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Abstract

A map is called Unicursal if it has exactly two vertices of odd valency.
A near-triangulation is a map with all but one of its face triangles. We
use the enufunction approach to enumerate rooted Unicursal planar near-
triangulation with the valency of the root-face and the number of non-
rooted faces as parameters.
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Introduction

Since the enumeration of rooted planar maps was initiated by W. T. Tuttelll
in the early of 1960’s for attacking the Four Color Problem, the theory has been
developed and further generalized by R. C.Mullin & | W. T, Tuttel® himself,
Liskovets V.A. and Walsh T.R.S.H], Y. P. Liu 5~19] etc, Although the theory
has been developed greatly for nearly fifty years {19 | the enumerative problem
of many types of maps is unable to be solved and many enumerative results
still need to be improved and generalized. Liu has developed his methods to
count triangulations on the disk and some more general cases of triangulations
respectively with simplification(1%. But there is no research work on enumer-
ation of Unicursal planar near-triangulation. A map is called Unicursal if it
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has exactly two vertices of odd valency. A near-triangulation is a map with all
but one of its face triangles. In this paper, we will try to enumerate Unicursal
planar near-triangulation and give its functional equation. Maps in this paper
are only considered to be planar and rooted. If the surface is the plane, or the
sphere, the map is called a planar map. A map M is said to be rooted if an
edge with a direction along the edge, and a side of the edge is distinguished.
We denote the root-edge of M by R(M) and its tail vertex is chosen to be the
root-vertex of this map, the face on the right-hand side of the root-edge is called
the root-face. Without loss of generality, the root-face may be chosen as the
infinite face. Terminologies not explained here refer to [10].

2 Generating Functions

The way of decomposition is very closely related to the choice of parame-
ters which the enumeration is according to. In this paper, we will decompose
Unicursal planar near-triangulation maps and provide a form of functional equa-
tion of the enumerating function of rooted Unicursal planar near-triangulation
maps with the valency of the root-face and the number of non-rooted faces as
parameters .

Now, we introduce the enufunction for enumerating rooted Eulerian planar -
near-triangulation maps in & and rooted Unicursal planar near-triangulation
maps in U, respectively, as follows

f=fulzy) =) 2" Vy"® (1)

Ueu

where m(U) is the valency of root-face of U € U and n(U) is the number of
non-rooted faces.

f=fzay = Y a0y ® @
Ueti
where m(fj ) is the valency of root-face of U e U and n(fj) is the number of
non-rooted faces.
On the enumerating problem of rooted Eulerian planar near-triangulation
maps with the face partition, Liu (!9 investigated it and obtained a result as
follows, which is is represented as formula (5.3.15) in [10]):

Byt + 2P+ (P - - Df+1- - O+ =0 (3)
where fA is the coefficient of z%in f.

For U = (X,J) € U, its root edge is denoted by a = K r(U). Then U is
divided into three classes as

U=t +Uy+Us ()
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where ¥, contains all the maps of root-edge separable in U ; U, contains all the
maps of root-edge a loop in U; Of course, U; is with all the maps of root-edge
nonseparable in Y.

3 Some Lemmas
In this section, some useful lemmas will be obtained firstly.
Lemma 1 Let Uy = {U - oV € iy}, then
Gy =U xU (5)
where x is the Cartessian production between two sets.

Proof Because of the root-edge separable in 171 , each element of ﬁ(l) is a premap
which consists of two submaps, easy to check that both in ¢ and hence Uy C

UxU.
Conversely, for any two maps in U, by adding a new edge as the root-edge

separable, what obtained can be seen as uniquely a map in U(l) and hence

L((l) 2UxU. h
From Lemmal, the enufunction of U; is
fl = Z zm(ﬁ)yn(ﬁ) = $2f2 (6)
66571

Lemma 2 Let 27(2) ={U - o|VU € Uy}, then

Uy =U@)0U (7
where U(2) = {(ONVT € U,m(T) = 2} in which m(U)is the valency of the
root-face in U.

Proof For a map Ue 17(2), because there is a map U7/, such that I = T -a,a=

e~ ("), the root-edge of U’, by considering the root-edge a as a loop we see that
the inner and outer doma,ms determine respectively two kinds of maps, one is

in 74(2) and the other in U. b
From Lemma2, the enufunction of U, is
Bo= 3 @y ® = Lfoy - f‘a’f ®)
U euz

where f) = fu( 8= 23
For U3 € U3, let

U =Us - {Tr,TaB(IT),(TaB)*(Ir)}
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be the map obtained by deleting the three edges incident with
Ir, JaB(JTr),(TeB)*(Ir)

ie., those on the boundary of the nonrooted face which is incident with the
root-edge, from U;. Then Us can be divided into three classes: Us;, ¢ = 1,2,3
such that

Us; = {l7 |Vl7 € 173, U has i joints}

for a joint, ie., a connected component, ¢ = 1,2, and 3. Thus,

3
Us =y Us;.
i=1
Further, write . _ -
Us; = {UNUy; € Usi}

fori=1,2,3.

Lemma 3 For Us;, we have

3
Uy =U - U(j) )
i=1
where U(5) =;{I7ll7 e, m(0) = j},5 =1,2,3 in which m(U) is the valency of
root-face in U.

Proof We see that the set on the right hand is the set of all rooted Unicursal
planar near-triangulations with the outer face valency not being 1,2 and 3, and
hence we can get above result . b
We evaluate the contributions fa, of u;;, to f for ¢ = 1,2, 3 respectively.
For is;, from (9) in lemma 3, we soon obtain that

fa=z73%%(f - Zﬂ”)—x-sﬂf ol 2+ Y1) (10)

i=1

f(J') = fu(J), j = 1,2,3, the enufunction of rooted Unicursal planar near-
triangulations with the number of nonrooted face as the parameter.

Let 7 € Usp with root r. Write o, and v as the vertices incident with r, 8r
and BJr respectively. Of course, o is the root-vertex, or say the first vertex,
and u is the nonrooted end of the root-edge, or say the second vertex, and v is
called the third vertex of U. . .

If the i— vertex is connected to any of the other two in U, then U is said to

be i—disjoint. s can be divided into 3 classes named by ugg), j=1,2,3.
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Lemma 4 For I:isz, we have

UG = xu (11)
U@ =i xu (12)
U = (13)

Proof Because U has two components here such that one component of U is
incident with only the first vertex, or the second | vertex and the other is incident
with the other two among the three vertices for U32 The former is allowed to be
any map in I and the latter is a map in Y. Therefore , the former two formulae

are true. (14) can be found by similar discussion. b
According to lemma 4 , we see that
1 = ff (14)
Usa
) =v*ff (15)
@ _
12 =y'F (16)

Lemma 5 For 1733, we have
Usg=U xU xU (17)
wherex s the Cartessian production

Proof Because all the three of the first, the second and the third vertices are

cut-vertices, each component of U, Ue U33, is allowed to be map in U and U,

respectively. The lemma follows. h
For Usg, from (18)in lemma 5 , we soon obtain that

faa =2y ff? (18)

4 Main results
Theorem 1 The equation about f = f(z,v)

f _ z-sysf(s)(m—z 2 +:c‘1y +1) - z—zyzf(s)f - f
x—3y3 + 2y2f + m3yf2 + y2 ~1

(19)

is well defined in the ring L{R;z,y}, ) is the coefficient of z° in f. The
solution of the equation is f = fg.
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Proof Because of (4) ,
fa=fa, + g+ fa,

In virtue of (6),(8),(10),(11),(14)-(16),(18), we soon obtain that

; v 5 T

f= 27+ Ff(s)f +z %% f - f(s)(;§ +-+1)

+ 2Pff+9*f+2%yff°
By grouping and rearranging its term, it is seen that f is a solution of the
equation. This is the second statement.
The first statement can be done from the well definedness of the equation sys-

tem about coefficients obtained by equating terms on two sides of the equation

when f is in form as a power series of z and y. ]
From the equation (19), we can see that enufunction of rooted Unicursal

planar near-triangulation maps f has a close relationship with rooted Eulerian
planar near-triangulation maps f. The cubic equation (3) has no easy way to
solve up until now. This means that further work can also be done on how to
find an explicit solution of equation (19).
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