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Abstract

A maximal independent set is an independent set that is not a proper
subset of any other independent set. A connected graph (respectively,
graph) G with vertex set V(G) is called a quasi-tree graph (respectively,
quasi-forest graph), if there exists a vertex z € V(G) such that G —z is a
tree (respectively, forest). In this paper, we determine the largest numbers
of maximal independent sets among all quasi-tree graphs and quasi-forest
graphs. We also characterize those extremal graphs achieving these values.

1 Introduction

All the graphs considered in this paper are simple, finite, undirected, and
without multiple edges or loops. In a graph G = (V, E), an independent set
is a subset S of V' such that no two vertices in S are adjacent. A mazimal
independent set is an independent set that is not a proper subset of any
other independent set. The set of all maximal independent sets of a graph
G is denoted by MI(G) and its cardinality by mi(G).

The problem of determining the largest value of mi(G) in a general
graph of order n and those graphs achieving the largest number was pro-
posed by Erdés and Moser, and solved by Moon and Moser [5]. It was
then studied for various families of graphs, including trees, forests, (con-
nected) graphs with at most one cycle, (connected) triangle-free graphs,
(k-)connected graphs, bipartite graphs; for a survey see [3]. A connected
graph (respectively, graph) G with vertex set V(G) is called a quasi-tree
graph (respectively, quasi-forest graph), if there exists a vertex z € V(G)
such that G — z is a tree (respectively, forest). The concept of quasi-tree
graphs was mentioned by H. Liu and M. Lu in [4].

The purpose of this paper is to determine the largest numbers of max-
imal independent sets among all quasi-tree graphs and quasi-forest graphs
of order n. Extremal graphs achieving these values are also given.
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2 Preliminary

For a vertex z € V(G), let MI_(G) = {I € MI(G) : = & I'} and M1;,(G) =
{I € MI(G) : = € I}. Note that mi(G) = MI_(G)| + MIL4=(G)|. The
neighborhood Ng(z) of a vertex z is the set of vertices adjacent to z in G
and the closed neighborhood Ng(z] is {z} U Ng(z). The degree of z is the
cardinality of Ng(z), denoted by degg(z). A vertex z is called a leaf if
degg(z) = 1. For a set A C V(G), the deletion of A from G is the graph
G — A obtained from G by removing all vertices in A and their incident
edges. Two graphs G, and Gz are disjoint if V(G1) N V(G2) = 0. The
union of two disjoint graphs G; and G is the graph G, UG, with vertex set
V(G1UG2) = V(G1)UV(G2) and edge set E(G1UG2) = E(Gl)UE(Gg). nG
is the short notation for the union of n copies of disjoint graphs isomorphic
to G. Denote by C, a cycle with n vertices and P, a path with n vertices.
Throughout this paper, for simplicity, let r = v2. We begin with the
following useful lemmas which are needed in this paper.

Lemma 2.1. ([1]) For any vertez = in a graph G, the following hold.
(1) mi(G) < mi(G — ) + mi(G — Nglz]).
(2) If z is a leaf adjacent to y, then mi(G) = mi(G—-Ng|z])+mi(G—Ngly)).

Lemma 2.2. Let = be the vertez in a graph G such that mi(G) = mi(G —
z) + mi(G — Nglz]), the following hold.

(1) mi(G — z) = [MI_4(G)|.

(2) For a mazimal independent set I € MI(G — z), I N Ng(z) # 0.

Proof. The results follow from the fact that mi(G — Ng[z]) = [ML-(G)|
and mi(G) = [MI_o(G)| + IMLz(G)|. O

Lemma 2.3. ([1]) If G is the union of two disjoint graphs G and G2, then
mi(G) = mi(G,1)mi(Gz).

The results of the largest numbers of maximal independent sets among
all trees and forests are described in Theorems 2.4 and 2.5, respectively.

Theorem 2.4. ([1], [2]) If T is a tree with n > 1 vertices, then mi(T) <
t(n), where

_ =241, ifniseven;
t(n) = { Pl ifn s odd.

Purthermore, mi(T) = t(n) if and only if T = T(n), where

_ { B(2,232%) or B(4,%5%), ifn is even;
() '{ B(1, 251), * 7 ifnis odd.
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where B(i, j) is the set of batons, which are the graphs obtained from a path
P of i > 1 vertices by attaching j > O paths of length two to the endpoints
of P in all possible ways (see Figure 1).
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Figure 1: The baton B(i,j) with j = j; + 72

Theorem 2.5. ([1], 2]) If F is a forest withn > 1 vertices, then mi(F) <
f(n), where

_J ™ if n is even;
f(m) = { ™ 1 ifn is odd.
Furthermore, mi(F) = f(n) if and only if F = F(n), where

F(n) = 2P, if n is even;
| B(1,2=3722)U sP, for some s with0 < s < 2L | ifn is odd.
3 3

3 Main results

This section gives the solution to the problem of determining the largest
values of mi(G) among all quasi-tree graphs and quasi-forest graphs of order
n. Extremal graphs achieving these values are also given.

Theorem 3.1. If Q 4s a quasi-tree graph withn > 5 vertices, then mi(Q) <
q(n), where

(n) = 3rn—4, if n is even;
W= 141, ifnis odd.

Furthermore, mi(Q) = q(n) if and only if Q = Q(n) or Q = Cs, where
Q(n) is shown in Figure 2.

Proof. By repeatedlty applying Lemma 2.1 (2) to the leaves of Q(n), we
have mi(Q(n)) = g(n). Let = be a vertex of Q such that Q — z is a tree.
Since t(n) < g(n) for n > 5, we may suppose that Q is a quasi-tree graph of
order n > 5 with at least one cycle. Then z is on some cycle of Q, it follows
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Q:(n) Qe(n) Qo(n)
n is even n is odd

Figure 2: The graph Q(n)

that deggz > 2. By Theorem 2.4, mi(Q — z) < t(n —1). On the other
hand, Q@ — Ng|z] is a forest with at most n — 3 vertices, by Theorem 2.5,
mi(Q — Nglz]) < f(n — 3). Thus, by Lemma 2.1 (1), we have

mi(Q) < mi(Q — z) + mi(Q — Nglz])
<t(n—1)+f(n-3)
_frmrt 4, if n is even;
Tl 2+ 1)+ 73, ifnis odd.

= g(n).

Furthermore, the equalities holding imply that [MI_z(Q)| = mi(Q — ) =
t(n — 1) and [MLy(Q)| = mi(Q ~ Nalz]) = f(n - 3).

We will characterize the quasi-tree graph Q of order n > 5 for which
mi(Q) = g(n). Since ML-(Q)| = mi(Q — Nglz]) = f(n — 3), by Theo-
rem 2.5, we have that Q — Ng[z] & F(n—4) or Q — Ng[z] & F(n—3). We
consider two cases. _

Case 1. degg(z) = 3. Then n is even. In addition, by Theorems 2.4
and 2.5, we have that Q — 2 = T(n — 1) = B(1,252) and Q — Nglz] =
F(n—-4)= ﬂ;—“Pg. Hence we obtain that Q = Q3 (n).

Case 2. degg(x) = 2. Since Q—z = T(n—1) and Q- Ng[z] & F(n-3),
by Theorems 2.4 and 2.5, we have that

~ J B(1, a2y, if n is even;
@-z= { B(2,253) or B(4,258), if n is odd. ()
and
~ J B(1,00u234P; or B(1, n=4), ifnis even;
Q- Nole] = { n=3p, ifrisodd.

Hence there are six possibilities for graphs Q meeting the requirements ()
and (1). See Figure 3.
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Figure 3: The six possibilities for graphs Q

Moreover, among these only those of Types 2, 3, and 4 satisfy Lemma 2.2
(2), hence we obtain that

~ ) Qe(n), if n is even;
@\ Q.(n) or Cs, if n is odd.
a

Theorem 38.2. If Q is a quasi-forest graph with n > 2 vertices, then
mi(Q) < g(n), where

—N_J ™, if n is even;

q(n) = { 3r"=3, ifn is odd.
Furthermore, mi(Q) = g(n) if and only if Q = Q(n), where

P2, if n is even;

Q) = { CsURS2R,, ifn is odd.

Proof. It is clear that mi(Q(n)) = g(n). Let = be a vertex of Q such that
Q — =z is a forest. For the case when n is odd, since f(n) < g(n) for n > 3,
we may suppose that @ is a quasi-forest graph of order n > 3 with at least
one cycle. Then z is on some cycle of @, it follows that deggor > 2. By
Lemmas 2.1 (1),

mi(Q) < mi(Q — z) + mi(Q — Nglz])
< f(n—-1)+ f(n-3)
= 7,n—l + rn—3
= 33

= g(n);
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and the equalities holding imply that [MI_¢(Q)| = mi(Q — z) = f(n — 1)
and |ML;-(Q)| = mi(Q—Ng[z]) = f(n—38). By Lemma 2.5, Q-z = -";—ng
and Q — Ng[z] & 252 P;. Hence we obtain that Q = C3U 2=3P,.

For the case when n is even, it is true for n = 2. Let Q is a quasi-forest
of order n > 4 such that mi(Q) is as large as possible. By Theorem 2.5 ,
we have mi(Q) > r™. Suppose that there exist some cycles in Q, then z is

on some cycle of Q. Thus, by Lemma 2.1 and Theorem 2.5, we have that

™ < mi(Q) < mi(Q — z) + mi(Q — Nolz])
< fln-1)+f(n-3)
= ,rn—2 + rﬂ—4

=3r" 4,
This is a contradiction. Hence we obtain that Q = 3 P. 0

Since every graph with at most one cycle is a quasi-forest graph, Theo-
rem 3.2 gives an alternative proof for the solution to the problem in graphs
with at most one cycle.

Corollary 3.3. ([2]) If G is a graph with n > 2 vertices such that G
contains at most one cycle, then mi(G) < G(n). Furthermore, mi(G) =
g(n) if and only if G = Q(n).
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