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Abstract

In this paper we study the minimum distance between the set
of bent functions and the set of l-resilient Boolean functions and
present lower bounds on that. The first bound is proved to be tight
for functions up to 10 input variables and a revised bound is proved
to be tight for functions .up to 14 variables. As a consequence, we
present a strategy to modify the bent functions, by toggling some of
its outputs, in getting a large class of 1-resilient functions with very
good nonlinearity and autocorrelation. In particular, the technique
is applied up to 14-variable functions and we show that the construc-
tion provides a large class of 1-resilient functions reaching currently
best known nonlinearity and achieving very low autocorrelation val-
ues which were not known earlier. The technique is sound enough
to theoretically solve some of the mysteries of 8-variable, 1-resilient
functions with maximum possible nonlinearity. However, the situ-
ation becomes complicated from 10 variables and above, where we
need to go for complicated combinatorial analysis with trial and error
using computational facility.

Keywords: Autocorrelation, Bent Function, Boolean Function, Non-
linearity, Resiliency.
1 Introduction

Boolean functions have many applications in computer security practices
including the construction of key stream generators based on a set of shift
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registers. A Boolean function is said to be correlation immune if its output
leaks no information about its input values. Balanced correlation immune
functions are called resilient functions. Construction of resilient Boolean
functions with very good parameters in terms of nonlinearity, algebraic
degree and other cryptographic parameters has received lot of attention in
literature [17, 18, 20, 21, 8, 23, 2, 3. In 19, 7], it had been shown how bent
functions can be modified to construct highly nonlinear balanced Boolean
functions. A recent construction method [13] presents modification of some
output points of a bent function to construct highly nonlinear 1-resilient
function. A natural question that arises in this context is “at least how
many bits in the output column of the truth table of a bent function need
to be changed to get the output column of an 1-resilient Boolean function”.
The answer of this question gives the minimum distance between the set of
bent functions and the set of 1-resilient functions (we define this distance
more formally in Subsection 1.1). We here try to answer this question and
show that the minimum distance for n-variable functions is

(T + 1)(2§-1 — 2::0 (?)) + E;‘=l %(:‘) ]’

n—-r—1

dBR,(1) > 2% 1 + 2[

where r is the integer such that Y7o (7) < 231 +1 < Y730 (7) is
satisfied. We also show that this result is tight for n < 10. We observe
that this bound is not tight for n > 12 and provide further modification
(see Subsection 5.1) to the bound that makes the new bound tight for
n=12,14.

The immediate corollary is the construction of 1-resilient Boolean func-
tions with nonlinearity > 2"~! — 23-! — dBR, (1) and maximum absolute
value of autocorrelation spectra < 4dBR,(1). Interestingly, it is possi-
ble to get l-resilient functions with better nonlinearity and autocorrelation
than these bounds. In particular, we concentrate on construction of 1-
resilient Boolean functions up to 14-variables with best known nonlinearity
and autocorrelation. Throughout the paper we consider the number of input
variables (n) is even.

The bent functions chosen in [13, Section 3] use the concept of perfect
nonlinear functions and one example function each for 8, 10 and 12 variables
were presented. However, it is not clear how a generalized construction of
such bent functions can be achieved in that manner. We here identify a
large subclass of Maiorana-McFarland type bent functions which can be
modified to get 1-resilient functions with currently best known parameters.
Further our construction is superior to [13] in terms of number of points that
need to be toggled (we need less in case of 10, 12 variables), the nonlinearity
(we get better nonlinearity for 12 variables) and autocorrelation (we get 1-
resilient functions with autocorrelation values that were not known earlier
for 10, 12 and 14 variables).
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1.1 Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0, 1}"
into {0,1}. A Boolean function f(z1,...,z,) is also interpreted as the
output column of its truth table f, i.e., a binary string of length 2%,

f= [f(oios"' ao)tf(1101"' $0)’f(0)1)"' 10)9"').f(1’1$"' 31)]-

The Hamming distance between two binary strings S, S, is denoted
by d(S1,S2), i.e., d(S1,52) = #(S1 # Sz2). Also the Hamming weight or
simply the weight of a binary string S is the number of ones in S. This
is denoted by wt(S). An n-variable function f is said to be balanced if its
output column in the truth table contains equal number of 0’s and 1’s (i.e.,
wt(f) = 2""1). By distance between two Boolean functions on n variables
f,9, we mean the d(f,g), where f,g are interpreted as their truth tables,
i.e., binary strings of length 2".

Denote addition operator over GF(2) by @&. An n-variable Boolean
function f(zi,...,z,) can be considered to be a multivariate polynomial
over GF(2). This polynomial can be expressed as a sum of products rep-
resentation of all distinct k-th order products (0 < k < n) of the variables.

More precisely, f(z1,...,Tn) can be written as
ey ® @ ;T ® @ 0i;Z:Z; D ... D a2, nT1T2 ... Tn,
1<i<n 1<i<jisn
where the coefficients ag, ai,aij,...,012..n € {0,1}. This representation of

f is called the algebraic normal form (ANF) of f. The number of variables
in the highest order product term with nonzero coefficient is called the
algebraic degree, or simply the degree of f and denoted by deg(f).

A Boolean function is called affine if it has an ANF of the form ag @
217) @ - - ® anTn. An affine function with constant term equal to zero is
called a linear function. The set of all n-variable affine (respectively linear)
functions is denoted by A(n) (respectively L(n)). The nonlinearity of an
n-variable function f is

nl(f) = min d(f,9),

i.e., the distance from the set of all n-variable affine functions.
Let 2 = (z1,...,25) and w = (wy,...,wy) both belong to {0,1}" and

T w=z1w D... B Trwy,.

Let f(z) be a Boolean function on n variables. Then the Walsh transform
of f(z) is a real valued function over {0,1}" which is defined as

Wiw)= Y (-1,
z€{0,1}"
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In terms of Walsh spectra, the nonlinearity of f is given by

1
—ogn-1_1
nl(f) =2 5 wen{lﬂa,slt}" [We(w)l.

For n-even, the maximum nonlinearity of a Boolean function can be 2"~! —
2%3-1 and the functions possessing this nonlinearity are called bent func-
tions [16]. Further, for a bent function f on n variables, Wy(w) = +2% for
all w. For n even, let us denote the set of n-variable bent functions by By.

In [9), an important characterization of correlation immune and resilient
functions has been presented, which we use as the definition here. A func-
tion f(z1,...,%n) is m-resilient (respectively m-th order correlation im-
mune) iff its Walsh transform satisfies Wy(w) = 0, for 0 < wt(w) < m
(respectively Wy(w) =0, for 1 < wt(w) < m).

As the notation used in [17, 18], by an (n,m,d, o) function we denote
an n-variable, m-resilient function with degree d and nonlinearity o. Let
us denote the set of n-variable m-resilient functions by Ry m. Thus we can
formally define

dBR,(m) = fesnn;ienn,. i d(f,g)-

We will now define restricted Walsh transform which will be frequently
used in this text. The restricted Walsh transform of f(z) on a subset S of
{0,1}" is a real valued function over {0,1}" which is defined as

Wi(w)|s = Z(_l)f(z)Q:t.w.
. z€S

Now we present the following technical result.

Proposition 1 Let S C {0,1}" and b(z), f(z) be two n-variable Boolean
functions such that f(z) = 1@ b(z) when z € S and f(z) = b(z) otherwise.
Then Wy(w) = Wy(w) — 2Wp(w)|s.

Proof: Take w € {0,1}". Now W;(w)

= Toeqoyn (-1

er{O,l}"‘—S(—l)f(z)ew.x + Z.’::E.Sa‘(_]‘)"‘(z)ew‘z

235{0,1}"-3("1)"(@6“': = Lres(—1)o@Iw=
(since f,b are same for the inputs ¢ S
and complement when the inputs € S)

= Toe(oapros(—1)PEUT 4 T 5(—1)0IOw

-9 Zzes(_l)b(x)ew@
= 2:6{0,1}"(_1)6(1)9«;-:: -2 Ezes(_l)b(z)@w-z
= Wy(w) - 2We(w)ls. ]
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Propagation Characteristics (PC) and Strict Avalanche Criteria (SAC) [15]
are important properties of Boolean functions to be used in S-boxes. Fur-
ther, Zhang and Zheng [24] identified related cryptographic measures called

Global Avalanche Characteristics (GAC).
Let o € {0,1}" and f be an n-variable Boolean function. Define the

autocorrelation value of f with respect to the vector « as

Ag(a) = Z (_l)f(z)ef(i@a),
z€{0,1}"

and the absolute indicator

Ay ae{or’r;?,{c,aﬂlAf(a)l-

A function is said to satisfy PC(k), if As(a) =0 for 1 < wi(a) < k. Note
that, for a bent function f on n variables, Ay(a) = 0 for all nonzero ¢, i.e.,
Af=0.

fAnalysis of autocorrelation properties of correlation immune and re-
silient Boolean functions has gained substantial interest recently as evident
from [22, 25, 11, 4]. In [11, 4], it has been identified that some well known
construction of resilient Boolean functions are not good in terms of au-
tocorrelation properties. Since the present construction is modification of
bent functions which possess the best possible autocorrelation properties,
we get very good autocorrelation properties of the 1-resilient functions. We
present a bound on the Ay value of the 1-resilient functions and further
achieve best known autocorrelation values for the cases n = 8,10,12.

2 The Distance

Initially we start with a simple technical result.
Proposition 2 dBR,(1) > 231,

Proof : For a bent function b on n variables, Wy(w) = £2%. Hence the
minimum distance from a bent function to balanced functions equals 2% -1,
The 1-resilient functions are balanced by definition and hence the result. ®

Now we present a restricted result. Let b(z) be an n-variable bent
function with Wy(w) = +2% for wt(w) < 1. We denote by Mj(n,1) the
minimum number of bits to be modified in the output column of b(z) to
construct an n variable 1-resilient function from b(zx).

Theorem 1 Let b(x) be an n-variable bent function with Wy(w) = 2% for
0 < wt(w) < 1. Then

(r+ 123137 )+ i(?) ] ,

>9%-1
My(n,1) > 2 +2[ ——
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where r is the integer such that S°7_o (7) < 2871 +1 < Y% (7) is satis-

fied.

Proof : Let S C {0,1}" and f(z) be an n-variable Boolean function
obtained by modifying the b(zx) values for z € S and keeping the other bits
unchanged. Then from Proposition 1, Wy(w) = Wj(w) — 2Wp(w)|s Yw, and
in particular, Wy(w) = 2% — 2W;(w)|s for 0 < wi(w) < 1.

It is known that, f is 1-resilient iff Wy(w) = 0 for 0 < wt(w) < 1, i.e., iff
Wy(w)|s = 2%~ for 0 < wt(w) < 1. Thus, our problem is to find a lower
bound on |§| = k with the constraint Wy(w)|s = 2%~? for 0 < wt(w) < 1.

Given S = {z*1,z%,...,z%} C {0,1}", consider the matrices

5 (g g 20T, BSPFL = (a),ba, o b
and (S @ b(8))¥*" = (z"* @ b(z™), 2" B b(z?),...,z™ eb(fB‘*))T-
By AT we mean transpose of a matrix A. Also by abuse of notation,

' @ b(z*/ ) means the GF(2) addition (XOR) of the bit b(z*/) with each of
the bits of z%.

Now Wy(w)|s = 23! for 0 < wi(w) < 1 implies that there are exactly

-'5 —2%-2 many 1’s in b(S) and in each column of S @ b(S). Since all the

rows of S are distinct and further b(S) contains £ +2%~2 many 0’s, S®b(S)

should contain at least & 3+ 2%-2 distinct rows.
Consider that one such matrix S @ b(S) is formed. The number of 1's
in the matrix is exactly n x ( — 2%-2) as each column contains exactly

k — 2%-2 many 1's and there are n columns. We know that there must be
at least 3 +2’2"2 many distinct rows. Thus the total number of 1’s in these
distinct rows must be < n X ( —2%-2), Note that the minimum number
of I's in £ + 2%~2 many distinct rows is at least

Z;;z(?) +(r+ 1)(-"2E +28°2 —g (’:))

(all the rows upto weight r and some of the rows with weight r+1). Hence,

z,(’z‘) NSNS () snxg 23,

i=] i=0
This gives,
k2 2[(n +r+ 1282+ 565 — r+ D P (")]
n-r-—1

Now we discuss how to choose this r. For this we need a easier lower
bound on k which does not depend on r itself.
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From Proposition 2, ¥ > 2%~!. We now show that & > 2%-! + 2.
This is because, to construct an 1-resilient function from bent function, the
number of 1’s in each column must be > 1 (it cannot be 0 since then we
will not be able to get distinct rows). As number of 1’s in each column is
£—2%-2 weget £ —2%-2>1, and hence k > 2%3-1 + 2.

Since, £ +2%~2 number of distinct rows has to be filled, we need to find

the r such that 3°7_ (7) < & +2%-2 < 72 (7). Putting the minimum

value of k, ie., 25~1 + 2, we get 7 such that 37 ,(7) < 281 +1 <

Tk () .
As example, for n = 8, taker = 1 and 9 = Y (}) < (the = of <

is satisfied here) 23-1 +1 = 9 < Y17 (7) is satisfied. For n = 10, take

r=1and 11 =37 (7) < (the < of < is satisfied here) 23-1+1=17<

S (7) is satisfied.

Theorem 2 Let b(z) be any n-variable bent function. Then

(r+DEE -5, N+ 3 i(?)]

n—r—1

dBR,(1) > 251 + 2[

where 7 is the integer such that ¥1_o (7) <231 +1 <S4 (7) is satis-

fied.

Proof : Without loss of generality, assume that Wj(w) = +2% for wt(w) =
0. Let G = {wwt(w) = 1,Wy(w) = +23} and G; = {wjwt(w) =
1, Wy(w) = —2%}. Let S C {0,1}" and f(z) be an n-variable Boolean func-
tion obtained by modifying the b(z) values for z € S and keeping the other
bits unchanged. Then from Proposition 1, Wy(w) = Wy(w) — 2W,(w)|s Yw,
and in particular, Wy(w) = 2% — 2W,(w)|s for wt(w) = 0,w € G; and
Wi(w) = —2% — 2Wy(w)|s for w € Go.

Given f is 1-resilient, we need to find a lower bound on |S| = k with
the constraints Wy(w)|s = 2% ! for wt(w) = 0 and w € G; and Wj(w)|s =
—2%-1 for w € Gs.

Let |G1| = A. Using the same argument as in the proof of Theorem 1,
our problem is to find a k x n binary matrix S@b(S) with minimum number
of rows k such that there are A columns with exactly £ —2%-2 many 1’s in
each column and exactly § +2%~2 many 1’s in each of the remaining n — A
columns. Further, there are at least £ + 2%-2 distinct rows.

Let MF** (respectively M¥*(~*)) be a binary matrix with exactly
£ — 23-2 (respectively £ + 2%~2) many 1’s in each column. Let J be the
k x (n — A) matrix with all elements 1. Then the problem of “finding a
binary matrix (M; : M) with minimum number of rows k such that there
are at least .’2£+2§—2 distinct rows” is equivalent to “finding a binary matrix
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(M, : J — M2) with minimum number of rows k such that there are at least
k +2%-2 distinct rows”. Note that each column of (M : J — M3) contains
exactly £ —2%-2 many 1's. Thus, if one can find a construction with

(r+1)% 1 -3 o (D)) + X i(':)]

n—r-—1

k<2’5"‘1+2[

in this case that will contradict to the lower bound presented in Theorem 1.
Hence the proof. ]

For 8 < n < 16, it can be checked that 3"\, () < 23 1+1< 1% (%)
is satisfied. In these cases, the lower bound on & is attained for r = 1 itself.
Thus we have the following result.

Corollary 1 For evenn, 8 < n < 16, dBR,(1) > 221 + 2[2—%—_';,‘—2] )

Assume that one can construct a bent function b on n variables such that
dBR,(1) bits at the output column of b are changed to get an n-variable
1-resilient function f. It is clear that toggling of a single bit can reduce the
nonlinearity at most by 1 and increase the maximum absolute value of the
autocorrelation spectra (absolute indicator) by at most 4. Thus we have
the following result.

Theorem 3 nl(f) >2""! —2%~! - dBR,(1) and Ay < 4dBR,(1).

Proof : This follows from nl(f) > nl(b) — dBR,(1) and Ay < Ay +
4dBR,(1), where b is a bent function. |

However, for the actual constructions of functions on 8, 10 and 12 vari-
ables, we will show that we get better nonlinearity and autocorrelation
values than these bounds. Let us now present the case for n = 4,6. We
are not interested in the case n = 2, since there is no nonlinear 2-variable
1-resilient functions.

Note that r = 0 for these two cases and then we arrive at dBR,4(1) > 4
and dBRg(1) > 6. These bounds are tight since we can construct 4-variable
(respectively 6-variable) 1-resilient function by changing 4 (respectively 6)
output points of 4-variable (respectively 6-variable) bent function.

For the 4-variable case, we have the following construction.

T4 Tz T2 I

0 0 0 1
sebS)=| 0 0 1 0
1 0 0 0
0 1 0 0

The constraint is that the number of 1’s in each column has to be 1 and
there are at least 3 distinct rows. Then we take a bent function with truth
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table 0000011001010011 and toggle the function at the inputs
{(0,0,0,1),(0,0,1,0),(1,0,0,0), (1,0, 1, 1)}.

Note that the last row of the matrix is complemented when considered as
the input point. The bent function has output zero at the first three points
and output one at the last point. This gives a (4,1, 2,4) function with the
truth table 0110011011000011.

For the 6-variable case, let us consider the following matrix.

S ®b(S) =

o~ oo ool
~loooc ool
olo = oo o|8
olo o~ ool
oo o o~ o8
olcococor|B

We take a bent function with truth table

0000000001011010001111000110011001101001001100110101010100001111

(note that the bent function has output zero at the first five points and
output one at the last point) and toggle the outputs at the input points
{(0,0,0,0,0,1), (0,0,0,0,1,0), (0,0,0,1,0,0),
(9,0,1,0,0,0), (1,0,0,0,0,0), (1,0,1,1,1,1)}. Then we get a (6, 1,4,24)
function with the truth table

0110100011011010001111000116011011101001001100100101010100001111.

Before proceeding further let us note the following issues towards the
construction of 1-resilient functions in general.

1. Given even n, one needs to design a k x n binary matrix S @ b(S)
with minimum number of rows k. We have provided a lower bound
in Theorem 2 on k. However, we could not provide any algorithm
to construct such a matrix. For n < 8, the situation can be handled
easily, but it becomes complicated for n > 10. We could construct
such matrices for n = 10,12 and 14 by trial and error.

2. For the construction, we use the restricted case as described in The-
orem 1, where we need a bent function b with Wy(w) = 2% for
0 < wt(w) < 1. It is possible to get Maiorana-McFarland type bent
functions with such properties (see the next sections for exact details).
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3. We need to partition the rows of the k x n binary matrix S @ b(S) in
such a manner that one partition (call it P;) contains £ +2%~2 many
rows and the other partition (call it P) contains § —2%-2 many rows.
The rows in each partition are distinct among themselves.

4. Let P§ denotes the set of rows which are bitwise complement to the
rows in P,. It is clear that the rows of P; and P§ taken together
are distinct among themselves. Each row can be seen as an input
point of an n-variable Boolean function. We need a bent function
such that b(z) = 0 for £ € P; and b(z) = 1 for z € P5. We show
that given the matrix S b(S), constructing such bent functions from
Maiorana-McFarland class is possible for n < 14.

5. Note that this construction needs a closer look when we try to achieve
very high nonlinearity. That needs a detailed analysis of the Walsh
spectra of the bent functions. This will be discussed in full details in
the coming sections.

Next we consider the cases for n = 8,10, 12 and 14 one by one.

3 The 8-variable 1-resilient Functions

In the previous section we have presented a lower bound of the minimum
distance between the bent and 1-resilient functions and presented an out-
line how exactly a construction is possible. Further to achieve the currently
best known parameters (or even better than that, if possible) we may need
to consider some other issues. In this section we consider the construction
of an (8,1,6,116) function. Construction of this function was an impor-
tant open question and the function has been first reported in [10] by inter
linking combinatorial technique and computer search. Later this function
has also been found by meta heuristic search (simulated annealing) in [5}.
Further the function found in [5] has Ay = 24, which is currently the best
known value. We here follow the similar kind of technique used in [13].
In the course of discussion it will be clear that how our technique is an
improvement over [13]. We present a generalized construction method of
(8,1,6,116) functions by modifying Maiorana-McFarland type bent func-
tions and in specific cases, these functions have the Ay value as low as 24,
the best known one (5].

360



For the 8-variable case, the matrix looks as follows.

(

S@b(S) =

Olmrocoocooocooof
olomrocoocooocol
olocorocoococooolf
ojlccoroocoooll
Slcococoroocooll
olccocoocoroco ol
Sloocoococoroolf
olcoococoococor~olb

\ )

Note that apart from the conditions mentioned in Theorem 1, we also
add one extra condition W;(w) = —16 for wt(w) = 8 for the 8-variable bent
function b from which we construct the 1-resilient function. This condition
is not required for 1-resiliency of the function, which is handled by the
conditions of Theorem 1 itself. However, this extra condition is required to
maintain the nonlinearity at 116. If one takes Wj(w) = 16 for wt(w) = 8,
then the nonlinearity will fall to 112. This is explained in detail in the proof
of Theorem 4.

Construction 1 Take a bent function b(z) on 8 variables with the follow-
ing properties : (1) b(z) = 0 for wt(z) < 1 and b(z) = 1 for wt(z) = 8,
(2) W(w) = 16 for wt(w) < 1 and Wy(w) = —16 for wt(w) = 8. Define a
set § = {z € {0,1}8|wt(z) = 0,1,8}. Construct a function f(z) as :

f(z) loblz), ifresS
b(z)’ otherwise.

From Corollary 1, we get that dBRg(1) > 10 and we here choose exactly 10
positions and modify them. It is important to point out that we here start
with bent functions with some specific properties. The reason for choosing
such bent functions is to get an actual construction of 1-resilient function

with very high nonlinearity.

Theorem 4 The function f(z) as described in Construction 1 is an
(8,1,6,118) function.

Proof : Take w € {0,1}® with wt(w) = i. Now

Wf(w) = Eze{o,na(—l)b(xww'x -2 Ezes("l)b(z)e“'z
= Wp(w) -2 (8- 2wt(w) + 2(wt(w) mod 2) ).
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Now we explain how the last step is deduced. Note that b(z) = 0 when
wt(z) = 0 and b(z) = 1, when wt(z) = 8. Thus,

yo@)@wz = 0, when wt(w) is even,

2 ze{0,1}8|wt(z)=0,8(—1
= 2, when wt(w) is odd.

Moreover, Y oe 0,138 wt(a)=1(—1)" % = 8 — 2ut(w), as
(i) b(z) =0 when wt(z) =1 and

(ii) w-z =1 at wt(w) input points when wi(z) = 1.

Since Y,e5(—1)P %9 = 3o 0.1y ut(e)=0,8(— 1P *
+ E:l:€{0,l}°|‘wt(:n)=l(_1)1’(:':)&".“:’ we get,

Wi (w) = Wi(w) — 2 ( 8 — 2wit(w) + 2(wt(w) mod 2) ).

When wt(w) < 1, Wy(w) = Wy(w) — 16 = 16 — 16 = 0. Thus the function
is l-resilient.

Further, if wt(w) = 8, Wy(w) = Wy(w) + 16 = —16 + 16 = 0. For any
other choice, i.e., for 2 < wt(w) < 7, we have |8 — 2wt(w) + 2(wt(w) mod
2)| < 4 and hence, |Wy(w)| < |Wp(w)] + 8 = 16 + 8 = 24. Hence, ni(f) =

28-1 — 24 =116.
Since the function attains the maximum possible nonlinearity, the alge-
braic degree [1, 3] of the function must be 8 —2 = 6. [ ]
wi(w) 0 1 [213|4|5[6]|7] 8
Wi(w)=Wpy(w)+ | -16|-16 |-8[-8/0]0]|8]|8]16

Table 1: Relationship between Walsh spectra of f,g as described in Con-
struction 1.

Based on Table 1 and the previous discussion, we get related results
with respect to (i) nonexistence of some 8-variable bent functions and (ii)
some relationship between 8-variable bent functions and balanced Boolean
functions with nonlinearity 118 (whose existence is not known till date).

Note that, in the Walsh spectra of a bent function on 8 variables, there
are 120 values of +16 and 136 values of -16 or vice versa. It is known that
even if that condition is satisfied for some Walsh spectra, the inverse Walsh
transform may not produce a Boolean function. We here discuss that issue.

Lemma 1 Consider a function b(z) on 8 variables with the properties :

1. b(z) = 0 for wt(z) < 1 and b(z) = 1 for wi(z) = 8,
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2. Wy(w) = 16 for wt(w) < 3 and Wy(w) = —16 for wt(w) > 6.
This function can not be bent.

Proof : If such a function b is bent, then Table 1, we will get an 1-resilient
function with nonlinearity 120. This is a contradiction. a

Corollary 2 Consider a function b(z) on 8 variables with the properties :
1. b(z) =0 for wt(z) < 3 and b(z) =1 for wt(z) > 6,
2. Wi(w) = 16 for wt(w) < 1 and Wy(w) = —16 for wt(w) = 8.

This function can not be bent.

Proof : The result follows from Lemma 1 and the duality property of bent

functions. |
Next we present an important result related to the existence of balanced

8-variable function with nonlinearity 118.

Theorem 5 Take a bent function h(z) on 8 variables with the following
properties :

1. h(z) =0 for wt(z) < 1 end h(z) =1 for wi(z) =8,
2. Wh(w) = 16 for wt(w) < 2 and Wj(w) = =16 for wt(w) > 6.
Define a set T = {z € {0,1}8|wt(z) = 1}. Construct a function g(z) as :

f(z) 1®h(z), ifzeT
h(z), otherwise.

Then g is a balanced 8-variable function with nonlinearity 118.

Proof : The proof is similar to the proof of Theorem 4. [ ]

We have tried some heuristic search to find a bent function as mentioned
in Theorem 5, but could not get any. Getting such a bent function or
proving its nonexistence is an interesting open question.

3.1 A subclass of Maiorana-McFarland bent functions

The original Maiorana-McFarland class of bent function is as follows [6).
Consider n-variable Boolean functions on (X,Y’), where X,Y € {0,1}# of
the form f(X,Y) = X - w(Y) + g(Y) where = is a permutation on {0,1}%
and g is any Boolean function on § variables. The function f can be seen
- as concatenation of 2% distinct (upto complementation) affine function on
. § variables.

Once again we write what kind of bent function b(z) on 8 variables we
require.
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1. b(z) = 0 for wi(z) < 1 and b(z) = 1 for wi(z) =8,
2. Wy(w) = 16 for wi(w) < 1 and Wy(w) = —16 for wi(w) =8.

In this case, n = 8, i.e., 3 = 4. We have to decide what permutations
7 on {0,1}4 and what kind of functions g on {0,1}* we can take such
that the conditions on b are satisfied. We present a set of conditions be-
low, which taken all together, provides sufficient condition for construction
of such functions. Before going into the conditions, let us fix the nota-
tion and ordering of input variables as z = (z1,%2, 3, Z4, L5, T, T7, T8),
X = (Xl,Xz,Xa,X4), and Y = (Y1,Y2,Y3,Y4). Further we identify X; =
z1,Xo = 22, X3 = 23, X4 = 24,1 = 75, Y2 = 76, Y3 = 77, Yy = zs.

1. First of all, the function b has the value zero at the points
(0,0,0,0,0,0,0,0), (1,0,0,0,0,0,0, 0), (0,1,0,0,0,0,0,0),
(0,0,1,0,0,0,0,0), (0,0,0,1,0,0,0,0) and this condition is satisfied
if we choose 7(0,0,0,0) = (0,0,0,0) and ¢(0,0,0,0) = 0.

2. Next we need function b should have value 0 at points
(0,0,0,0,1,0,0,0), (9,0,0,0,0,1,0, 0), (0,0,0,0,0,0,1,0),
(0,0,0,0,0,0,0,1), and this condition is satisfied if we choose g(Y') =
0 for wt(Y) =1.

3. We need b to be 1 when the input is (1,1,1,1,1,1,1,1). Thus if
n(1,1,1,1) is a vector of odd weight then g(1,1,1,1) need to be 0.
Otherwise if 7(1,1,1,1) is a vector of even weight then g(1,1,1,1)
has to be 1.

4. Since we have already decided that 7(0,0,0,0) = (0,0,0,0) and
9(0,0,0,0) = 0, the W(w) values for w € {(0,0,0,0,1,0,0,0),
(0,0,0,0,0,1,0,0), (0,0,0,0,0,0,1,0), (0,0,0,0,0,0,0,1)} becomes
+2% =16.

5. Further if 7(¥) € {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}, then
we take g(Y) = 0. This guarantees that Wy(w) values for w €
{(1,9,0,0,0,0,0,0), (0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0,0),
(0,0,0,1,0,0,0,0)} becomes +2% = 16.

6. Lastly, if 7(Y) = (1,1,1,1), we have to fix g(Y) = (wt(Y)+1) mod 2.
This guarantees that Wr(1,1,1,1,1,1,1,1) = —2% = —16.

Given a bent function from the Maiorana-McFarland class f(X,Y) =
X -m(Y) +g(Y), the dual of such function fis Y - 1 X)+g(r}(X)). It
is interesting to check whether the above points can be replaced by more
precise arguments using this idea.
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Theorem 6 Letn =8, z € {0,1}" and X,Y € {0,1}3. Let b(z) be a
Maiorana-McFarland type bent function b(z) =b(X,Y) =X -«(Y) + g(Y)
where T is a permutation on {0,1}% and g is @ Boolean function on 3

variables with the following conditions.
(1) Y =(0,0,0,0), 7(Y) =
(2) ifwt(n(Y)) <1, orwi(Y) < 1, then g(Y) = 0;
3) ifY =(1,1,1,1), g(Y) = (wt(x(Y)) + 1) mod 2;
(4) ifwt(n(Y)) =4, g(Y) = (wt(Y) + 1) mod 2.

Then (1) b(z) =0 for wt(z) < 1 and b(z) =1 for wi(z) = 8, (2) Wy(w) =
16 for wi(w) < 1 and Wy(w) = —16 for wi(w) =

Further there are > 26297 many distinct b’s (upto complementation)
satisfying these conditions and in turn there are > 296297 many distinct
(upto complementation) (8,1,6,116) functions.

Proof : The proof of the properties of b is discussed above in detail. The
count of such functions is arrived as follows. Note that there are 2% = 16
places for the permutation 7.

Let there are ¢ many Y's, 0 < i < 4 such that wt(w(Y)) = 1 for
wt(Y) = 1. There are 4 elements of weight 1 and 10 elements of weight 2
or 3. Thus the 7(Y)’s for wt(Y) = 1 may be chosen in (§) (%) ways. Note
that 7(Y') can not be (1,1,1,1) for wt(Y') = 1. Now there are two cases.

1. Cons1der that m(1,1,1,1) = (1,1,1,1). Then the number of options is
(§)-(22,)-41-101- 26+(. This is because the 4 elements where wt(Y) = 1
can be permuted in 4! ways. The 4 elements where wt(Y) = 2,3 can
be permuted in 10! ways. The function g(Y) is fixed when Y is
(0,0,0,0) (1 place, g(Y) = 0) or wt(Y) =1 (4 places, g(Y) = 0) or
wt(n(Y)) = 1 (4 — i places, g(Y) = 0) or wt(Y) = wi(n(Y)) =4 (1
place, g(Y) = 1). Thus g(Y) is fixed in 10 — ; places and we can put
any choice from {0,1} for 16 — (10 — i) = 6 + ¢ places.

2. Consider that w(1,1,1,1) # (1,1,1,1). Then the number of options
is (4) - (%) 10-4!-10!-25%. Choose one element of wt(Y) # 4
as 7(1,1,1,1). This can be done in 10 ways. The 4 elements where
wt(Y) = 1 can be permuted in 4! ways. The 4 elements where
wt(Y) = 2,3 can be permuted in 10! ways. The function g(Y) is
fixed when Y is (0,0,0,0) (1 place, g(Y') = 0) or wt(Y) = 1 (4 places,
g(Y) = 0) or wt(w(Y)) =1 (4 — i places, g(Y) = 0) or wt(Y) =4 (1
place, g(Y) = 1 if wt(w(Y)) = 0, else g(Y') = 1) or wt(n(Y)) =4 (1
place, g(Y) = (wt(Y')+ 1) mod 2). Thus g(Y) is fixed in 11 — places
and we can put-any choice from{8; 1} for 16 ~ (11-- i) = 5+ places.
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So the total number of options is 6 Y5_q (§) - (2%) - 4!+ 10! 26+ =6 41.
10! .28 E?—.—o (:) . (41_0i) . 9 ny 9496.297492 m
Remark 1 Following Theorem 3, it is clear that for the function f as
discussed in Theorem 4, Ay < 40. Now we present the following specific
case.

Consider m(Y) =Y for allY € {0,1}%, g(Y) =0 for all Y € {0,1}*\
{,1,1,1)} and g(Y) =1 for Y = (1,1,1,1). Let b(z) = (X,Y) =
X -m(Y) + g(Y) and f(z) is as given in Construction 1. Then f is an
(8,1,6,116) function with Ay = 24.

Note that we get an (8,1,6,116) function f with Ay = 24 in this method
which has earlier been found by simulated annealing and linear transforma-
tion in [5].

4 The 10-variable 1-resilient Functions

We here start with 10-variable bent functions. Theorem 1 and Theo-
rem 2 do not directly provide the idea how the exact construction of an
1-resilient function from a bent function is possible. Let us now describe a
method where we will be able to identify a subclass of 10-variable Maiorana-
McFarland type bent functions for this purpose.

As described in Section 2, we need to modify at least k = 22 points (see
Corollary 1). Now following Theorem 1 and Theorem 2, it is clear that we
first need to select ’§° + 2%-2 = 19 distinct points. Note that we can have
1 point of weight 0 and 10 points of weight 1. Thus we need to find out 8
more points from weight 2. Once these 19 points are selected, further there
are 3 more points to be chosen.

Now we refer to the S @ b(S) matrix given here. We present the first 19
points and after the horizontal line we show the next 3 points. Note that
the choice of the all zero point and the points of weight 1 are clear from the
discussion in Theorem 1. However, it is still to be sorted out how exactly
the 8 points of weight 2 are chosen. We here do that by observation and
choose the 8 points of weight 2 out of total (') = 45 weight 2 points. The
rest 3 points (one of weight 0 and other two of weight 2) are chosen properly
to satisfy that weight of each column should be -g —2%-2 = 3. Now we need
a bent function b on 10 variables with the property that b(z) = 0 when z is
any of the first 19 points and b(z) = 1 when z is complement of any of the
last 3 points. This means that the last three rows need to be complemented
when they will be considered as input points in the function.
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Thus, we construct two sets S; and S» as follows and then denote S =
S1US,. S =
{(0,0,0,0,0,0,0,0,0,0),(0,0,0,0,0,0,0,0,0, 1),(0,0,0,0,0,0,0,0,1,0),

(0,0,0,0,0,0,0,1,0,0),(0,0,0,0,0,0,1,0,0,0), (0,0,0,0,0,1,0,0,0,0),
(0,0,0,0,1,0,0,0,0,0), (0,0,0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0,0,0,0),
(0,1,0,0,0,0,0,0,0,0), (L,0,0,0,0,0,0,0,0,0),(0,0,0,0,0,0,0, 1,1, 0),
(0,0,0,0,0,1,1,0,0,0), (0,0,0,0,0,1,0,0,0,1), (0,0,0,1,1,0,0,0,0,0),
(0,0,1,1,0,0,0,0,0,0), (0, 1,1,0,0,0,0,0,0,0),(1,1,0,0,0,0,0,0,0,0),
(1,0,0,0,1,0,0,0,0,0)} and S; =
{1,1,1,1,1,1,1,1,1,1),(1,1,1,1,1,1,1,1,0,0),(1,1,1,1,1,1,0,0,1, 1)}
Also consider S} =

{(0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0, 1), (0,0,0,0,0,0,0,0,1,0),
(0,0,0,0,0,0,0,1,0,0), (0,0,0,0,0,0,1,0,0,0), (0,0,0,0,0, 1,0,0,0,0),
(0,0,0,0,1,0,0,0,0,0), (0,0,0,1,0,0,0,0,0,0), (0,0, 1,0,0,0,0,0,0,0),
(0,1,0,0,0,0,0,0,0,0),(1,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,1,1,0),
(0,0,0,0,0,1,1,0,0,0), 0,0,0,0,0,1,0,0,0,1)},

S3=

{(0,0.0.0.0.0.0.1.0.1).(0.0.0.0.0.0.0.1.1.1).(0.0.0.0.0.0.1.0.0. 1),
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0’ 09 0’ 0’05 1) 17 17 0)7 (0’ 0! 0’ 0’ 0, 1’ 0’ 01 1! 1)’
3 0, 0, 0’ 0’ 1’ 17 17 0, 0)7 (0’ 01 0’ 0’ 0’ 1’ 17 1’ 1) 1)}
and S4 =
{(0,0,1,1,1,0,0,0,0,0), (0,1,1,1,0,0,0,0,0,0),(1,0,0,1,1,0,0,0,0, 0),
(0,0,0,0,0,1,1,0,0,0),(1,1,0,0,1,0,0,0,0,0),(1,1,1,0,0,0,0,0, 0,0),
(1,1,1,1,1,0,0,0,0,0)}. We will talk about these sets 57, S3 and Sy little
later. Let us now write the exact construction.

Construction 2 We need a 10-variable bent function b(x) with the follow-
ing properties:

1. b(z) =0 when z € Sy and b(z) =1 when z € Sz,
2. Wy(w) = +32 when w € S U S3U S;.
The function f(z) is as follows.

f(z) 1b(z), ifzeS

b(z), otherwise.

From Theorem 1, it is clear that the function f(z) is 1-resilient. Now we
need to calculate the nonlinearity of f. In fact, we will prove that nl(f) =
488, the currently best known nonlinearity for 10-variable 1-resilient func-
tions. By Proposition 1, Wy(w) = Wy(w) - 2Wp(w)|s. Thus, it is important
to analyse the values of W;(w)|s for all w € {0, 1}!°. However, this can not
be done in a nice way as it has been done in the 8-variable case in Theorem 4.
So we use a computer program to calculate Wy(w)|s for all w € {0,1}9.
Note that when |Wy(w)|s| < 8, then at those points |Wy(w)| < 48. Thus,
we have no restriction on the Walsh spectra of the bent function b at these
points to get the nonlinearity 488 for f. However, we need to concentrate
on the cases when |Wj(w)|s| > 12. We have checked that this happens
when w € S} U S3U Sy and all these values are either +12 or +16. Thus as
given in Construction 2, the Walsh spectra of the function b should be +32
at these points. Hence Construction 2 provides 10-variable 1-resilient func-
tions having nonlinearity 488. Using similar technique as in Theorem 6, it
is possible to get the count of such functions.

Note that we have not yet discussed the algebraic degree and auto-
correlation properties of the functions. We now consider a specific case
and check the algebraic degree and autocorrelation property. Take z =
($1, T2, T3, T4, Ts,T6) T7,T8,T9, 110)’ X = (Xl ’ X21 X31 X‘h X5)a and ¥ =
(Y1,Y2,Ys,Ys,Ys). Further we identify X1 = z1, Xz = 72, X3 = z3,
Xs =4, Xs = x5, Y1 = 76, Y2 = 77, Y3 = 28, Y4 = m9, Y5 = z10.

Consider a 10-variable Maiorana-McFarland type bent function

b(z) =b(X,Y) = X - w(Y) + g(¥),
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where 7 is a permutation on {0,1}® with 7(Y) = Y and g is a Boolean
function on 5 variables which is a constant 0 function. It can be checked
that this bent function satisfies the conditions required in Construction 2.
Then we prepare f as given in Construction 2. We checked that nonlinearity
of f is 488, algebraic degree is 8 and Ay = 48. Now it is important to note
the following two points.

1. The construction in [13, Theorem 4] required 26 points to be modified
to get 1-resilient function from a bent function. We here need only
22 points to modify. Further, we have checked that the Ay value of
the function constructed in [13] is 64. The function we construct here
has Ay = 48 and this is the best known value which is achieved for
the first time here.

2. The (10,1, 8,488) function was first constructed in [10] and we have
checked that Ay value is 320 for that function. Thus our construction
provides better parameter.

5 Improving the bound: Functions on 12 and
14 variables '

From Corollary 1, we find that dBR2(1) > 42. However, it seems that it
is not possible to construct an 1-resilient function by toggling 42 bits of a
bent function. Instead we succeeded to construct a (12, 1, 10, 2000) function
f, with Ay = 120 by toggling 44 points of a bent function. Later in this
section we will present arguments why at least 44 points are needed and
that eventually provides direction towards better lower bound.

Thus taking k& = 44, we have to first find % +2%-2 = 38 distinct
points. We select the all zero input point and the twelve input points each
of weight one. Now there are (1?) = 66 input points of weight two. Out of
them we choose 38 — 13 = 25 points by trial and error. These points are
2560, 2304, 2176, 2112, 1280, 1152, 1088, 640, 576, 320, 1536, 384, 40, 36,
34, 33, 20, 18, 17, 10, 9, 5, 24, 6, 2080 when written as decimal integers
corresponding to 12-bit binary numbers. We need a bent function such that
it will have output zero at these 38 input points. Next we take the six input
points 4095, 3055, 3575, 3835, 3965, 4030. We need a bent function which
provides output one at these six points. Now we present the bent function.

Take z = (xlv x2,x3,24q,T5,T6, L7, L8, 9, T10, Z11, .’1712),

X = (Xl,Xz,Xa, X4|X5aX6): and Y = (YI’Y.% },S’HaYSal,G)- Further we
identify X; = z1,X2 = 23,X3 = 23, X4 = 24, X5 = 25, X = 26,1 =
27,Y2 = a,‘s,YE; = mg,Y4 = xm,Y5 = 1:11,Y5 = Z19. Consider a 12-variable
Maiorana-McFarland type bent function b(z) = 5(X,Y) = X - n(Y) + g(Y)
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where 7 is a permutation on {0,1}® with n(Y) = Y, except the cases
n(1,1,1,1,1,0) = (1,1,1,1,1,1), »(1,1,1,1,1,1) = (1,1,1,1,1,0). Here g
is a Boolean function on 6 variables which is a constant 0 function.

The construction presented in [13] requires 54 points to be toggled and
they could achieve a nonlinearity 1996. Thus our construction is clearly
better. Further we get Ay = 120 for the (12,1, 10,2000) function that we
construct here. This is the best known autocorrelation parameter which
was not known earlier.

5.1 Improving the bound
We like to refer the proof of Theorem 1. We have found the inequality

r

i: ( )+(r+1)( +282 - Z<?)>Snx<§-2*"2" M

i=1 i=0
that has been instrumental in getting the lower bound

(r+ 123 - 300 () + X0y z(n)] @)

n-r—1

k22%-1+2[

where 7 is the integer such that 0o (7) < 23141 < S3 () is
satisfied. Note that the inequality 1 can be updated as

zr:z(?) +(r+ 1)(% +23°2- i (?))4‘

i=1 o
r k ) .
;:C) +(m+ 1)(5 —9%8-2_ go (':)) <nx(k-28-2), (3)

where 7y is such that, 11, (7) < £-2%-2< St(n

The reason for this updation is as follows. In the p;'oof of Theorem 1,
we noted that since all the rows of S are distinct a.nd further b(S) contains
£ +2%-2 many 0's, S®b(S) should contain at least £ +2%-2 distinct rows.
Keepmg these £ +2% -2 dlstmct rows apart, as b(S) conta.ms £ _2%-2 many
1’s,inS& b(S) the rest -2- —2%-2 rows are also distinct among themselves.
This gives the updated inequality 3.

Note that, once we calculate k using inequality 2, we can check whether
this value of k satisfies inequality 3. If the inequality 3 is satisfied, then we
may live with that value of k, but if it is not, then it is clearly not possible
to get a matrix S @ b(S) as required and one needs to increase k by at least
2 as k is always even.

We first revisit the cases n = 8,10. For n = 8, from inequality 2 we
get k = 10. Thus, r = 1,y = 0. This satisfies (8 + 2(5 + 4 — 9)) +
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(0+1(5-4-1)) < 8x (1), ie., this satisfies inequality 3. For n = 10,
from inequality 2 we get k = 22. Thus, r = 1,7, = 0. This satisfies
(10 + 2(11 + 8 — 11)) + (0 + 1(11 — 8 — 1)) < 10 x (3), i.e., this satisfies
inequality 3.

Now we look into the case for n = 12. From inequality 2 we get k = 42.
Thus, r = 1,71 = 0. This does not satisfy (12 + 2(21 + 16 — 13)) + (0 +
1(21 — 16 — 1)) < 12 x (5), i.e., inequality 3 is not satisfied. Hence we need
to increase k by 2, which gives k = 44. This satisfies (12 + 2(22 + 16 —
13)) + (0 + 1(22 — 16 — 1)) < 12 x (6), i.e., this satisfies inequality 3.

5.2 The l4-variable case

From Corollary 1, we find that dBR14(1) > 84, which is also given by
inequality 2. Putting k = 84, we get r = 1,r; = 0. We find that this does
not satisfy 141 = (14+2(42+32-15))+(0+1(42—32—1)) < 14x(10) = 140,
i.e., inequality 3 is not satisfied. Hence we need to increase k from 84 to
86. This satisfies 144 = (14 + 2(43 + 32— 15)) + (0 + 1(43 - 32— 1)) <
14 x (11) = 154, i.e., this satisfies inequality 3.

Now we construct the matrix. Thus taking k = 86, we have to first find
% +2%-2 = 75 distinct points. We select the all zero input point and the
fourteen input points each of weight one. Now there are (%) = 91 input
points of weight two. Out of them we choose 75 — 15 = 60 points by trial
and error. These points are 384, 640, 768, 1152, 1280, 1536, 2176, 2304,
2560, 3072, 4224, 4352, 4608, 5120, 6144, 8320, 8448, 8704, 9216, 10240,
12288, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36, 40, 48, 65, 66, 68, 72, 80,
96, 8256, 4128, 2064, 1032, 516, 258, 129, 4160, 2080, 1040, 520, 260, 130,
8193, 1088, 544, 272, 136, when written as decimal integers corresponding
to 14-bit binary numbers. We need a bent function such that it will have
output zero at these 75 input points. Next we take the 11 input points
16383, 14847, 15999, 16287, 16359, 4095, 6143, 10239, 16377, 16378, 16380.
We need a bent function which provides output one at these eleven points.
Now we present the bent function.

Take z = (21, 22, T3, %4, Ts, T6, T7, T8, T9, £10, T11, 12, Z13, T14),
X = (X11X21 X3aX4:X5yX6’X7)1 andY = (Yls Y2, Y3,Y,,Ys, },S,Y'l)' Fur-
ther we identify X1 = 21, Xp = 22, X3 = 23, Xy = 24, X5 = 75, X6 =
26, X7 =27, Y1 = 28,Yo = 29, Y3 = 710, Ya = 211, Ys = 713, Y6 = 213, Y7 =
z14. Consider a 14-variable Maiorana-McFarland type bent function b(z) =
b(X,Y) = X - n(Y) + g(Y) where 7 is a permutation on {0,1}7 with
7(Y) =Y, except the cases

7(0,0,0,0,0,0,1) = (0,0,0,0,1,0,0), 7(0,0,0,0,1,0,0) = (0,0,0,0,0,0, 1),
7(0,0,0,0,0,1,0) = (0,0,0,1,0,0,0), 7(0,0,0,1,0,0,0) = (0,0,0,0,0,1,0),
7(0,0,0,1,0,0,1) = (0,0,1,0,0,0,0), 7(0,0,1,0,0,0,0) = (0,0,0,1,0,0,1),
7(0,0,0,0,1,0,1) = (0,1,0,0,0,0,0), =(0, 1,0,0,0,0,0) = (0,0,0,0,1,0, 1),
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«(0,0,0,0,1,1,0) = (1,0,0,0,0,0,0), ~(1,0,0,0,0,0,0) = (0,0,0,0,1,1,0).
Here g is a Boolean function on 7 variables which is a constant 0 function.

This function f is a (14,1, 12,8092) function with Ay = 168. Note that
in [12], a (14, 1, 12, 8104) function g has been reported with A, = 800. Thus
the function constructed in this method is little worse in nonlinearity, but
much better in terms of autocorrelation spectra.

6 Conclusion

In this paper we present lower bound on the minimum distance dBR,(1)
between bent and 1-resilient functions on n variables, where n is even. We
have also shown that it is possible to get 1-resilient functions by modifying
exactly dBR,(1) many bits for n = 4,6,8,10 which shows that the mini-
mum distance is tight in these cases. This bound is not tight for n > 12
and we improve the basic bound to get a tighter bound. The case for
n = 8 could be nicely handled, but it starts to become complicated from
n = 10 and requires some computer simulation for exact construction of
the 1-resilient functions.

A lot of open questions are still to be solved. First of all, a relatively
hard question is to find out the minimum distance between bent and m-
resilient functions on n variables, which we may denote as dBR,(m). It
seems natural that dBR,(n —2) > dBR,(n~3) > ... > dBRy(1), though
it needs a proof. Note that (n — 2)-resilient functions on n variables are
basically the affine functions, which are known to be at maximum distance
from the bent function [16].

The functions we provide here up to 12 variables possess currently best
known parameters. The upper bound on nonlinearity of 1-resilient functions
is 27=1 — 23-1 _ 4 for n even as described in [18]. The tightness of this
bound (18] has been shown upto n = 8. For n > 10, there is no evidence of
an 1-resilient function attaining that bound [18]. Our construction modifies
dBR,(1) > 22~ many bits and it seems unlikely that modifying these
many bits will result in a fall of nonlinearity only 4 for n > 10.

It seems that the improved bound presented in Subsection 5.1 can be a
candidate to be the exact minimum distance. Proving that this improved
bound is an exact one, the following steps need to be proved.

1. Given the value of k one can always construct a k x n binary matrix
S @ b(S) with the required properties.

2. Given the matrix, one can always construct a bent function on n
variables which possesses proper outputs 0 or 1 at the corresponding
input points.
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Solving this problem will be an interesting research contribution.
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