — t)k + r — | are even, by Theorem 3.5, we can obtain l copies
of Pyy1 and (s — t)k + r — I copies of Cy from each copy of K (s—t)k+r-
Therefore, we can obtain ¢! copies of P41 and t(s — t)k + tr — tl copies
of C from Ky (s—t)k+r- Since p— % -(2t-1) <t <p- ‘—2'5, we have
k<p-tl<yor—1< X 1< L(th-1) < §(tk+1) (note that
k > 4 and t > 2). By assumption, K41 can be decomposed into p — ¢l
copies of P41 and £(tk + 1) — (p — t!) copies of Ck.

Case 3. t(s —t)k+tr+1<p < i(tk+1) +t(s — )k +tr.

When p # t(s—t)k+tr+1, we can obtain ¢(s —t)k+tr copies of P41 from
Kyp (s—t)k+r first. Since 2 < p—[t(s—t)k+ir] < £(tk+1), by assumption, we
can obtain p—[t(s—t)k+tr] copies of Pry1 and £ (tk+1)—[p—(¢(s—t)k+tr)]”
copies of C, from Kix+1. When p = t(s—t)k+ir+1, since Ky (s~t)k+r N
be decomposed into K(s—1)k,(s—t)k+r and K (s—t)k+r, Dy Theorem 3.5, we
can obtain k4 copies of C, and (s—t—1)k copies of Pey1 from Ki (s—tyk+r
(note that when s = t+1, (s—t— 1)k = 0); by Theorem 3.2, we can obtain
(t—1)(s—t)k+ (¢t — 1)r copies of Py from K(;—1yk,(s—t)k+r- Lherefore, we
can obtain (s — t)k + tr — k —r copies of Py and k + 1 copies of Cj from
Kk (s—t)k+r- Since p — [t(s — t)k +tr — k — rl=k+r+1<£(tk+1), by
assumption, we can obtain k+r+1 copies of P41 and L(tk+1)—(k+r+1)
copies of Cy, from Kt41. O
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Theorem 3.7 Let n be a positive odd integer and let k and t be positive
even integers such that k > 4,t>2,n > (t+1)k+1, end n(n—1) =0
(mod 2k). If Kik41 can be decomposed into p copies of Pryy and q copies of
Ck, for each pair p, q of nonnegative integers such that k(p+q) = e(Kyxy1)
and p # 1, then K, can be decomposed into p copies of P41 and q copies
of Ck, for each pair p, q of nonnegative integers such that k(p+q) = e(Kp,)
and p # 1.

Proof. Write n = sk 47+ 1, where s and r are nonnegative integers such
that s >¢+1and 0 <r < k— 1. Since n is odd and k is even, r is even.
The proof is by induction on s. It is easily seen that K,x4r41 can be viewed
as an edge-disjoint union of Kyk41, Kik,(s—¢t)k+r, and K(s_t)k+r+1. Since
pt+g= n(n.—l) (ak+r+1)(sk+r) , we get p < [(a—t)k-}-r-;l][(s—t)k-i-r] + t(tk-l'-
1)+t(s— t)k+t'r and p 95 1. Note also that 2k|(sk+r+ 1)(sk+7) and tis
even implies 2k|[(s — t)k + 7 + 1][(s — t)k + 7, and so [(s'"‘)k"""'l][(”'t)k""]
is an integer.

When t + 1 < s < 2t, we consider two cases below. When 0 < p <
3(tk+1)+t(s—t)k+tr and p # 1, by Lemma 3.6, an edge-disjoint union
of Kikt1 and Ky (s—t)k+r can be decomposed into p copies of Pi4; and
£(tk+ 1)+ t(s — t)k + tr — p copies of Cx. By Theorem 3.3, the remaining
graph K(,_¢)k+r+1 has a Ci-decomposition.

When §(tk+1)+t(s —t)k+tr+1 < p < [emthtridl(s=titr] | ¢y
1)+t(s—t)k+tr, by Theorem 3.1, we can obtain [(3")'“*'"';}%‘[(’"‘)“’1 copies
of Pey1 from K(s_t)k+r41 first. On the other hand, since (tk + 1) +¢(s —
t)k+t'r [(s— t)k+r+ll((a—t)k+r] > 1, we have 2 <p- [(s;t)k+r+1][(s—t)k+r] <
Ltk + 1) + t(s — t)k + tr. By Lemma 3.6 again, we can obtam p—
Ks't)k+’+1][("_‘)k+rl copies of Pyyy and £(tk + 1) + t(s — t)k +tr — [p —
[("‘)k*'”;l][(s k]| copies of Cy from an edge-disjoint union of Ky and
Kk (s—t)kar-

Now we suppose that s > 2t + 1. By induction hypothesis, Ko tyktr+1
can be decomposed into u copies of Piy; and l("t)k+r';1][(s_‘)k+’] u
copies of Cy for 0 < u < L= ‘)k"'"’;][(”")k""] and u # 1. On the other
hand, by Lemma 3.6, an edge-disjoint union of Kiky1, Ky (s—t)k+r can be
decomposed into v copies of Pi4;, with the remaining edges decomposed
into copies of Cy, for 0 < v < £(tk+1)+t(s—t)k+tr and v # 1. Therefore,
Ksi+r+1 can be decomposed mto p copies of Pi..1, with the remalmng edges
decomposed into copies of Cy for 0 < p < [L_t)k""'“][(’ —Dktr] 4 ¢ L(tk +
1) + t(s —t)k + tr and p # 1. This completes the proof O

Next theorem we will prove that for any positive even integer k& > 4,
K441 can be decomposed into p copies of Pyy; and q copies of Cj for all
possible values of p > 0 and ¢ > 0. We need the following lemma. for our

263



discussion.

Lemma 3.8 Let m and n be positive integers such that m > 3 and n > 2.
Suppose that for i € {1,2,...,n}, C; denotes the cycle (i 1), Z(i,2),--->
T(i,m)) of length m. If za1) = T2,y = *** = T(m,1), Ti+12) E {T(i1)
T(,2)r+++» .'B(,"m)} fori e {1,2, R (e 1}, and T(1,2) ¢ {z(",l),z(n,g), ooy
T(n,m)}, then Ui, C;: can be decomposed into n paths of length m.

n

Proof. By assumption, {J;_, C; can be decomposed into n paths of length
m below: z(1,2)%(1,3) - - - T(1,m)T(1,1)%(2,2)> Z(2,2)T(2,3) - - - T(2,m) T(2,1)Z(3,2)>
o+ Z(n,2)T(n,3) - - T(n,m)T(n,1)%(1,2): =

The label of an edge z;z; of K, with vertex set {z0,Z1y.-yTn-1} is
the number min{|j — i|, n — |j — i|}. The label of any edge is thus one of
the numbers 1,2,...,|%]. If n is odd, then there are n edges of label ¢ for
i € {1,2,...,25*}. Suppose that C is the cycle (zi,,Ziy, ..., 2i,) in Kn.
For an integer t, we use C + t to denote the cycle (Zi, 44, Tigtts- -+ » Tight)s
where the subscripts of z;’s are taken modulo n. It is easily seen that the
labels of (C + t)’s edges and C’s are the same.

Theorem 3.9 If k is an even integer such that k > 4, then K41 can be
decomposed into p copies of Pyt and q copies of Ck, for each pair p, q of
nonnegative integers such that k(p + q) = e(Kax+1) and p # 1.

Proof. Let the vertices of K4r41 be labelled with zo,z1,...,Z4. We
first construct two cycles R and Q of length k such that Q U R consists of
edges with the labels 1,2,...,2k, and both QUR and QU RU(Q + j) can
be decomposed into Pi.1’s, for some j € {1,2,...,4k}. We consider two
cases.

Case 1. k=0 (mod 4).

Let k = 4m, where m is a positive integer. When m = 1, let @ and R denote
the cycles (zo, 24, Z1,Z2) and (zo, zs, %1, T6), respectively. It is easily seen
that both Q and R are cycles of length 4, where Q consists of edges with
the following labels in order of 4, 3, 1, 2, and R, in order of 8, 7, 5, 6.
It is easily seen that QU R can be decomposed into paths zgz)Tezoz4 and
T4Z1Z2ToZs; @ U RU (Q + 1) can be decomposed into paths zsz1Tezo%4,
TgToToT1Z3, and T3T2Ts5T1T4.

When m > 2, let Q and R denote the cycles (Zo, Zam,T1, Tam—1,--+»
Z3m+1y Tmy Tm+ly T3my Tm4+2y -5 T2m+2s :L‘Qm) and (9:4171: T12my Tam+1,
T12m—1y++ + s T1lm+1: T5m) L9m+1, L15ms TOm+2y -+ » ) T14m+2, T10m), respecti-
vely. It is not difficult to see that both Q and R are cycles of length 4m,
where Q consists of edges with the following labels in order of 4m, 4m —
1,..., 2m+1, 1, 2m—1, 2m-2,..., 2, 2m, and R, in order of 8m, 8m -
1,...,6m+1,4m+1, 6m—1, 6m-2,..., 4dm+2, 6m.
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Since V(Q)NV(R) = {z4m}, by Lemma 3.8, QU R can be decomposed
into two copies of Pgy1. On the other hand, since z4,, € [V(Q) N V(R) N
V(@ + 4m)], z12m ¢ V(Q), zsm ¢ V(R) and z; ¢ V(Q + 4m), by Lemma
3.8 again, QU RU (Q + 4m) can be decomposed into three copies of Py ;.

Case 2. k=2 (mod 4).

Let k = 4m + 2, where m is a positive integer. When m = 1, let Q
and R denote the cycles (zo, 27, T2, Ts, £3, 24) and (1,213, T2, Z12, 23, To),
respectively. It is easily seen that both Q and R are cycles of length 6, where
Q consists of edges with the following labels in order of 7, 5, 3, 2, 1, 4,
and R, in order of 12, 11, 10, 9, 6, 8. It is easily seen that Q U R can be
decomposed into paths zsz3z4Zoz7T2Z12 and T15T3TeZT13T275; QU RU
(Q+2) can be decomposed into paths T523z4T0Z7Z229, Z12T3TH9T1 L1325,
and 29Z4Z7T5LeT2T12.

When m > 2, let Q and R denote the cycles (zg, Z4m+3, T2, Zam+2, - - -
' Z3m+4) Tm+1) L3m+2, Tm+2 T3m+1, - « - » T2m+1, L2m+2) and (m4m+3,$12m+7,
| Tam+4r T12m+65---» T1im4T Tsm+4y T1lm+5) T6m+45)--+3 T10m+7y T6m+3,
T10m+s), respectively. It is not difficult to see that both Q and R are
cycles of length 4m <42, where Q consists of edges with the following labels
in order of 4m + 3, 4m+1, 4m,..., 2m+3, 2m+1, 2m,..., 1, 2m+2,
and R, in order of 8m + 4, 8m +3,..., 6m+3, 6m+1, 6m,..., 4m +
4, 4m +2, 6m+ 2. Since V(Q) NV(R) = {z4m+3}, by Lemma 3.8, QUR
can be decomposed into two copies of Prt;. On the other hand, since
Zamas € [V(QNV(R)NV(Q+(4m+ 1)), Tramsr & V(Q), Tamss ¢ V(R)
and 2 ¢ V(Q + (4m + 1)), by Lemma 3.8 again, QU RU (Q + (4m + 1))
can be decomposed into three copies of Ppy;.

In each case mentioned above, we have that QU R consists of edges with
the labels 1,2,...,2k. It implies that K4x4+1 can be decomposed into 8k +2
copies of Cy, as follows: Q, Q+1,..., @+4k, R, R+1,..., R+4k. Since
Q U R can be decomposed into two copies of P11, (Q + %) U (R + %) can
be decomposed into two copies of Pr4; for i € {1,2,...,4k}. Therefore,
Kyg+1 can be decomposed into p copies of Py and 8k + 2 — p copies of
Ci. for nonnegative even integer p such that 0 < p < 8k + 2. On the other
hand, since QU RU (Q + j) can be decomposed into three copies of Py..;
for some j € {1,2,...,4k}, we have that QURU (Q + j) U (R + j) can be
decomposed into three copies of Px,, and one copy of Cy. It implies that
Kyk41 can be decomposed into p copies of P41 and 8k + 2 — p copies of
Cj for positive odd integer p such that 3 < p < 8%+ 2. This completes the
proof. O

The following theorem follows immediately from Theorem 2.2, Theorem
3.7 and Theorem 3.9.

Theorem 3.10 Let p and g be nonnegative integers and let n and k be
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positive integers such that n is odd, k > 4 is even, and n > 5k + 1. There
erists a decomposition of K, into p copies of Pxy1 and g copies of Cy if
and only if k(p + q) = e(Kyn) and p # 1. ]

In the following theorem we will give a sufficient condition for decom-
posing K, into p copies of Px+1 and g copies of Cj. for all possible values
of p > 0 and ¢ > 0 when n and k are even. We need the following lemma
for our discussion.

Lemma 3.11 Let r be a nonnegative integer and let k, s, and t be positive
integers such that 0 < r <k-1,4<t+2<s,k>4,andk, r, andt are
all even. If Ky can be decomposed into p copies of Pry1 and q copies of
Cy, for each pair p, q of nonnegative integers such that k(p + q) = e(Kik)
and p > %, then Kspqr — E(K(a—t)k4r) can be decomposed into p copies
of Piy1 and (tk — 1) + t(s — t)k + tr — p copies of Cy for & < p <
Ltk — 1)+ t(s—t)k +tr.

Proof. The procedure of proof is similar to the proof of Lemma 3.6. It
is easily seen that Kgk+r — E(K(s—t)k+r) can be viewed as an edge-disjoint
union of Kk and Ki, (s—tje+r- Since e(Kex U Kk (s—t)k+r) = ﬂt;_—ll +
tk[(s — t)k +], we get -‘-4—‘ <p < £(tk—1)+t(s—t)k+tr. Now we consider
four cases below.

Case 1. ¥ <p < £(tk—1).

By assumption, we can obtain p copies of Pr+1 and %(tk — 1) — p copies
of C, from Kii. As to the remaining graph, by Theorem 3.4, Ky, (s~t)k+r
has a Cj-decomposition.

Case 2. £(tk—1)+1 < p <t(s—t)k+ir. (When L(tk—1) > t(s—t)k+tr,
we skip this case.)

When £(tk—1)+1<p< £(tk+1), since Kk (s—t)k+r can be decomposed
into two copies of K¢ (s—tyk+r and K §k,(a—t)k+r CBN be decomposed into
Kk and Kgg (s—t—1)k+r (note that s > t + 2), by Theorem 3.2 and
Theorem 3.4, we can obtain % copies of P41 and £[(s—t—1)k+r] copies
of Cy, from one copy of Ky (s—t)k+r» a0d obtain £{(s —t)k+r] copies of Cy

from the other copy of K $k (s—)ktre Therefore, we can obtain %— copies of

Piy1 and (s — t)k + tr — %‘- copies of Cy. from Kix (5—t)k+r- Since t > 2
and k > 4, we have that t—2'9 <p- -‘25 < £(tk — 1). By assumption, we can
obtain p— 52’5 copies of Pr41 and £(tk—1)—(p— -‘25) copies of Cy, from K.

When £(tk+ 1) +1 < p < ¢(s — )k + tr, by the same method in the
Case 2 of Lemma 3.6’s proof, it can be proved easily. The details are left
to the reader.
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Case 3. t(s—t)k+tr+ 1<p<t(s—t)k+itr+4 —1 (When §(tk—1) >
t(s — t)k +tr + & — 1, we skip this case.)
Since Ky (- t)k_,., can be decomposed into two copies of X 4k, (s—t)k+r aNd
Ktk (s—t)k+r can be decomposed into K. $k,(s—t—1)k+r and K. k ¢ (note that
s> t+2) by Theorem 3.2 and Theorem 3.4, we can obtain & % copies of Cy
and £[(s — t — 1)k + r] copies of Py, from one copy of K $k,(s—t)k+r» BN
obtain £[(s — t)k + r] copies of P41 from the other copy of K, k (s—t)kr-
Therefore, we can obtain t(s — t)k +ir— 7 copies of Py and £ % copies of
Ck from K,y Ag=t)ksr- Since £ +1 < p—[t(s—t)k+tr - %] < "‘+ k1=
3(2k) —1 < £(tk—1) (note that ¢ > 2), by assumption, we can obtam
p—[t(s—t)k+tr —*£] copies of Pet; and £(tk—1)—[p—[t(s—t)k+tr— & &%)
copies of C}, from Ktk.

Case 4. t(s —t)k+tr+ & <p < L(th—1) +t(s — t)k + tr.

‘We can obtain t(s—t)k+tr copies of Pyt1 from Ky, (s—tyk4r first. Since & g<
p—[t(s—t)k+tr] < £(tk—1), by assumption, we can obtain p—[t(s—t)k-+tr]
copies of Pey1 and 5(tk — 1) — [p— (t(s — t)k + tr)] copies of Cx from Kiy.
O

Theorem 3.12 Let k, m, n, and t be positive integers and let r be a non-
negative integer such that k > 4,t > 2,2 < m < t+1, [(nt + m)k +
rl{(nt + m)k +r — 1) = 0 (mod 2k), and k, 7, and t are all even. If
K can be decomposed into p copies of Pry1 and q copies of Cx, for each
pair p, g of nonnegative integers such that k(p + q) = e(Ky) and p > ‘k
Kpk4r can be decomposed into -”‘—"ﬂ copies of Pyy1 and ﬁ"‘—*ﬁ- M
copies of Ck, then Kntimyktr can be decomposed into p copzes of Pk.,.l
and g copies of Cy, for each pair p, q of nonnegative integers such that
k(p+9) = e(K(nttmrsr) and p > BRI,

Proof. The procedure of proof is similar to the proof of Theorem 3.7. The
proof is by induction on n. Let nt+m = s. It is easily seen that K,x,, can
be viewed as an edge-disjoint union of Ky, Ky (s—t)k4rr aNd Ko _pypyr.
Slnce p+q= gak+r2!a’:c+r— ) we get k:!:" <p< Ktt)k+r][§s—t)k+r—1] +

£tk — 1) + t(s — t)k + tr. Note also that 2k|(sk+r)(sk+r—1) and t is
even implies 2k|[(s — t)k + 7][(s — t)k +r — 1), and so L&= t)k""][(’-‘)k'"’l]

is an integer.
When n = 1, we consider two cases below. When 4T < p < £(tk—1)+

t(s— t)lc+tr+£"—t)m since s—t = m, by assumption, the graph K(,_)4r
can be decomposed into Le_tﬁcﬂ coples of Pyy1 and ﬂu_om S"—_‘w
copies of C. On the other hand since & < p— L’;‘M < L(tk—1) +t(s -
t)k + tr, by Lemma 3.11, we can obtaln p- gs—;"m copies of Pr41 and
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Ltk—1)+t(s—t)k+tr—(p- -(’—"‘%ﬁf) copies of Cj, from an edge-disjoint
union of Ktk and Ktk,(s—t)k+r-

When ,;_ (tk—1)+t(s—t)k+tr+ gs_—tz)_k_+_r +1<p< [(s—t)k+r][2(;—t)k+r-1] +
£(tk—1)+t(s—t)k+tr, by Theorem 3.1, we can obtain [(”t)k'*'r"?(:")“"_”
copies of Pi41 from K(s_sk+r first. On the other hand, since z(tk—1)+
t(s—t)k+tr+ ("_tz)k+r - l(s't)k+'][2,‘:_t)k+r"—ll > % (note that s—t = m),
we have % +1 < p — [e=tktrll(a—Oktr—1] < £(sk — 1) + ¢(s — )k + tr. By
[(s=t)k+7][(s=t)ktr—1]

Lemma 3.11 again, we can obtain p — o% copies of Prt1
and £(tk—1)+t(s—t)k+tr—[p— l("t)k"""[éz't)k”‘l]] copies of Cj, from
an edge-disjoint union of K and Kk (s—t)k+r-

Now we suppose that n > 2. Since s — ¢t = (n — 1)t + m, by induc-
tion hypothesis, K(s_¢)x4+r can be decomposed into u copies of Py and
K’"”""r"w:")k“_l] — u copies of Cj for “—_tzk)i < u <
[(a—t)ke+ril ,:_')k'”'ﬂ. On the other hand, by Lemma 3.11, an edge-disjoint
union of Kk, K¢k, (s—t)k+r can be decomposed into v copies of Piyy, with
the remaining edges decomposed into copies of Cy for %5 <v < %(tk -
1) + t(s — t)k + tr. Therefore, K,i4r can be decomposed into p copies of
Pi41, with the remaining edges decomposed into copies of Cj for ’—"}l <
p< [("‘)k""][z(,i")k"'"g + £(tk — 1) +t(s — t)k + tr. This completes the
proof. a

The following corollary follows immediately from Theorem 3.12.

Corollary 3.13 Let k, m, and t be positive integers such thatk > 4,1 > 2,
and both k and t are even. If Ky, can be decomposed into p copies of Py
and g copies of Ck, for each pair p, q¢ of nonnegative integers such that
k(p+ q) = e(Ks) and p > 52’-’, then Kmu can be decomposed into p copies
of Py41 and g copies of Cy, for each pair p, g of nonnegative integers such
that k(p + q) = e(Kmex) and p > 2k, |

Next theorem we will obtain a necessary and sufficient condition for
decomposing K, into p copies of Ps and g copies of Cy for all possible
values of p > 0 and ¢ > 0.

Theorem 3.14 Let p and g be nonnegative integers and let n be a positive
integer. There exists a decomposition of K, into p copies of Ps and g copies
of Cy if and only if d(p+q) = (5), p# 1 if n is odd, andp > § ifn is
even.

Proof. (Necessity) Condition 4(p + ¢) = (3) is trivial. By Theorem 2.2
and Theorem 2.4, we have that p# 1 if n is odd and p > % if n is even.
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(Sufficiency) Observe that 4|1("2;12 implies either 8|n or 8|(n —1). It
follows that n will be either 8m or 8m + 1, where m is a positive integer.
By Lemma 2.1 and Theorem 3.7, Kgm+1 can be decomposed into p copies
of Ps and g copies of Cy4, for each pair p, ¢ of nonnegative integers such
that 4(p+ g) = (®%*!) and p # 1. On the other hand, by Lemma 2.3 and
Corollary 3.13, Kgm, can be decomposed into p copies of P; and ¢ copies
of Cy, for each pair p, ¢ of nonnegative integers such that 4(p + q) = (8;")
and p > 4m. This completes the proof. O
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