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Abstract. In this paper, we investigate the global behavior of the
diceerence equation
ATy .k
B+%7_ (ki)
with non-negative parameters and non-negative initial conditions
where k is an odd number .

Tp4l = , n=0,1,...

1. INTRODUCTION

Consider the (k + 2) order diceerence equation
QTn—k

B +9%n_(k41)

where the parameters o, 8,7 and p are non-negative real numbers, k is

an odd number and the initial conditions zg,z_1,7_2, ..., Z_(k41) are non-
negative real numbers such that

(1.D Tpt1 = »yn=0,1,...,

ﬂ + 7x£—(k+1) > 0, n= 0, 1, ceny

We investigate the global asymptotic behaviour and the periodic char-
acter of the solutions of the diccerence Eq.(1.1), by generalizing the results
due to El-Owaidy et al.[2] corresponding to the diceerence equation

TYn—-1
= — =0,1,...
Yn+1 1+y,’:_2’ n i P

where 7 > 0 and the initial conditions yo, y—1, y_2 are arbitrary non-
negative real numbers. Similar recursive sequences are studied. See for
example [1 — 7]. We need the following degnitions:
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Degnition 1. Let I be an interval of real numbers and let f : I*¥2 — I be
a continuously diceerentiable function. Consider the diceerence equation

(1.2) Tny1=f (1‘,;, Tn—1) ey xn—k,xn—(k+l)) , n=0,1,..,

with T_(k4+1), T—k,..,Zo € I . Let T be the equilibrium point of Eq.(1.2).
The linearized equation of Eq.(1.2) about the equilibrium point T is

(1.3) Yn+1 = C1¥Un+CoUn—14+ +C(k41)Yn—k +C(k+2)¥n—(k+1), 7 =0,1,...
Where

of . - of . of . -
¢ = —(%T,....T), 2 = Tyeey Ty ey € = — (T, .,
1 6:::,,( )2 0:cn-1( )y oo Clke42) Tonorn ,..,%)
The characteristic equation of Eq.(1.3) is
(1.4) AR+ _ o A oo dk — L — ey A — Clr2) =0

Degnition 2. A positive semicycle of a solution {y,,};";__(,c +1)of Eq.(1.2)
consists of a ”string” of terms {zi, Ti4+1,...,Zm} , all greater than or equal
to equilibrium T with ! > —(k+1) and m < oo such that either | = —(k+1)
orl > —(k+1) and z;—; < T and either m = co or m < 00 and Tpm41 <7Z.

A negative semicycle of a solution {yn};”z_(k +1)of Eq.(1.2) consists of
a "string” of terms {1, Zi+1, ..., Tm} all less than Z with | > —(k + 1) and
m < oo such that either [ = —(k+1) or l > —(k+1) and z;—; > T and
either m =00 or m < oo and Tpp41 2 T.

Degnition 3. A solution {¥n}72 _ (k41 of Eq.(1.2) is called nonoscillatory
if there exists N > —(k + 1) such that either

2, >Tforvn>N or z,<Z for Vn > N,
and it is called oscillatory if it is not nonoscillatory.

We need the following theorem.

Theorem 1. (i) If all roots of Eq.(1.4) have absolute values less than one,
then the equilibrium point Zof Eq.(1.2) is locally asymptotically stable.

(iD)If at least one of the roots of Eq.(1.4) has absolute value greater than
one, then the equilibrium point Zof Eq.(1.2) is unstable.

2. THE SPECIAL CASE afyp =0

In this section, we examine the character of solutions of Eq.(1.1) when
one or more of the parameters of Eq.(1.1) are zero. There are gve such
equations for k =1,3,... and n = 0,1, ..., namely

a=0:
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@.1) Tpp1 =0

B=0
aTp -
22 Tnpl = —pos
VZ e (k1)
p=0
QTpn—k
2.3 =
(2.3) ZTn+1 Bt
vy=0:
QTn_k
24 T =
( ) n+1 ﬁ
B=p=0:
QTpn—k
2.5 Tn =
2.5) +1 ~

In each of the above gve equations, we assume that all parameters in the
equations are positive. Eq.(2.1) is trivial and Eqs. (2.3)-(2.5) are linear.
Eq.(2.2) can be also reduced to a linear diceerence equation by the chance
of variables z,, = e¥~.

3. DYNAMICS OF EQ.(1.1)

In this section, we investigate the dynamics of Eq.(1.1) under the
assumptions that all parameters in the equation are positive and the initial
conditions are non-negative.

1
The change of variables z, = ( s)l’y,. reduces Eq.(1.1) to the diceerence
equation
(.1) Ung1=—2k _ fork=1,3,..and n=0,1,...,

14y (ke
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where r = 2 > 0. Note that 7 = 0 is always an equilibrium point of

Eq.(3.1). When r > 1, Eq.(3.1) also possesses the unique positive equilib-
rium 73 = (r — 1)% .
Theorem 2. The following statements are true:
(i) If r < 1, then the equilibrium point Ty = 0 of Eq.(3.1) is locally
asymptotically stable,
(ii) If > 1, then the equilibrium point 77 = 0 of Eq.(3.1) is unstable,
Gii) If r > 1, then the positive equilibrium point 33 = (r—1)% of
Eq.(3.1) is unstable. :
Proof. The linearized equation of Eq.(3.1) about the equilibrium point y7 =
0is
Zpgy1 =T2n— fork=1,3,...and n=0,1,...,
so the characteristic equation of Eq.(3.1) about the equilibrium point 77 = 0
is
Xet2_rA=0
and hence the proof of (i) and (ii) follows from Theorem 1.
For (iii), we assume that » > 1, then the linearized equation of
Eq.(3.1) about the equilibrium point 7z = (r — 1)% has the form

p(r—1)
r

2Zp4l = 2n—k — Zpn—(k+1) for k = 1,3,.. and n=0,1,...,

so the characteristic equation of Eq.(3.1) about the equilibrium point J3 =
(r=1)% is

32) A2 _ ) 4 E(Lr‘_l_) =0

it is clear that Eq.(3.2) has a root in the interval (—oo,—1) and so 72 =

(r— 1)% is an unstable equilibrium point from Theorem 1. This completes
the proof. a

Theorem 3. Assume that » > 1 and let {yn},';_(k +1) be a solution of
Eq.(3.1) such that

(3.3) Yo (k1) Y=(k=1)r Y0 2 T2 aNd Yk, Y—(k=2)s -+ Y1 < T2

or

(3.4) Yo (k1) Y=(k=1)r -2 ¥0 < T2 and Yk, Yo(k—2)s - Y-1 2 T2

Then, {yn}ff:_(k +1 oscillates about 77 = (r— 1)‘!E with semicycles of
length one.
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Proof. Assume that (3.3) holds. Then,

Y-k —
N=c-—7—3 — <N
1+ 92340
and
TY—(k-1) _
= >
Y2 1+ yp; - Y2
then, the proof follows by induction. The case where (3.4) holds is similar
and will be omitted. O

Theorem 4. Assume that r < 1, then the equilibrium point 77T = 0 of
Eq.(3.1) is globally asymptotically stable.

Proof. We know by Theorem 2 that the equilibrium point 77 = 0 of
Eq.(3.1) is locally asymptotically stable. So, let {yn}ro. _ (k+1) be a solution
of Eq.(3.1). It suCEces to show that

limy,=0
n—00
Since
TYn—k
0L yny1 = ——— < TYn-i
1+ yn (k1)
We obtain
Yn+1 < TYn—k
Then, we can write,
Yeke)+1 STE Dy
Veeny+2 < Ty oy
Ye(k+1)+(k41) S 7y fort =0,1, ...
If r < 1, then lim r(t+1) = 0.So,
t-—00
lim y, =0
=00
This completes the proof. a

Theorem 5. If Eq. (3.1) possesses the prime period (k + 1) solution, all

of which aren’t equal with each other at the same time, then both » = 1
and these solutions are at least in number £ equal to 0 and at least in
number 1 greater than 0.
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Proof. Let ag,aj,...,ax, all of which aren’t equal with each other at the
same time, be the solutions of Eq.(3.1)’s prime period. That’s to say,

vy @0y ALy eeey Qley GOy Ay oeey Ay oee
be a period (k+1) solution of Eq.(3.1). Then,
ar = 1—"&5

— TAk—1
Ok-1= T

__ _ray
a = 1+aj

__ _rag
ao = 14a}
So,

If ar, = 0 and r # 1 then,

ag=a1=..=a,=0

which is impossible (ax, = 0 and r # 1 is a conradiction).
If a 7 0 and 7 # 1 then,

ap =01 =..=aq =72
which is impossible (ax 7# 0 and  # 1 is a conradiction). This result in

r=1.
To complete the proof, we use r = 1 at above equalities

—_— a

Ok = Tyer

Qe —
Qk—1 = 1'*'“’,1;
—
1 14+a3

— _ag

Go = 1+a}

Let’s do the proof with induction. Assume that k =1,
—_ e

a1 = 1+ap
— _T2o

@0 = 14aj

So one of the solutions is certainly equal to 0.(a; = 0 or ag = 0)
Assume that k =t — 2 (¢ 2 5 is an odd number),

— T8t—2
-2 = Tiap
a — TOt-3

t-3 = el

_— _Ta
@1 = 1¥ay

_ _ra
@ = 1her

these solutions must be at least in number 1‘;2.}*'—1 = 51 equal to 0.

Assume that k = ¢,
— a
a = 1+a}
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— OBt
Gt-1 = Tor

p— a
ar = T+a}

_ _ag
Qo = 1+af

We separete and then search the above equalities, with result of
k = t assumption. Hence, if k = t we get these solutions are at least in
number ‘—"2'—1 equal to 0. Now let’s indicate that one of these solutions is
greater than 0. All the solutions will be positive so it is equal or greater
than 0. Let none of them be greater than 0. If they aren’t greater than
0, then all the solutions equal to 0. This conrasts that all of the solutions
which aren’t equal to with each other at the same time hypothesis. Then
at least one solution certainly greater than 0. This completes the proof.

Theorem 6. Assume that r > 1, then Eq.(3.1) possesses an unbounded
solution.
Proof. From Theorem 3, we can assume that (3.3) without loss of generality
that the solution {yn};2 _ (1) of Eq.(3.1) is such that
Yon+1 < 2 and yon42 > 72 for n > 0.
Then
Y2n+1 = TVan—k Pk Yon~k
nt 1 + ygn_(k_‘_l) 1 + (T - 1) n
and
y — TYon—(k—-1) _ TY2n—(k-1) =y
T T, 1+ (r—1) Yoo
which it follows that
lim yp, =00 and lim yon4; =0
n—o0 n=—00
Then, the proof is complete. O

Remark 1. If k = 1, the results in [1] follow directly.
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