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Abstract

In this paper we give another proof for labeled spanning forests of
the complete bipartite graph K ,» and obtain two Abel type polyno-
mials. And then we investigate the enumeration of no-trivial rooted

labeled spanning forests of the complete bipartite graph Ko n.
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1 Introduction

Let Ky, 5 be a labeled complete bipartite graph with vertex set V(K z) =
AU B, |A| = m, |B| = n. A forest of | + k labeled rooted trees as span-
ning subgraphs of K, , with [ roots in A and & roots in B is denoted by
[m, l;n, k] — forest (I < m, k < n) while the number of [m, [; n, k]-forests is
denoted by f(m,!;n, k).
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In [1}, Y. Jin and C. Liu obtained the following results.
Theorem A Form>0,n>1andk>1

R

where £(0,0;1,1) is defined to be 1.
Theorem B For1<l<mandl1<k<n

flm,lin, k) = (’?) (:) A==k (ke 4 In — k).

Let [m,l;n,k]* — forest denote [m,l;n, k]-forest with ! fixed roots in
A and k fixed roots in B. Similarly, f*(m,!;n,k) denotes the number of
[m,1;n, k}*-forests.

It is easy to know that
samtink) = (1) (3) £ emtimob) &
From Theorem A, B and (1), we have
£*(m,0;n, k) = km™~kpm=1 (2)

A m,n, k) = ™ Im = (km o+ In - k) (3)

In fact, we have the following recurrences

n-k m
f‘(mv 0; n, k) = E Z (n : k) (T;l)f‘(jao;i"‘lv l)f‘(m'—j’ 0; n—'i_l’ k—l)
i=0 j=0

(4)
n—km=l
fr(m,link) = Z% 20 TG0k + 4, k) f(m ~ G lin — k= 1,0)
= J=
n—km-i
=z X TG0k 46k f (= k= 6,0;m — 5, 1)
= J:
(8)
We consider only formula (4). Notice that k trees with fixed roots in B

can be decomposed into one tree with fixed root and k — 1 trees with fixed
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roots. The formula (4) can follow. Thus combining formula (2) and (3).
We obtain an identity as follows

:‘gé 75 (';) FE+ 17k - 1)(m = j)**(n — i = 1)m—i-1
= kmnr—kpm-1
(6)
where we define 0° = 1.
Similarly we can deal with formula (5) through the same method. Then

we obtain the following equation

n—km—l .
PPN ("R (" )k + iy =15 m = j)ni=k=l(n — k — j)m=i=t
=™l (km + In — kl).

(M

Conversely, if we first proved identities (6) and (7) then using induction
and formulas (6) and (7), we can prove formulas (2) and (3). Then Theorem
A and Theorem B are proved by another method.

A component of forest consisting of only a vertex is also viewed as a
rooted tree in [1]. Such rooted tree is called trivial tree while spanning
forest without trivial tree is called no-trivial spanning forest. A natural
problem is how to count the number of no-trivial spanning forests for a
labeled complete bipartite graph. In this paper we will settle the problem.

All of first, we will introduce Foata’s method for enumeration of the
subset of [n]/™ and then prove (6) and (7) by applying this method in the
next section. In Section 3 an inverse relation will be proved. Then applying
the inverse relation, we obtain some enumerations for no-trivial spanning

forests of complete bipartite graph in final section.
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2 Another proof for labeled spanning forests
of the complete bipartite graph

First of all, we will introduce the enumeration of the subset of [n]("!, due
to Foata (§1.18 of [4]), where [n}!*] denotes all mappings from [r] onto [n]
and [n] = {1,2,...,n}.

Given E C [n]i"], consider the enumeration of E, i.e. the (commutative)
polynomial 7T = Tg = %t( f). Take E C [3]©® for example, where E =

{f1, f2, f3, fa} with fl(":)f= 1,fori=1,2,3; fa(1) =2, f2(2) = 2, o(3) = ;
f3(1) = 2, f3(2) = 3, f3(3) = 1; and fu(1) = 2, fu(2) = 1, fu(3) = 2.
We have t(f1) = &3, t(f2) = t(fs) = 1t} and ¢(f3) = titats. And thus
Tg =t + 24,13 + titats.

We can give more examples here. (1) Set E = [n](®. Then Tg =
(1 +t2+ -+ +t,)™ (2) If E is the set containing all functions fixed at
1,2,....k, Tg =tits.. . tg(t1 +t2 + - - +t2)*F. (3) If E is the set which
contains all acyclic functions rooted or fixed at 1,2,...,k, then Tg =
tita.. . te(ti+to4 - Hte)(t1+t2+- - -+t,)" %1 Evidently, Tg(1,1,...) =
|E|. Therefore, we have (1) |[7)™)| = n"; (2) the number of functions fixed
at k elements is n»~*; (3) the number of forests rooted at k given vertices
is k- nn—k-1,

We can deduce some properties of 7. The coefficient of ¢5:¢3? ... in
Tg(ty, ta,...) is the number of f € E in which there are oy 1, a2 2, .... If
E can be classified into some types E, Eo,..., writtenas F = E1+Eo+.. .,
thenTg = Tg,+T g,+.... Iffor any f € E thereexist f; € E;(i = 1,2,...)
such that f = fife...,ie. E=E1E;...,then Tg=TEg,TE,....

We now consider the enumeration of a subset of [n + m + 2](n+m+2],

Let E C [n+ m + 2)("*™+2 be a set containing all acyclic functions
rooted or fixed at n + 1 and n + 2 such that for any f € E, f([n]) is
[n+m+2] = [n+2] while f([n+m+2]—[n+2]) is [+ 2]. Then we have
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Te

= tasitnt2(tnsstingat- - Hinimt2) (Ensr1Htnse) G+ +  Hing2)™ !

(8)

On the other hand, E can be divided into two parts, one rooted at

n+1and the otherat n +2. Let X C [n], Y C [n+m + 2] - [n + 2],

X|=iand |Y|=j.8et X =[n]- X, Y =(jn+m+2]—[n+2]) - Y and

= XU{n+1}UY. Consequently, 0 <i<n,0< j<m, [X|=n—iand

Y =m—j. Let E; C E(i = 1,2) be the set containing all acyclic functions

rooted at n +¢ and for any f; € E;, fi(X)=Y and fi(Y)=XuU{n+1}

while fo(X) =Y and fo(Y) = XU {n+2}. Obviously, we have E = E; E».
Thus

Tewxy) =Te,x )T ExY)

= tn+1(z tq)lxltn+l(tn+l+z t,,)lyl_ltn+2(z tq)wltn+2(tn+2+z t,,)'yl'1

q€Y PEX €Y peX

(9)
By Eqgs.(8) and (9), we obtain the following identity

(bns1 +tng2)(tr+t2 4+ tns2) ™ (tnas + tnpa + o - + tppmaa)”

=>> ( ) ( )tn+1tn+2(tn+l+z t?)]_l(tn+2+z to)™ I ) (Dt

i=0 j=0 peX qeY 34
(10)

Set tny1 =2, tnpe =y+nz, ti==-z(i€n+m+2|-{n+1,n+2})
in (10). We obtain an Abel type polynomial as follows

Theorem 2.1 For any real numbers z,y and real integer z, we have
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(z +y+n2)(z+y)" " -m2)"

-2 (n) (?)”"“y*"z)(w—z'z)f-‘(y+z’z>'"-f-1(—jz)‘{—<m-j)zl"-"

i=0 j=0

In the following we will enumerate a subset of [n + m + 4][*+m+4],

Suppose that E C [n + m + 4]("*™+4 is g set containing all acyclic
functions rooted or fixed at n + 1,n +2,n +m+ 3 and n + m + 4 and for
any function f € E, f maps from [n] onto [n + m + 4] — [n + 2] and from
[n+m+2] - [n+ 2] onto [n +2].

If there exists no elements mapping onto a root, then the root is an
isolated point. By the definition of E, for any f € E, the possible isolated
point set of f is one of the sets @, {n+1}, {n+2}, {n+m+3}, {n+m+4}
{n+1,n+m+3}, {n+1,n+m+4}, {n+2,n+m+3}, {n+2,n+m+4},
{n+1,n+2,n+m+3}, {n+1,n+2,n+m+4}, {n+1,n+m+3,n+m+4}
and {n+2,n+m+3,n+m+4}.

Let E;, E; and E3 be subsets of E, where the isolated point sets of E;
are {n+1}, {n+2} {n+1,n+m+38}, {n+1,n+m+4}, {n+2,n+m+3},
{n+2,n+m+4}, {n+1,n+m+3,n+m+4}, {n+2,n+m+3,n+m+4}
and @, E, contains {n+m+3}, {n+m+4} {n+1,n+m+3}, {n+1,n+
m+4}, {(n+2,n+m+3}, {n+2,n+m+4}, {n+1,n+2,n+m+3},
{n+1,n+2,n+m+4} and @ as isolated point sets and the isolated point
sets of B3 are {n+1,n+m+3}, {n+1,n+m+4}, {n+2,n+m+3},
{n+2,n+m+ 4} and @. Then we obtain

TE = TE] + TEQ —TEa’

where

T E, = tn+m+3tn+m+4(tn+1 + tn+2)(t1 +ta+:+ tn+2)m-1tn+1tn+2

X(tn4s +lnga+- -+ tnrm+d)”s

T B, = tatitns2(tneme3 +inimta)(tnss +inga +00 + tnymaa)” !
Xtntm+3tnimea(ts +t2 + o+ tng2)™
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and

T B = tatitns2(tnemss +tnemea)(B1 H 2+ + tni2)™ Unpmes
><tn+1'n+4(tn+1 + tn+2)(tn+3 Filnpat+-oo+ tn+m+4)n_1
E can be separated into two groups, one rooted at n + 1 and n + 2
while the other at n+m +3and n+m+4. Let X C [n)and Y C
[n+m+2]~[n+2]. Suppose |[X| =i and |Y| = j. And thenset X = [n]- X
and Y = ([n +m + 2] — [n + 2]) - Y. Following the similar discussion as to
obtaining Eq.(9), we have

TEx.y
= tasrtns2( 2 L)X (tns1 + tna2)(trsr Ftaga + 2 £)Y Mnymya
qeY peEX

th+m+4( 2 tp)lvl (tn+m+3 + tn+m+4)(tn+m+3 + tn+m+4 + Z tq)'yl_l
peX 3%

Thus we obtain the following equation.

(tnt1 +tn2) (1 + -+ tng2)™ HEnas + -+ tnpmad) (Engs + . .
Hntmad) + (Engmes + tngmaa) (s + o Ftngmea)" "t + o F Eng2)™

= gwé) (D) GHEnsr + tns2)(tnsr + tnsz + ,,g( tp)’ _l(pé\_")‘z tp)™d

X(tntm+3 + tnemsa) (X t) (bntme3 + tngmea + 2 tg)" 71}
qeY qeY

(11)

Set tny1 = T,tn42 = y+n2, tnymes = 4, them+sa =w+mzandt; = -2
(te(n+m+4-n+l,n+2,n+m+3,n+m+4)) in (11). We can
deduce another Abel type polynomial.

Theorem 2.2 For any real numbers z,y,u,w and z, the following identity
holds.
{(z+)(u +w) - nm2?}z + )™ (u + w)™?
n m . .
=3 ¥ (D@ +y+n2)(z+y+nz — iz}~ (~nz + iz)™
i=0 j=0

X(u +w+ mz)(—jz)i (v +w+ jz)* i1}
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Applying Theorem 2.1 and Theorem 2.2, we can prove Theorem A and
Theorem B in another way, respectively.

If we replace n by n — k in Theorem 2.1 and set z =1y =n—1 and
z = —1, we obtain identity (6). Replace n and m by n —k and m — [ in
Theorem 2.2, respectively and then set z+y = n,u+w =mand z = -1, we
obtain identity (7). By (1), we have Theorem A and Theorem B. Actually,
if substitute n for n — k and set t,41 =1, tpye =k — 1 and ¢; =1 in (10),
we also can obtain identity (6). Similar method can be applied to deduce

identity (7).

3 An Inverse Relation for Multiple Variations

It is well-known (see [2]) that the inverse relation
n X
=3 (Horsa? = b= ()onst-ar, )
720 20 M

where « is constant.
Let o = 1. It is the famous binomial inverse relation as follows.

n .
n=3 ( )b,,_, = bh=) ( ,)an_,-(—l)’. (13)
320 izo M
Applying binomial inverse relation k times, we obtain binomial inverse

relation for & variations.

Qny,na,... e = H (t‘)btht2v ot
420 i=1
1<i<k
<= bpmge= 2 (- l)zm-zt‘_ (m)atn,tz' otk
20
1‘<‘t<k

Now we will generalize formula (13} to another inverse relation for mul-

tiple variations as follows.
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Forsomer, 1 <r <k,

nyngpeiny = 2 (zr)bm-j‘ﬂz—j,--nﬂk-j
j20
(14)

— bn;,nz,...,nk = go("l)] (';r)anl—j,nz—j,...,nk—ja
72

where j < min(ny,ng,...,n).
Without loss of generality, we change form (14) to its equivalent form

(15) as follows.

Ony gy = 2 (?)bm—.‘i,nz-j.m,nk-j (15.1)
j2o0

(15)

= bnyngene = ;}(_l)j('}l)am-imz—jw-.m-j’ (15.2)
72

where min(ny,ne,...,nx) 2 J.
Now we use generating function to prove inverse relation (15).

Proof. Let

An, (t2:t3,- .., tk) = Z Gny -ﬂz.o..,nktgztgs AN t;:"
n; 20, 2<i<k
Bo,(ta)ta,-stk) = D bnyng,..n, 550 tRk

n:20, 2<i<k

We will prove (15.2) = (15.1).

Bnl (t2’ t3, e ’tk)
= X (X (1Y () ani—jna=ime—3)t3 85" . 11*

n;20 720
2<i<k

= ;0(_1)-7 (';‘)t%t% e tl]c za"l‘j,nz—j,...,nk—jt;n-"t;“"_] L t:k_j
j2

= §) (';I)An,_j(tg, tay...,te)(—tots... tk)j.
12
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Since t;(i = 2,3,...,k) doesn’t depend on j, by inverse relation (12)

An,(t2,t3,.. . tk) = go(';.')B,,,_,-(tg,ta,...,tk)(tztg...tk)f
1z

= go('}‘) 2 bny-juatdt - G5 (ota L tk)
12

vy 20
2<i<k

= 2 (';l)bnl —=J1V2yeenyVk t12,2+J e t:k‘h’

= Z: 2 (';l)bnl—jlnﬁ-jv--ynk"'jtgz v t:k'

Then

nl na Nk
Any,ng,...,npe = (] )bnl-j,ng—j,...,ng—jtz . 'tk )

where min(ny,ng,...,nk) > J.
Similarly, we can prove (15.1) = (15.2). [ |
If k = 2 in (14), we have

min(n,m)
afnm) =" > (})bln—,m—3)
jzo (16)

min(n,m) .
<= b(n,m)= Z>30 (1Y (3)a(n - jym - 4).

4 Counting No-trivial Spanning Forests of Com
plete Bipartite Graphs

Let F(m,;n, k) denote the number of no-trivial spanning [m, {; n, k]-forests
of labeled complete bipartite graph K, ». We obtain the following enumera-
tions for F(m, l;n, k). It is easy to know F(0,0;1,1) = 0 and F(m,0; n, k) =
0 if & > min(n, m).

298



Theorem 4.1 For min(n,m) > k > 1,
= mn—k q — a\ym-1
F(m,0;n,k) =m n(k 1)PZO( 1) ( . )(n g™ L.

Proof. According to the definitions of f(m,0;n, k) and F(m,0;n, k),
we have

Z (:)F(myo;n_q’k_Q) =f(m10;n’k)‘

q20

By the inverse relation (12) and Theorem A, we have

F(m,0;n,k) = Zo(—l)"(;‘)f(m,o; n—g,k—q)
a2
= Z( -19(Q) GZIZ)mF(n — g™

= m"- n(n-l) E( 1 (k;'l)(n—q)m—l.

Theorem 4.2 For min(n,m) 2121, min(n,m) >k > 1,

Fm,in, k)= (T)(}) Z (-1) m+n-P-q( ) (k) (n - q)™=1-1
q>0
x(m — p)*~*~1[m(k — ) + n(l - p) + pg — ki].

Proof. Since

z (7:) (Z)F(m—%l—?;n—q,k—q) = f(m,l;n, k),

P20
q20
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by the inverse relation and Theorem B, we have

F(m,l;n,k)
= 3 (-1 (T)(Q) f(m —pl-pin—q,k-q)
30

= X (s () () (1) () (= ) ()b

p20
q20

x((k—q)(m —p)+{—p)(n—q) - (k—g)(-p)

= (D) TEY™P ) Q- gm

P20
q20

x(m — p)"~*~(m(k — q) + n(l — p) + pq — kl).

In fact, using inverse method and the result in (3], we also can obtain

enumeration of no-trivial forests for a complete graph K,,.
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Abstract

Let G be a finite simple x-chromatic graph and £ = {L, hevioy
be a list assignment to its vertices with L, C {1,...,x}. A list
colouring problem (G, £) with a unique solution for which the sum
Euev(o) |L, | is maximized, is called a mazimum x-list assignment of
G. In this paper, we prove a Circust Simulation Lemma that, strictly
speaking, makes it possible to simulate any Boolean function by ef-
Jfective 3-colourings of a graph that is polynomial-time constructable
from the Boolean function itself. We use the lemma to simply prove
some old results as corollaries, and also we prove that the following
decision problem, related to the computation of the fixing number of
a graph [Daneshgar 1997, Daneshgar and Naserasr, Ars Combin. 69
(2003)), is =5 -complete.

ProBLeM FIXGRPHCOL
Given A graph G and two integers k and m.

Question Does G have a maximum k-list assignment, £, with

> Lg2m?

w€V(G)
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1 Introduction

Consider a list colouring problem (G, L) where £ = {L,} .y, is a list

assignment to the vertices of the graph G. If s def 2y © |L,| then one

may naturally ask about the maximum value of the number s if one is
restricted to the list assignments for which the list colouring problem (G, £)
has a unique solution.

In this paper we consider this problem for the maximum x-list assignments
of a x-chromatic graph G for which the list colouring problem has a unique
solution and the parameter s is maximized. Also, we show that the extremal
case in which the list of a vertex is the set {1,...,x} in any such maximum
list assignment, is feasible, by a direct construction (Section 2).

It turns out that such vertices, in a sense, can be used as isolating vertices
in a construction that introduces a reduction which shows that the problem
FIXGRPHCOL (introduced in the abstract) is X§-complete. The second
part of the paper introduces a general type of reduction that suits best
when one deals with decision problems concerning unique colourability of
graph (Section 3.1). Then by applying this reduction (Theorem 2) and
the existence result on isolated vertices (Theorem 1) we prove our X%-
completeness theorem in Section 3.2 (Theorem 3).

Throughout the paper the word graph stands for the concept of a finite
undirected graph. For any such graph G, the vertex set and the edge set
are denoted by V(G) and E(G), respectively. Also, a graph homomorphism
o € Hom(G, H) is a map ¢ : V(G) — V(H) such that

wv € E(G) = o(u)o(v) € E(H).

It is easy to see that graphs and their homomorphisms form a category.
Also, a homomorphism from a graph G to the complete graph K, is called
a proper t-colouring or a t-colouring of G for short.

Given a graph G, consider a set £ = {L,},cy With L, C {1,...,t}
such that ¢ > x(G) is a fixed integer. A graph G is called uniquely £-
list colourable, if the list colouring problem, (G, £,%), on G with lists £ =
{L,},evq has a unique solution. A graph G is a uniquely ¢-colourable
graph if the ordinary proper t-colouring problem on G has a unique solution,
up to a permutation of colours (for more on uniquely list colourable graphs
see [5, 9]).

To see that this can also be viewed as an embedding problem, assume
that the list colouring problem (G, £,t) is given, and let H = G UK, with
V(K,) = {v,,...,v,}. Also, assume that (without loss of generality) we
have fixed the colours of vertices V(K,) = {v,,...,v,} such that v, has
taken the colour i for all i € {1,...,t}. Now, one may construct a new
graph, H , ,, such that for each u € V(G) and L, € £ we add new edges
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®, ={uv; | i¢L,} to the graph H. If

2% |J o

wEV(G)

then it is clear that Hg ,, with the vertex set V(H) and the edge set
E(H) U @ is a uniquely ¢-colourable graph (or a t-UCG for short) if and
only if the list colouring problem (G, £, ) has a unique solution i.e. G is a
uniquely L-list colourable graph. Hereafter, we will freely switch between
the embedding setup and the list colouring approach.

When H ,, is a t-UCG, this set of new edges, ®, is called a fizing set (of
edges) for G (with respect to K,) and it is easy to see that

|®| =tV(G) - Y IL,|.

u€V(G)

An element of a fixing set is called a fizing edge. On the other hand, one

is mainly interested in the minimal case, for which (G, £,t) has a unique

solution and the sum Z |L,| is maximized. Hence, ¢,(G,t) (for any
w€EV(G)

fixed t > x(G)) is defined as
&, (G, 1) def min{|®| | ® is a fixing set for G with respect to K,}. (1)

Also, ¢(G,t) def $,(G,t) — (3) is called the fizing number of G with respect
to K, (see [2, 3, 4, 10)).

Theorem A. [4] For any k-chromatic graph G, ¢,(G, k) > (£) and equal-
ity holds if and only if G is a k-UCG.

Accordingly, any list colouring problem (G, £, t) with a unique solution for
which the sum Z |L,| is maximized, is called a mazimum t-list assign-

uEV(G)
ment for G, and the corresponding ¢-colouring of G for which the minimum

in (1) is attained, is called a minimum t-colouring of G. By definition it is
clear that minimum ¢-colourings of G are induced by the unique ¢-colouring
of the extensions H, , , in cases that ® is a minimum-size fixing set of edges
for G with respect to K,.

Let i # j, o be a t-colouring of G, and w,,(G,0) denote the number of
components of the subgraph of G induced on the vertices whose colours are
in {i,j}. We define,

2G,0) ¥ Y w,(G,o0)

1Si<jst
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Also, let
i def .
qQmin(G, ) % min( Y w,(G,0)),
1gicsgt
in which the minimum is taken over all ¢-colourings, o, of G. We recall the
following result,

Theorem B. (3] For eny k-chromatic graph G and t > k, if ® is a fizing
set of G with respect to K, and o, is the corresponding colouring of G, then
(G, 0,) < |®]. Moreover, Q™"(G,t) < ¢,(G,1).

2 Isolated vertices

In this section we introduce the concept of an isolated vertezr. Strictly
speaking, an isolated vertex is a vertex that does not contribute to any
minimum-size fixing set, i.e. such a vertex has a list of size x in any
maximum x-list assignment.

Definition 1. A k-isolated vertez for the fixing sets of the x-colourings
of a x-chromatic graph G, is a vertex v € V(G) such that

o The vertex v is incident to at most k edges of any minimum-size fixing
set of G.

o There exists at least one minimum-size fixing set of G in which v is
incident to exactly k edges.

A O-isolated vertex is called an isolated vertez for short. &

By considering graphs of small order and the fact that an isolated vertex
must have a list of maximum size in any x-list assignment with a unique
solution, one may guess that such vertices does not exist at all. However,
in the sequel we will prove that such vertices exist.

In the following proposition K[@,®,®)] denotes a 3-clique on the vertex set

{©,®,®} (see Figure 3(a)).

Proposition 1. The graph F depicted in Figure 1 has the following prop-
erties,

a) The set {bD, &®), e®, h®} is a fizing set of size 4 for F with respect
to K@, ®,®)-

b) Ifo:V(F) — {0,1,*} is a minimum 3-colouring, then we have,

o(a) = o(b) # ofe).
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c)

d)

Figure 1: The graph F (see Proposition 1).

The minimum 3-colouring of F is uniquely described as follows, up to
a permutation of colours,

o(a) =a(b) =0, o(d) =0o(e) =0(g9) =a(h) =1 and o(c) = o(f) = *.

The vertez h is a 1-isolated vertex of F.

Proof.

(a)

(b)

It is easy to check that {0, b®, @, i®} is a fixing set of size 4 with
respect to K[@, D, ®)] (note that the vertex f can not take the colour
1 in the corresponding list colouring problem).

If o(a) # o(b), without loss of generality, we may assume that o(a) =
0 and o(b) = 1. This implies that o(c) = o(d) = * and o(e) = 1.
Hence,

Woy (F: U) 21, Wy, (F’ U) 21, w. (F’ 0) =3,
and by applying Theorem B we should have ¢, (F, o) > Q™"(F, 3) >
5, which is impossible.

. On the other hand, if o(a) = o(e), without loss of generality, we may

assume that o(a) = o(b) = o(e) = 0. Hence, o(v) # 0 for any such

vertex v € {c,d, f, g, h}, and consequently, the graph F — {a,b, €} is

the subgraph induced on the colours 1 and *. Therefore, we have
wo, (F,0) +w,, (F,0) 23, w, (F,0)=2,

and by applying Theorem B we should have ¢, (F, o) > Q™*(F, 3) >
5, which is impossible.
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(c) Let o : V(F) — {0,1,+} be a minimum 3-colouring of F and let &
be a fixing set of ¢ such that |®| = 4. By part (b), without loss of
generality, we may assume that

o(a) =0()=0 and o(e) =1.

It is easy to see that this partial conditions uniquely characterize the
colouring o as,

o(d) =o(g) =a(h) =1 and o(c)=0(f) =%,
up to a permutation of colours.

(d) Let ¢ : V(F) — {0,1,*} be the minimum 3-colouring of F (intro-
duced in part (c)) and let & be a fixing set of o such that |®] = 4.
Assume that two edges in ® are incident to h and fix the colour of h
as 1. Then,

— There is an edge in ® that connects vertices e and ©@.

This is clear since any neighbour of e takes the colour * in o.
— There is an edge in ® that connects vertices b and ®.

To prove this, first, assume that the colours of all vertices except
b,d and f are fixed. Then the extension problem is equivalent
to a list colouring problem on the triangle K[b, d, f] in which the
size of the lists assigned to any one of these three vertices are
2. But since a triangle is not a U2LC [5, 9] we deduce that the
extension problem has two feasible solutions. This proves that
there should be at least one fixing edge in & that is incident to
one of the vertices b,d or f.

On the other hand, we may consider a similar situation in which
the colours of all vertices except a,b,c and d are fixed. By a
similar argument since the 4-cycle C, is not a U2LC [5, 9] we
deduce that the extension problem has two feasible solutions,
and consequently, there should be at least one fixing edge in ®
that is incident to one of the vertices a,b,c or d.

Since we have assumed that |®]| = 4 and that we already have
two fixing edges incident to h and one fixing edge incident to e,
there should be a fixing edge incident to {b,d, f} N {a,b,¢,d} =
{b,d}.

However, since o(h) = o(e) = 1, the fourth fixing edge must be
incident to a vertex whose colour is in {0,*}. This implies that
this fixing edge must be incident to b and ®.
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These facts imply that ® = {h©®, h®, e@, ¥®}. But it is easy to check
that the colouring & defined as

5(0) =5(f) =0, 5(5) =5(e) = () =6(h) = 1, 5(c) = 5(d) = %

is also compatible with ®, which is the desired contradiction.
Also, part (a) shows that there exists a minimum-size fixing set in
which there is a fixing edge incident to h.

Let h be a l-isolated vertex of a graph H. Consider two copies of the
graph H, namely H, and H,, in which the vertices h, and h, are 1-isolated,
respectively. Construct the graph T, [w] on the vertex set V (H, )UV (H,)u
{w} by adding three new edges {h,h,, h,w,h,w} along with all edges in
E(H,) U E(H,) (see Figure 2).

At first it may seem intuitively natural to deduce that the vertex w in
Ty [w] is an isolated vertex, however, we would like to note that it does
not seem to be easy to exclude the existence of a minimum fixing set in
which there is only one fixing edge incident to w, since one could consider
a case in which, x(H) = 3, H has a minimum fixing set of size k and also
a fixing set of size k¥ + 1 in which there are two fixing edges incident to
h. Now, one may use k fixing edges to fix the colours in H,, and one
more fixing edge incident to w in order to fix the colour of w along with
(k+ 1) — 2 = k — 1 more fixing edges on H, to fix the rest of the colours.
- The following theorem shows that such cases can not happen.

Theorem 1. Let h be a 1-isolated vertez and k be the size of a minimum-
size fizing set of the graph H. Then, any minimum-size fizing set of Ty, ,, [w]
contains ezactly 2k — 1 fizing edges. Moreover, the vertex w is an isolated

vertex of this graph.
H, Hp
g
w

Figure 2: The graph Ty, [w] (see Theorem 1).
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Proof. To show that any minimum-size fixing set is of size 2k — 1, note
that since h is a 1-isolated vertex of H, there exists a minimum-size fixing
set ® = ¥ U {h®} for H. Now, fix the colouring o, of H, using the fixing
set & such that o, (h,) = * (possibly by applying a permutation of colours).
On the other hand, it is also possible to use the set ¥ to fix the colouring
o, of H, such that o,(h,) = 1 since there is an edge between the vertices
h, and h,. Then it is easy to see that the union of the colourings o, and
o, has only a unique extension to a colouring ¢ of the graph T, [w] and
moreover we have o(w) = 0. This shows that for any minimum-size fixing
set © of Ty, [w] we have 6] < 2k — 1.

On the other hand, let © be a minimum-size fixing set of T, [w] such that
|©] < 2k — 1. Since h is a l-isolated vertex of H, the subset A C © of
fixing edges incident to V(H,) — {h,} contains at least k — 1 fixing edges.
Also, since a similar statement is true for the subset B C © of fixing edges
incident to V(H,) — {h,}, we deduce that © = A U B and, moreover,
|A|=|B|=Fk~1.

Now, since the size of any minimum-size fixing set of H is equal to k, and
moreover, @ = AU B is a fixing set of Ty, [w], there exist two colourings
o, and v, for H, which are compatible with A and o,(h,) # 7,(h,).
Also, with the same reasoning, there exist two colourings o, and vy, for H,
which are compatible with B and o, (h,) # 5 (h,)- Hence, it is easy to see
that by using the P. Hall’s theorem on the triangle K[h,, h,,w], one can
construct two different colourings ¢ and v for T, [w] which are compatible
with ©. This is a contradiction, and consequently, for any minimum-size
fixing set of Ty, [w] as © we have O] =2k -1.

Using a similar reasoning, one may note that for any minimum-size fixing
set of T,,,,,[w] as ©, it is impossible to have only one fixing-edge in © that
is incident to w. .

Also, it is clear that the number of fixing-edges in © incident to w can not
be equal to 2, because in that case, the number of fixing-edges in © incident
to H, or H, must be less than k — 1 which is not possible. |

3 Algorithmic considerations

3.1 A circuit simulation lemma

Let C be a Boolean circuit computing an n-variable function? f. Our goal
in this section is to construct a graph G on the vertex set XUWUY’, where
X = {z1,22,...,Zn}, R = {®,0,®} € W and Y = {y}, in such a way

2We loosely do not distinguish between a Boolean expression and the corresponding
Boolean circuit.
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that,

i) x(G) =3.

ii) In any 3-colouring of G with three colours {0, 1, *}, the elements of
R are forced to take different colours, and the elements of X cannot
take the same colour as the vertex ®.

iii) Any arbitrary function oo : X U R — {0,1,+} with 6o(®) =i, (i =
0,1,*) and go(X) C {0,1}, is uniquely extendable to a proper 3-
colouring o of G in an efficient and computable way.

iv) We have o(y) = f(o(z1),0(z2),...,0(zp)).
v) The size of G is linearly bounded by the size of C.

Since in what follows we need to construct graphs using amalgams, we
introduce the concept of a marked graph and we use the corresponding
formal constructions to present the necessary amalgam constructions in an
efficient and precise form. (Although what follows is a concrete formulation
which is more or less classical, e.g. as in the theory of graph grammars [6],
or amalgamated products of groups [12], a reader who is not familiar with
the basic concepts of category theory may intuitively think of constructions
as amalgams by disjoint union and identification of vertices. Examples 1
and 2 are sufficient to grasp the essence of the definition necessary to follow
the main results of the paper.)
Let X = {z,,z,,...,z,} and G be a set and a graph, respectively, and also,
consider a one-to-one map ¢ : X — V(G). Evidently, one can consider g
as a graph monomorphism from the empty graph X on the vertex set X to
the graph G, where in this setting we interpret the situation as a labeling of
some vertices of G by the elements of X. The data introduced by (X, G, g)
is called a marked graph G marked by the set X through the map g. Note
that (by abuse of language) we may introduce the corresponding marked
graph as G[z,,z,,...,z,] when the definition of g (especially its range)
is clear from the context. Also, (by abuse of language) we may refer to
the vertez x; as the vertex g(z,) € V(G). This is most natural when
X C V(G) and vertices in X are marked by the corresponding elements in
V(G) through the identity mapping. As an example, Figure 3(a) shows a
graph, K;, marked by the set X = {@®,®,®}.
If¢: X — Y is an onto (but not necessarily one-to-one) map, then one
can obtain a new marked graph (Y,H,7) by considering the push-out of
the diagram

YE&X-5HG
in the category of graphs. It is easy to check that the push-out exists and
is a monomorphism. Also, it is easy to see that the new marked graph
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(Y,H,7) can be obtained from (X, G, g) by identifying the vertices in each
inverse-image of ¢. Hence, again (by abuse of language) we may denote
(Y,H,7) as Gls(z,),s(2,),-.-,5(z,)] where we allow repetition in the list
appearing in the brackets. Note that with this notation one may interpret
z,’s as a set of variables in the graph structure G{z,,z,,...,z,], such that
when one assigns other (new and not necessarily distinct) values to these
variables one can obtain some other graphs (by identification of vertices).
On the other hand, given two marked graphs (X, G, o) and (Y, H, 7) with
X = {z,,%,,...,%,} and Y = {y,,9,,-..,¥,}, one can construct their
amalgam (X,G, ) + (Y,H,7) by forming the push-out of the following
diagram, )
H& XNnY -5 G,

in which 7 & T|xny and @ & ol xny - Following our previous notations we
may denote the new structure by

G[znxn"”’zh] +H[y,,y,,...,y,]

if there is no confusion about the definition of mappings. Note that when
X NY is the empty set, then the amalgam is the disjoint union of the two
marked graphs. Also, by the universal property of the push-out diagram,
the amalgam can be considered as marked graphs marked by X, Y, XUY
or XNY.
Sometimes it is preferred to partition the list of variables in a graph struc-
ture as,

(e]F 2 JOUUIE NS TR RN A 2 AU 2K (2)

In these cases we may either follow this extended notation, or use bold
symbols for an ordered list of variables and write this graph structure as
G[x;y; 2] (if there is no confusion about the size of the lists). Moreover, it
is understood that a repeated appearance of a graph structure in an expres-
sion as G[v] + G[v, w] is always considered as different isomorphic copies of
the structure marked properly by the indicated labels (e.g. G[v]+G[v,w}] is
an amalgam constructed by two different isomorphic copies of G identified
on the vertex v where the vertex w in one of these copies is marked).

By K[v1,v2,...,vx] we mean a k-clique on {v,vs,...,vx} marked by its
own set of vertices. Specially, a single edge is denoted by &[v;, vz} (i.e.,
g[v1,v2] = K[v1,v2]). In our constructions we use three specific vertices @,
@ and ® as references, in the sense that, the colours of @ and @ play the
role of 0 and 1 signals that correspond to false and true truth values. In
this setup usually a 3-clique K[@,®,®)] is used to ensure that @, ® and ®
take pairwise different colours (Figure 3(a)).

Assumption: Since we will only be considering simple graphs throughout
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the paper, whenever we consider amalgams, it is assumed that we are con-
sidering the base simple graph in which all loops are excluded.

A A <>

(a) K[©,®,®)] (b) vlz,y;®) ¢) {[z, ;@ @)

Figure 3: Some basic structures

Example 1. NOT gate and WIRE
Consider the marked graph v[z, y; ®)] depicted in Figure 3(b) and note that
the structure

NOT[z,4;©@,0,®] ¥ v[z,y;@)] + K[0,,@)

simulates the NOT gate (f,(z) = —z) in the sense described at the begin-
ning of this section. Using the same idea one may define

WIRE[z,; @, ®,®) ¥ ¢[z,4:0,0) + K[0,0,@),
that simulates the WIRE f¢(z) = z, in which

(lz,4:0,@ =
is the marked graph depicted in Figure 3(c). &

E Kz, v,,v,] + Kly, v,,v,] + €[®, v,] + €[v,, @),

Example 2. An interesting gadget

Our next basic structure &[z, y; a, b] (Figure 4(a)) has the interesting prop-
erty that, in every 3-colouring of &z, y; a, b] + K]a, b, c], the vertex z takes
the same colour as ¢ if and only if the vertex y takes the same colour as ¢
(with no other constraint). Alas, fixing the colours of  and y with respect
to a, b and c does not always uniquely force the colouring of the rest of the
structure.

However, by a combination of two & structures as in Figure 4(), we can
construct the structure [z, y; a, b] that also fulfills the unique colourability
condition, i.e.

o In x[z,y;a,b] + K]a, b, ] the vertex x takes the same colour as ¢ if
and only if the vertex y takes the same colour as c.
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a
z Yy
x y
b b
(a) ®lz,y;0a,b] (b) [z, y;a,b]

Figure 4: Other basic structures

o If vertices  and y take their colours from the set of colours of a and
b, then there is exactly one feasible extension of this partial colouring
to a proper 3-colouring of x[z,y; e, b) + K[a, b, c].

o If the colours of the vertices z and y are both the same as the colour of
¢, then there is exactly one feasible extension of this partial colouring
to a proper 3-colouring of [z, y; a, b] + K[a, b, ¢].

é

The next theorem is one of our main results which states that any Boolean
function can be simulated by a 3-colourable graph in the sense we described
at the beginning of this section. Also, in what follows we always assume
that circuits are presented as generalized graphs (with different types of
vertices) and we use the same type of coding for both circuits and graphs
in this sense. (for more on this and the complexity background see [8, 11)).

Theorem 2. Circuit Simulation Lemma
There is a log-space algorithm A, that given a Boolean circuit C for an
n-variable Boolean function 1, computes a graph structure

Ew déf G¢[$1,$,, N ,:B,,;ZB@;@:@] + K[©v®!®]
of size O(|C|), such that

a) For any 1 < i < n and for any 3-colouring o of Gw, we have

o(z;) € {0(@),0(D)}-

b} For any truth assignment A def (a,,0,,...,a,) € {0,1}", there is a
unique proper 3-colouring o, of G, satisfying

0A(®) =i) (i=031:*) and UA(xj) =a,, (J = 112a~~-’n)'
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Moreover, for the unique colouring o, we have o, (y) = ¥(a,,a,,...,a,).

- -0 08
—OoOHO®
|
H OOOWN

(b)
Figure 5: The AND gate (see Theorem 2).

Proof. First, we construct a simulator for the AND gate using the gadget
of Example 2 as follows (see Figure 5). For each vertex z that can not
take the same colour as ®, use the amalgam vz, Z,®)] (see Example 1) to
construct a new vertex Z. Then define,

FIX(x) ¥ &ly,v;®,3], FIX@) % ko, v:0,3, FIX() & sy, 20,0,

ofz,y; ,@,0,®)] ¥ FIX(2)+FIX(y)+FIX(1)+v(z, 2, ®)+v]y, 7@ +[2, @),

AND[z,; 2;0,®,®) ¥ ofz,y;7;,@,0,®)] + K[©, D, @).

It is easy to check that the graph structures NOT[z, y; @, ®,®) (introduced
in Example 1) and AND|[z, y; 2;@,®,®)] satisfy the properties (a) and (b)
stated in the theorem, and clearly, any Boolean function % can be simu-
lated by a graph structure G, [z,,z,,...,Z,;¥;©®,®,®) using amalgams of
the graph structures v[z,y;®)] and o[z, y; z; @, D, ®)}.

On the other hand, by the modularity of this construction, given a par-
tial colouring of the vertices in {z,,%,,...,2,} U {®,®,®}, and using the
knowledge we have about the structure of G, one can complete the colour-
ing of G, and find the extension in time linearly bounded by the size of the
graph. To ensure this, note that the extension process can be decomposed
into a (short) sequence of constant-size unique colouring problems.
Moreover, by the same argument, it is easy to see that the algorithm A
uses a logarithmic amount of memory. |

3.2 Some complexity results

In this section we determine the computational complexity of a number
of problems related to unique colourability using the Circuit Simulation
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Lemma (Theorem 2). In this regard, firstly, we show how some known
results will follow easily from this lemma, and secondly, we prove the 22
completeness of the fizing set problem as the main result of this section.
Since we use various versions of SAT to analyze the complexity of unique
colourability problems, we define 3! as a quantifier to mean “there ezist
ezactly one”. Consider the following problems,

PrOBLEM J'SAT
Given A Boolean expression ¢ over a variable set X = {z,,2,,...,%,}.
Question Is it true that there is ezactly one truth assignment n : X —

{0,1} satisfying ¥?

It is easy to see that 3'SAT is in DP. Yet, it is not known or believed to be
complete in this class, except that VALIANT AND VAZIRANI [13] have shown
the completeness upto randomized reductions (see PAPADIMITRIOU [11]).
Also, it is known that the problem is complete in US (see WELSH [14]).

ProBLEM J*SAT
Given A Boolean expression 3 over a variable set X = {z;,%2,...,2Za},
and a satisfying assignment 7 = .
Question Is it true that there is no satisfying assignment for ¢ other than

7?

The problem is also trivially coNP-complete. Now, we consider the fol-
lowing unique-colouring problems,

ProBLEM J'GRPHCOL
Given A graph G and an inteteger k.
Question Is G uniquely k-colourable?

ProBLEM 3'*"GRPHCOL
Given A graph G and a proper k-colouring o : V(G) = {1,2,...,k}.
Question Is it true that G has no k-colouring other than o (up to a per-
mutation of colours)?
As the first consequence of the Circuit Simulation Lemma we have,

Theorem C.

a) 3'GRPHCOL is US-complete.
b) (P. D. DaAILEY [1]) 3**GRPHCOL is coNP-complete.
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Proof.

a) It is clear that 3*GRPHCOL is in US. To show the completeness,
we use the following reduction from 3!SAT,

Fx; 9x) =+ {G,xy:0.0,6] +cy0), k=3),
where G, is an implementation of the Boolean expression ¥ as ex-
plained in Theorem 2.

b) The problem 3**GRPHCOL is trivially in coNP. To prove its com-
pleteness, let 4(x) be a Boolean expression, and 7 |= . Construct
the graph G [x;y;@,®,®) as in Theorem 2, and extend the partial

colouring
_ T)(‘U) if ve {zl,:cg, vee ,:Bn},
ofv) = {i if v=0Q,
to the rest of the graph. The required reduction from 3'*SAT is as
follows,

(@'x; 9x),n - (G,xy:006) +elyd), o)

Again consider the following version of SAT problem,

PROBLEM 33'SAT
Given A Boolean expression ¥(x,y) over a variable set X UY.
Question Is there any assignment 7|, : X — {0,1} having ezactly one
extension to 7: X UY — {0, 1} satisfying ¥?

The problem 33'SAT is trivially in . To see the $F-completeness con-
sider the following reduction from 3IVSAT,

IVy ; ¥(x,y) = Ix,yod'y ; ¥(xX,¥0) A ((y=y0) V (x,¥)).
Now, consider the defining set problem,

ProBLEM DEFGRPHCOL
Given A graph G and two integers k£ and m.
Question Does the set of k-colourings of G have a defining set of size at
most m?

We have,
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Theorem D. (HATAMI AND MASERRAT [7]) DEFGRPHCOL is X5 -
complete.

Proof. The problem DEFGRPHCOL is clearly in F. Also, we show
that that the following map introduces a reduction from 33!SAT,

IxAy; ¥ix,y)

{

(G, o G, x,y;2,0,0,@] + L;elz,,u,] +€[®, a] +¢[®, 4] +
el@, ] +¢[2,@)) , k=3, m=|x| + 3},

where G, is as in Theorem 2.

For this, let ¥(x,y) be a positive instance of 33'SAT with the correspond-
ing assignment 7|, : X = {0,1}. Then, by Theorem 2, it is easy to see
that the following partial colouring o is a defining set of size x| + 3 for the
set of 3-colourings of G,

Vzu € E(C-}‘b) o(u;) def -n(z;), o(a) def 0, o(b) def 1, ofe) defy,

On the other hand, if (Gw,k = 3,m = |x| + 3) is a positive instance of
DEFGRPHCOL where o/ is & defining set of size |S| = m=|x|+3 for G,
then we claim that {u, | z,u, € E(G,)} U {a,b,c} C S, since the colour
of a vertex of degree one can be chosen from a list of size at least two, even
when one fixes the colours of all the rest of vertices in a partial 3-colouring
of G,.

This proves that {u, | z,u, € E(Gw)} U {a,b,c} = S, and also, it is easy
to see that without loss of generality one may assume,

0@ ¥o, o)1, o)1

Hence, by the definition of a defining set, and Theorem 2 the partial truth

assignment 7|, def ol is a solution for the positive instance v¥(x,y) of
J3'SAT.

Moreover, it is clear by the definition that the reduction is a polynomial-
time many-to-one reduction, and the theorem is proved. |

The next problem is related to the main result of this section as follows,
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ProBLEM FIXGRPHCOL
Given A graph G and two integers k and m.
Question Does ¢,(G, k) < m hold?
(i-e., is it possible to fiz a k-colouring on G, using a fixing set of
size at most m?)

Fi F,
()
w
u

Figure 6: The graph L[u] = Ty, [w] + ¢[w, u] (see Theorem 3).

_ Theorem 3. FIXGRPHCOL is X5 -complete.

Proof. The problem FIXGRPHCOL is clearly in £F. To show its com-
pleteness, define the graph structure L[u] as follows,

def

L[u] = Ty [w] + €lw, u],

where T, [w] is the graph structure introduced in Theorem 1 and F is the
graph introduced in Proposition 1 (see Figures 1, 2 and 6).
Consider the following map, from 33!SAT,

IxFy ; ¥(x,y)
l

(G, ¥ G,[xy; 200,60 + (T;Llz)) + L@ + Li®] +
L{Q) +¢€lz,@)) , k=3, m=7(jx| +3)),

where again G, is as in Theorem 2.

Note that, if we fix the colour of u in a (partial) colouring of L{u], then,
by Proposition 1 and Theorem 1, still we need at least 7 fixing edges to
fix a 3-colouring of L[u], since w is an isolated vertex of Ty, {w]. This
implies that ¢, ('G‘,,) 2 7(|x] + 3), and consequently, similar to the proof of
Theorem D, one may verify that the introduced map is a polynomial-time
many-to-one reduction. [ ]
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