On Vertex-Distinguishing Proper Edge Colorings of Graphs Satisfying the Ore Condition *

Meirun Chen^{a,b,†} Xiaofeng Guo^b

^a Department of Mathematics and Physics, Xiamen University of Technology, Xiamen Fujian 361024, China
^b School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China

Abstract An edge coloring is proper if no two adjacent edges are assigned the same color and vertex-distinguishing proper coloring if it is proper and incident edge sets of every two distinct vertices are assigned different sets of colors. The minimum number of colors required for a vertex-distinguishing proper edge coloring of a simple graph G is denoted by $\widetilde{\chi}'(G)$. In this paper, we prove that $\widetilde{\chi}'(G) \leq \Delta(G) + 4$ if G = (V, E) is a connected graph of order $n \geq 3$ and $\sigma_2(G) \geq n$, where $\sigma_2(G) = \min\{d(x) + d(y) | \forall xy \notin E(G)\}$.

Keywords: Edge coloring; Vertex-distinguishing coloring; Ore condition

^{*} The Project Supported by NSFC(No. 10831001).

[†] Corresponding author. E-mail address: meirunchen@hotmail.com

1 Introduction

All graphs considered in this paper are finite and simple, and we use the standard notation of graph theory. Definitions not given here can be found in [5]. Let G = (V, E) be a graph of order n with the vertex set V = V(G) and the edge set E = E(G). We denote by $V_d(G)$ the set of the vertices of degree d in G and $n_d(G) = |V_d(G)|$. The degree of a vertex v in G is denoted by $d_G(v)$ or simply d(v), and the maximum and minimum degree of G by $\Delta = \Delta(G)$ and $\delta = \delta(G)$, respectively. A k-edge coloring $f: E \to [k]$ of a graph G is an assignment of k colors to the edges of G. Let f(e) be the color of the edge e. Denote by $F(v) = \{f(e) | e = uv \in E(G)\}$ the multiset of colors assigned to the set of edges incident to v. The coloring f is proper if no two adjacent edges are assigned the same color and v-enteredistinguishing proper coloring (abbreviated VDP-coloring) if it is proper and $F(u) \neq F(v)$ for any two distinct vertices u and v.

Observe that if G contains more than one isolated vertex or any isolated edges, then no edge coloring of G is VDP. The minimum number of colors required to find a VDP-coloring of a graph G without isolated edges and with at most one isolated vertex is called the vertex-distinguishing proper edge-coloring number (abbreviated VDP-coloring number) and denoted by $\widetilde{\chi}'(G)$.

The VDP-coloring has been considered in many papers. It was introduced and studied by Burris and Schelp in [6, 7] and, independently, as observability of a graph, by Černý et al. [8], Horňák and Soták [10, 11]. In [7, 10], the VDP-coloring is also computed for some families of graphs, such as complete graphs K_n , bipartite complete graphs $K_{m,n}$, paths P_n and cycles C_n . For example, they proved that

$$\widetilde{\chi}'(K_n) = \left\{ egin{array}{ll} n, & ext{if n is odd;} \\ n+1, & ext{if n is even.} \end{array} \right.$$

and

$$\widetilde{\chi}'(K_{m,n}) = \left\{ \begin{array}{ll} n+1, & \text{if } n > m \geq 2; \\ n+2, & \text{if } n = m \geq 2. \end{array} \right.$$

The following result has been conjectured by Burris and Schelp [6, 7], and later proved by Bazgan et al. [3].

Theorem 1 [3]. A graph G on n vertices without isolated edges and with at most one isolated vertex has $\widetilde{\chi}'(G) \leq n+1$.

Obviously, the estimation of $\tilde{\chi}'(G)$ in Theorem 1 cannot be improved in general as $\tilde{\chi}'(K_n) = n+1$ when n is even. However, for some families of graphs, the VDP-coloring number is rather closer to the maximum degree than to the order of the graph. The following theorem in [4] is an example of such a situation.

Theorem 2 [4]. Let G be a graph of order $n \geq 3$ without isolated edges and with at most one isolated vertex. If $\delta(G) > \frac{n}{3}$, then $\tilde{\chi}'(G) \leq \Delta(G) + 5$.

Some other results about $\tilde{\chi}'(G)$ can be found in [1, 2, 9].

By Vizing's theorem, any simple graph G has a proper coloring with $\Delta(G)$ or $\Delta(G)+1$ colors, we know $\tilde{\chi}'(G) \geq \Delta(G)$. In this paper, we will give an upper bound of the VDP-coloring numbers of the graphs G satisfying the Ore condition (that is, $\sigma_2(G) = \min\{d(x) + d(y) | \forall xy \notin E(G)\} \geq n$, where n is the order of G), in terms of the maximum degree of G.

2 Main Results

First, we would like to give some additional notations and useful lemmas.

Given a proper edge coloring f of G, we denote by $B_f(v) = \{u | u \in V(G), F(u) = F(v)\}$. Observe that $v \in B_f(v)$. A semi-VDP-coloring is a proper edge coloring with $|B_f(v)| \leq 2$ for any vertex v of G.

Let P_1, \ldots, P_k be a set of vertex disjoint paths. The set $\mathcal{P} = \{P_1, \ldots, P_k\}$ is called a long path system if $|V(P_i)| \geq 3$ for $i = 1, \ldots, k$. If the vertices of a graph G are covered by a long path system then \mathcal{P} is called a long path covering of G.

The next two lemmas were proved by Bazgan et al. in [3, 4]. They are useful in the proof of Theorem 1 and Theorem 2 and also important to prove our main result.

Lemma 3 [3, 4]. Let G be a graph such that the inequality $d(k-d) \ge n_d(G) - 2$ holds for any integer d, $\delta(G) \le d \le \Delta(G)$, where $k \ge \Delta(G) + 1$

is an integer. Then there exists a semi-VDP-coloring of G with k colors.

The following lemma allows us to transform a semi-VDP-coloring of a subgraph of G to a VDP-coloring of G that uses three extra colors.

Lemma 4 [3, 4]. Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a long path covering of G. If there exists a semi-VDP-coloring of $G' = G - E(\mathcal{P})$ with k colors, then there exists a VDP-coloring of G with k+3 colors.

Now we will present our main result of this paper.

Theorem 5. Let G be a connected graph of order $n \geq 3$. If $\sigma_2(G) \geq n$, then $\tilde{\chi}'(G) \leq \Delta(G) + 4$.

Proof. Observe that if $3 \le n \le 6$, then by Theorem 1, we have $\widetilde{\chi}'(G) \le n+1 = \frac{n}{2} + \frac{n}{2} + 1 \le \Delta(G) + 4$ since $\Delta(G) \ge \frac{n}{2}$ and $n \le 6$. So the theorem holds for $n \le 6$ and we may assume $n \ge 7$ in the following.

Since $\sigma_2(G) \geq n$, it is well-known that G contains a Hamiltonian path. Clearly, a Hamiltonian path P_n of G is itself a long path covering of G. Let $G' = G - E(P_n)$. We will show that G' has a semi-VDP-coloring that uses $k = \Delta(G) + 1$ colors. In order to use Lemma 3, we have to verify the following inequality

$$d'(k - d') \ge n_{d'}(G') - 2 \tag{*}$$

for any d', $\delta' \leq d' \leq \Delta'$, where $\delta' = \delta(G')$ and $\Delta' = \Delta(G')$. We consider three cases.

Case 1. $d' = \Delta'$. If $\Delta' = \Delta - 1$, then k - d' = 2 and (*) is implied by the inequality $2(\Delta - 1) \ge n - 2$ since $\Delta \ge \frac{n}{2}$. If $\Delta' = \Delta - 2$, then k - d' = 3. To get (*), it suffices to verify that $3(\Delta - 2) \ge n - 2$. It holds for $n \ge 7$ as $\Delta \ge \lceil \frac{n}{2} \rceil$.

Case 2. $\delta' + 1 \le d' \le \Delta' - 1$. Then $k - d' = \Delta + 1 - d' \ge \Delta' + 2 - d' \ge 3$, and $n_{d'} - 2 \le n - 4$. So $d'(k - d') \ge 3d' \ge 3(\delta' + 1) \ge 3(\delta - 1)$.

If $\delta \ge \frac{n-2}{2}$, then $d'(k-d') \ge 3(\delta-1) \ge \frac{3}{2}n-6 \ge n-4 \ge n_{d'}-2$ for $n \ge 4$.

In the other case, $\delta \leq \frac{n-3}{2}$. Since $\sigma_2(G) \geq n$, for a vertex $v \in V(G)$ such that $d(v) = \delta$ and for any vertex u not adjacent to v, $d(u) \geq \frac{n+3}{2}$. So the number of the vertices of degree less than $\frac{n+3}{2}$ in G is at most $\delta + 1$, and the number of the vertices of degree less than $\frac{n+3}{2} - 2 = \frac{n-1}{2}$ in G' is

at most $\delta + 1$, that is, $n_{d'} \leq \delta + 1$ for $\delta' + 1 \leq d' \leq \frac{n-1}{2}$.

If $\frac{n}{2} \le d' \le \Delta' - 1$, then $d'(k - d') \ge 3d' \ge \frac{3n}{2} > n - 4 \ge n_{d'} - 2$ for $n \ge 4$.

If $\delta' + 1 \le d' \le \frac{n-1}{2}$, then $d'(k-d') \ge 3d' \ge 3(\delta-1) \ge 3(n_{d'}-2) > n_{d'}-2$.

Case 3. $d'=\delta'$. We can assume that G' is not regular in this case, otherwise, it comes to Case 1 and we are done. Then $k-d'\geq 3$, $n_{d'}\leq n-1$, and $d'=\delta'\geq \delta-2$.

If $\delta \geq \frac{n}{2}$, then $d'(k-d') \geq 3d' \geq 3(\delta-2) \geq \frac{3n}{2} - 6 \geq n-3 \geq n_{d'} - 2$ for $n \geq 6$.

In the other case, $\delta < \frac{n}{2}$. Since $\sigma_2(G) \geq n$, $\Delta(G) \geq \frac{n+1}{2}$, and for all the vertices of G whose degrees are less than $\frac{n}{2}$, the subgraph induced by them is a clique in G, *i.e.*, a complete graph with at most $\delta + 1$ vertices. Since G is connected, in the clique there is at least one vertex with degree greater than δ in G. So the number of the vertices in G with degree δ is at most δ .

Assume that $\delta' = \delta - 2$. Then $n_{d'} \leq \delta$, because the vertices of degree δ' can only be the vertices in G with degree δ . Thus (*) holds since $d'(k-d') \geq 3d' = 3(\delta - 2) > \delta - 2 \geq n_{d'} - 2$.

Assume that $\delta' = \delta - 1$. If $\frac{n-2}{2} \le \delta < \frac{n}{2}$, then $d'(k-d') \ge 3d' = 3\delta' = 3(\delta - 1) \ge \frac{3n}{2} - 6 \ge n - 3 \ge n_{d'} - 2$ for $n \ge 6$. If $\delta \le \frac{n-3}{2}$, by a similar analysis as in Case 2, we have $n_{d'} \le \delta + 1$ as $d' = \delta' = \delta - 1 \le \frac{n-5}{2} < \frac{n-1}{2}$. Thus (*) holds since $d'(k-d') \ge 3d' = 3\delta' = 3(\delta - 1) \ge (\delta + 1) - 2 \ge n_{d'} - 2$.

Now the inequality (*) holds for $n \geq 7$, so G' has a semi-VDP-coloring using $k = \Delta(G) + 1$ colors by Lemma 3. By Lemma 4 and the remark at the beginning of the proof, we have that $\widetilde{\chi}'(G) \leq \Delta(G) + 4$ for $n \geq 3$. \square

Since $\delta(G) \geq \frac{n}{2}$ implies that $\sigma_2(G) \geq n$, we can immediately get the following corollary by Theorem 5.

Corollary 6. Let G be a connected graph of order $n \geq 3$. If $\delta(G) \geq \frac{n}{2}$, then $\widetilde{\chi}'(G) \leq \Delta(G) + 4$.

References

- [1] P.N. Balister, B. Bollobas, R.H. Schelp, Vertex distinguishing colorings of graphs with $\Delta(G) = 2$, Discrete Math. 252 (2002) 17-29.
- [2] P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex distinguishing edge colorings of graphs. J. Graph Theory 42 (2003) 95-109.
- [3] C. Bazgan, A. Harkat-Benhamdine, H. Li, M. Woźniak, On the vertexdistinguishing proper edge-colorings of graphs, J. Combin. Theory Ser. B 75 (1999) 288-301.
- [4] C. Bazgan, A. Harkat-Benhamdine, H. Li, M. Woźniak, A note on the vertex-distinguishing proper colorings of graphs with large minimum degree. Discrete Math. 236 (2001) 37-42.
- [5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan, London (1976).
- [6] A.C. Burris, Vertex-distinguishing edge-colorings, Ph.D. Dissertation, Memphis State University, 1993.
- [7] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edgecolorings, J. Graph Theory 26 (2) (1997) 73-82.
- [8] J. Černý, M. Horňák, R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.
- [9] O. Favaron, H. Li, R.H. Schelp, Strong edge coloring of graphs, Discrete Math. 159 (1996) 103-109.
- [10] M. Horňák, R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combinatoria 41 (1995) 289-301.
- [11] M. Horňák, R. Soták, Asymptotic behavior of the observability of Q_n , Discrete Math. 176 (1997) 139-148.