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Abstract An edge coloring is proper if no two adjacent edges are as-
signed the same color and wertez-distinguishing proper coloring if it
is proper and incident edge sets of every two distinct vertices are as-
signed different sets of colors. The minimum number of colors required
for a vertex-distinguishing proper edge coloring of a simple graph G is
denoted by X'(G). In this paper, we prove that ¥'(G) < A(G) + 4 if
G = (V,E) is a connected graph of order n > 3 and 03(G) > n, where
02(G) = min{d(z) +d(y)| Vzy ¢ E(G)}.
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1 Introduction

All graphs considered in this paper are finite and simple, and we use the
standard notation of graph theory. Definitions not given here can be found
in [5). Let G = (V, E) be a graph of order n with the vertex set V = V(G)
and the edge set E = E(G). We denote by V4(G) the set of the vertices
of degree d in G and n4(G) = |V4(G)|. The degree of a vertex v in G is
denoted by dg(v) or simply d(v), and the maximum and minimum degree of
G by A = A(G) and § = §(G), respectively. A k-edge coloring f : E — [k]
of a graph G is an assignment of k colors to the edges of G. Let f(e) be
the color of the edge e. Denote by F(v) = {f(e)| e = uv € E(G)} the
multiset of colors assigned to the set of edges incident to v. The coloring f
is proper if no two adjacent edges are assigned the same color and vertez-
distinguishing proper coloring (abbreviated V DP-coloring) if it is proper
and F(u) # F(v) for any two distinct vertices u and v.

Observe that if G contains more than one isolated vertex or any iso-
lated edges, then no edge coloring of G is VDP. The minimum number of
colors required to find a V D P-coloring of a graph G without isolated edges
and with at most one isolated vertex is called the vertex-distinguishing
proper edge-coloring number (abbreviated V DP-coloring number) and
denoted by X'(G).

The V DP-coloring has been considered in many papers. It was intro-
duced and studied by Burris and Schelp in [6, 7] and, independently, as
observability of a graph, by Cerny et al. 8], Hortidk and Sotsk [10, 11].
In [7, 10], the V. DP-coloring is also computed for some families of graphs,
such as complete graphs K, bipartite complete graphs K », paths P,
and cycles Cy,. For example, they proved that

if n is odd;
~IK = n! 1 ]
X (Kn) {n+1, if n is even.
and
1, ifn>m2>2;
K - n+1, 2 2;
X (Kmn) {n+2, fn=m>2

The following result has been conjectured by Burris and Schelp [6, 7],
and later proved by Bazgan et al. [3].
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Theorem 1 [3]. A graph G on n vertices without isolated edges and with
at most one isolated vertex has ¥'(G) < n +1.

Obviously, the estimation of X'(G) in Theorem 1 cannot be improved
in general as X¥'(K,) = n+ 1 when n is even. However, for some families of
graphs, the V. DP-coloring number is rather closer to the maximum degree
than to the order of the graph. The following theorem in [4] is an example
of such a situation.

Theorem 2 [4]. Let G be a graph of order n > 3 without isolated edges
and with at most one isolated vertex. If §(G) > %, then X’'(G) < A(G)+5.

Some other results about X'(G) can be found in [1, 2, 9].

By Vizing’s theorem, any simple graph G has a proper coloring with
A(G) or A(G) + 1 colors, we know X'(G) > A(G). In this paper, we
will give an upper bound of the V. DP-coloring numbers of the graphs G
satisfying the Ore condition (that is, 02(G) = min{d(z) + d(y)| V zy ¢
E(G)} > n, where n is the order of G), in terms of the maximum degree
of G.

2 Main Results

First, we would like to give some additional notations and useful lemmas.

Given a proper edge coloring f of G, we denote by By(v) = {u| u €
V(G), F(u) = F(v)}. Observe that v € By(v). A semi-V DP-coloring is
a proper edge coloring with |By(v)| < 2 for any vertex v of G.

Let Py, ..., P, beaset of vertex disjoint paths. ThesetP = {P,,..., P}
is called a long path system if |V(P;)] > 3 fori =1,..., k. If the vertices of
a graph G are covered by a long path system then P is called a long path
covering of G.

The next two lemmas were proved by Bazgan et al. in (3, 4]. They
are useful in the proof of Theorem 1 and Theorem 2 and also important to
prove our main result.

Lemma 3 [3, 4]. Let G be a graph such that the inequality d(k — d) >
n4(G) — 2 holds for any integer d, §(G) < d < A(G), where k > A(G) +1
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is an integer. Then there exists a semi-V DP-coloring of G with k colors.

The following lemma allows us to transform a semi-V D P-coloring of
a subgraph of G to a V D P-coloring of G that uses three extra colors.
Lemma 4 [3, 4]. Let P = {Py,..., P} be a long path covering of G. If
there exists a semi-V DP-coloring of G’ = G — E(P) with k colors, then
there exists a V.DP-coloring of G with k + 3 colors.

Now we will present our main result of this paper.

Theorem 5. Let G be a connected graph of order n > 3. If 02(G) > n,
then ¥'(G) < A(G) + 4.

Proof. Observe that if 3 < n < 6, then by Theorem 1, we have ¥'(G) <
n+l=2+3+1< A(G)+4since A(G) 2 3 and n < 6. So the theorem
holds for » < 6 and we may assume n > 7 in the following.

Since a2(G) > n, it is well-known that G contains a Hamiltonian path.
Clearly, a Hamiltonian path P, of G is itself a long path covering of G.
Let G' = G — E(P,). We will show that G’ has a semi-V D P-coloring that
uses k = A(G) + 1 colors. In order to use Lemma 3, we have to verify the
following inequality

d(k—d') > na(G) -2 (+)

for any d’, ' < d' < A’, where &' = §(G’) and A’ = A(G’). We consider
three cases.

Case 1. d = A'. If A’ = A — 1, then k — d’ =2 and (*) is implied by
the inequality 2(A—1) > n—2since A> 2. f A’= A-2, thenk—d' = 3.
To get (), it suffices to verify that 3(A —2) >n—2. It holds forn > 7 as
A>3

Case 2. 8'+1<d <A'—1. Thenk-d =A+1-d > A'+2-d' >3,
andng —2<n-4. Sod'(k—d')>3d >3(+1) 2 3(6-1).

Ifé > -"—;'3, thend'(k—-d')>3(6-1) 2> %n—62n—42nd: — 2 for
n > 4.

In the other case, § < &5_3 Since 02(G) > n, for a vertex v € V(G)
such that d(v) = § and for any vertex u not adjacent to v, d(u) > 243, So
the number of the vertices of degree less than %ﬂ in G is at most 6 + 1,
and the number of the vertices of degree less than i‘éﬁ —-2= -"—.3—1- in G' is
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at most § + 1, that is, ng <6 +1for 8 +1<d' < o=l

If3<d<A'-1thend(k-d) 23> >n-4>ny -2 for
n >4,

If&+1<d <23 then d'(k—d') >3d >3(6—1) > 3(ng —2) >
ngr — 2.

Case 3. d' = §'. We can assume that G’ is not regular in this case,
otherwise, it comes to Case 1 and we are done. Then k—d' > 3, ng < n-1,
andd' =¢>46-2.

Ifé6>%,thend'(k—d)>3d >3(6-2)>3 -6>n-3>ny -2
for n > 6.

In the other case, § < 3. Since 02(G) > n, A(G) > 2L, and for all
the vertices of G whose degrees are less than %, the subgraph induced by
them is a clique in G, i.e., a complete graph w1th at most & + 1 vertices.
Since G is connected, in the clique there is at least one vertex with degree
greater than d in G. So the number of the vertices in G with degree 4§ is at
most 9.

Assume that 6’ = §—2. Then ng < §, because the vertices of degree &’
can only be the vertices in G with degree . Thus (x) holds since d’(k—d’) >

d =3(6-2)>6—-22ns—2.

Assume that &’ =48 —1. If 22 < § < 2, then d'(k - d’) >3d =30 =
3(6—1)>-—-—6>n 3>n¢:-—2forn>6 If5<" , by a similar
analysis as in Case 2, we have ng < d+lasd =§' =46~ 1 <38 <zl
Thus (*) holds since d'(k—d’) > 3d' =36’ =3(6—1) > (6+1)-2 > ne —2.

Now the inequality (*) holds for n > 7, so G’ has a semi-V D P-coloring
using k = A(G) + 1 colors by Lemma 3. By Lemma 4 and the remark at
the beginning of the proof, we have that X'(G) < A(G)+4forn>3. O

Since §(G) > % implies that 02(G) > n, we can immediately get the
following corollary by Theorem 5.

n

Corollary 6. Let G be a connected graph of order n > 3. If 6(G) 2,
then ¥'(G) < A(G) + 4.
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