Upper Chromatic Number of Steiner Triple Systems !
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Abstract: The upper chromatic number ¥(#) of a C-hypergraph
H = (X,C) is the maximum number of colors that can be as-
signed to the vertices of H in such a way that each C € C
contains at least a monochromatic pair of vertices. This paper
gives an upper bound for the upper chromatic number of Stiener
triple systems of order n and proved that it is best possible for
any n(= 1 or 3( mod 6)).
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1. Introduction

A mixed hypergraph is a triple H = (X,C,D), where X is a finite set
of vertices, | X[ = n > 1, and C and D are two arbitrary families of X.
The elements of D are called D-edges, while those of C are called C-edges.
The size of every D-edges and every C-edges is at least 2. The difference
between C-edges and D-edges is in the requirements for a coloring.

Definition 1.1 (V. Voloshin [9]). A strict k-coloring of a mixed hypergraph
H = (X,C,D) is a coloring of vertices of X in such a way that the following
conditions hold:

(1) any C-edge C € C has at least two vertices of the same color;

(2) any D-edge D € D has at least two vertices colored differently;

(3) all vertices are colored;

(4) the number of used colors is exactly .

If H has a strict k-coloring, then we say that H is k-colorable.
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Definition 1.2 (V. Voloshin [9]). The maximum (minimum) k for which
there exists a srtict k-coloring of a mixed hypergraph H is called the upper
(lower) chromatic number of H and is denoted by X(H) (x(#)).

The classical weak vertex coloring of a hypergraph can be seen as a
strict coloring of a mixed hypergraph in which there are only D-edges.
In the language of mixed hypergraphs, classical hypergraphs are called
D-hypergraphs, while mixed hypergraphs with only C-edges are called C-
hypergraphs, mixed hypergraphs with C = D are called bi-hypergraphs and
the subsets of X are called bi-edges.

In a D-hypergraph, the lower chromatic number coincides with the
(weak) chromatic number and the upper chromatic number trivially equals
n. In a C-hypergraph, the lower chromatic number trivially equals 1 but
the upper chromatic number represents a value that is hard to deternime.
And in any coloring of a bi-hypergraph, each bi-edge is neither monochro-
matic nor polychromatic.

In this paper, we concentrate on the coloring theory of Steiner triple sys-
tems. A Steiner system S(t,k,n) is a pair (X,S) where X is an n-element
set of vertices, and S is a family of k-element subsets of X (called blocks )
such that any ¢ distinct vertices of X appear together in precisely one block.
A Steiner system with parameters ¢t = 2 and k = 3 is called a Sieiner iriple
system (denoted by STS(n)). It is well known that the condition n =1 or
3 (mod 6) is necessary and sufficient for the existence of an STS(n) . Sys-
tems of the type S(3, 4, n) represent Steiner quadruple systems, or SQS(n),
where the condition for existence is n = 2 or 4 (mod 6).

When coloring a STS(n) in which each block is considered just as a
C-edge, we have a C-hypergraph and we denote it by CSTS(n), in the case
of SQS we denote it by CSQS(n). If, on the other hand, each block is
assumed to be both a C-edge and a D-edge, we have a bi-hypergraph, or a
BSTS(n) for triple systems and BSQS(n) for quadruple systems. We study
CSTS only in this paper. The advanced results about BSTS, CSQS and
BSQS were listed in [7].

It is easy to notice that the upper chromatic number of any CSTS(n) is
no less than 3 if n > 7. This paper discusses the upper bound for the upper
chromatic number of CSTS(n)s. Lorenzo Milazzo and Zsolt Tuza gave an
upper bound [log,(n+1)] and proved that it is best possible when n = 2¥—1
(see [5]). This paper improves the upper bound as |logy(n+1)] and proves
that this new bound is best possible for any n(= 1 or 3 (mod 6)).

2. Upper bound for upper chromatic number of CSTSs

In this section we will discuss the upper bound for upper chromatic
numbers of CSTSs. Before our discussion we give two symbols which we
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will use in our discussion.

Let Y be a set of order n and K, be the complete graph on Y. If n
is even, then K, has 1-factorizations, a 1-factorization of K, is denoted
by OF(K,); if n is odd, then K, has no 1-factorization. In this case, let
GK,, be the complete graph on Y U {y} (where y is a vertex not in Y).
If {R,F,,---,F,} is an OF(GK,), then omit y from every F}, we can
obtain a near-1-factorization of K,, denoted by near-OF(K,). Clearly,
every near-1-factor has an isolated vertex.

We also need the concept of isomorphic in our discussion. Two Steiner
triple systems (X3, S1) and (X3,S,) are isomorphic if there exists a bijec-
tion between X; and X, that maps each block of S; onto a block of Sy and

vice versa.
The already known results about the upper bound for upper chromatic

number of CSTSs are as follows.

Theorem 2.1(Milazzo-Tuza [5]). Let X be a CSTS(n) with n < 2¥ — 1.
Then ¥ < k.

Theorem 2.2(Milazzo-Tuza [5]). If there exists a CSTS(n) with upper
chromatic number k, then there exists a CSTS(2n + 1) with upper chro-

matic number k+ 1.

Theorem 2.3(Milazzo-Tuza [6]). Suppose that a colorable CSTS(n) of or-
dern<2x10—-1hasa strict coloring with upper chromatic number X
colors where the first three color classes are of cardinalities ny = 1,n3 =

ng=4. ThenX <k +3.

The proofs of theorem 2.2 and theorem 2.3 are based on the following
construction.

Let Hy = (X1,851) be a CSTS(n). Take a set X3 of vertices with | X3| =
n+ 1 and X; N X3 = 0. Recalling that n + 1 is even, let K4+ = (X3, F),
F={Ff,Fs,..,F,} be an OF(K,+1). Define the collection S of triples on
X = X; U X, in this way:

(1) every triple belonging to S; belongs to S, too;

(2) if z; € X1(i = 1,2,...,,n) and y1,y2 € X», then {z;,31,42} € S if
and only if (y1,%2) € Fi.

It is easy to see that H = (X,S) is a CSTS(2n + 1) and if H, is k-

colorable, then # is (k + 1)-colorable.
We call the above method of construction Double-plus-one construction

for CSTSs, i.e., construct a CSTS(2n + 1) from a CSTS(n).
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Theorem 2.4(Milazzo-Tuza [5]). Let H be a CSTS(n) such thatn < 2k —1
and X(H) = k. Thenn =2F - 1.

Theorem 2.1 and theorem 2.4 show that an upper bound for the upper
chromatic number of CSTS(n)s is |logy(n +1)] (the upper bound given in
5] is [loga(n+1)]). The above two theorems together with Double-plus-one
construction for CSTSs show that the upper bound is best possible when
n = 2% — 1. We will prove that it is also best possible for any other n, that
is to say, for any n such that 2 =1 <n < 2k+1 _1 and n =1 or 3(mod 6),
there exists a CSTS(n) with upper chromatic number k. We prove this by
induction.

We first discuss the structure of positive integers n = 1 or 3(mod 6))
and have the following propositions.

Proposition 2.1. If a positive integer n satisfies that n = 1 or 3(mod 6),
then it also satisfiesn =1 or 3 or 7 or 9(mod 12), and vice versa.

The result of proposition 2.1 is easy to verify.

Proposition 2.2. If a positive integer n satisfies that n = 1 or 3(mod 6),
then there erists a positive integer | such that | = 1 or 3(mod 6) and
n=2+1orn=204+7.

Proof. Assume that n = 6k + 1. Then

ifk=4m, thenn=6-4m+1=2(12(m—-1)+9)+7;

ifk=4m+1, thenn=6dm+1)+1=2(12m+3) +1;
ifk=4m+2, thenn=6(dm+2)+1=2(12m +3) +7;
ifk=4m+3, thenn=6(dm +3)+1=2(12m+9) + 1.

Assume that n = 6k 4+ 3. Then

ifk=4m, thenn=6-4m+3=2(12m+1)+ 1;

ifk=4m+1, thenn=6dm+1)+3=2(12m+ 1)+ 7;
ifk=4m+2, thenn=6(4m+2)+3=2(12m+7) + 1;
ifk=4m+3, thenn=6(dm+3)+3=2(12m+7)+ 7.

This completes the proof. O
According to the structure of n, since we already have Double-plus-
one construction for CSTSs, we need to find a method to construct a

CSTS(2n + 7) from a CSTS(n), the following two results are about this
method.
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Lemma 2.1. Ifn =1 or 9(mod 12) and there exists a k-colorable CSTS(n),
then there erists a (k + 1)-colorable CSTS(2n + 7).

Proof. Let H = (X,S) be a CSTS(n) with X = {z1,72, -+,7,}. Put
n+7 = 2m. Then m is even since n = 1or 9(mod 12). Let Y =
{y1,%2,-*,¥m} 80nd Z = {21,23, -+, 2z} such that YNZ =0, T=YUZ
and TNX =0. Let K, = (Y, F), F={F,F,---,Fpn_1} be an OF(K,,)
containing two 1-factors (let these be , w.l.o.g., F,—2 and F,_;) whose
union is a Hamiltonian circuit (let, again w.l.o.g., this Hamiltonian cir-
cuit be Fr_o U Fipy = (¥1,%2,°* * »¥m, %1)). Such a 1-factorization is well
known to exist (cf., e.g., [3,4]).
Let

C = {{zi,Yi+3, Yira}, {20, ziv1, Yiv2} : 1=1,2,---,m},
D= {{xiaypryq}v{xth) zq} : (yp’yq) € -Fnz = 1,2, tre, M — 3}7
E= {{zm—2+kayjazj+k} x= 1$2l"’,m; k=0,17"'1m_5}

(the subscripts of y’s and z’s are reduced modulo m to the range {1, 2, - - -, m}

whenever necessary).

Put X* = XUT and §* = SUCUDUE. It is easily verified that
H* = (X*,8*) is a CSTS(2n + 7) (cf. [3,4)).

Let ¢ be a strict k-coloring of H with color classes C;,Cs, -+, Ck. Then
C1,Cy,---,Ck, T is astrict (k+ 1)-coloring of H*. Therefore H* is (k+ 1)-
colorable. O

Lemma 2.2. Ifn =3 or 7(mod 12) and there exists a CSTS(n) with upper
chromatic number k, then there exists a (k + 1)-colorable CSTS(2n + 7).

Proof. Let H = (X,S) be a CSTS(n) with X = {z1,z2,---,zs}. Put
n+7 = 2m (then m = 1(mod 2)). Let Y = {y1,y2,---,ym} and Z =
{z1,22,"**,2m}suchthat YNZ =0, T=YUZ and TNX = 0. Let K, =
(Y,F) be a near-OF(Ky,), F = {F1,Fs,-+,Fp} containing two near-1-
factors (let these be, w.l.o.g., Fin—1, Fi) Whose union is a Hamiltonian path
(let, again w.l.o.g., this Hamiltonian path be Fy,_1UF,, = (y1,%2,"** y Ym))-
Such a near-OF(K,,) is known to exist ([3]). Furthermore we may assume
that the edge (y1,ym) belongs to the factor Fy,_,.
Now let

C = {{zi, i+, Yira}: {2is zivr1, Yita} : =1,2,--.,m},

D= {{xiaymyq}r {zi,2p, 24} 1 (Ypr¥q) € Fiy i=1,2,...,m -3},

D= {{zi)yj(i)a zj(i)} 1 4=12,---,m—2,

Yj(i) is the isolated vertex of F;},
D' = {{xm-2, Yps yq}a {xm—2a Zp, zq} . (ypa yq) € Fn2 \ (yl; ym)}
U {{zm—Zy Y1, 21}, {zm—2’ Ym, Zm}}a
E= {{xm—2+kayjazj+k} 1 i=142m k= 1,2,-. ,am— 5}

393



(the subscripts of y's and 2’s are reduced modulo m to the range {1,2,---,m}

whenever necessary).
Put X* = XUT and 8* = SUCUDUD'UD"UE. 1t is again easily verified

that H* = (X*,S*) is a CSTS(2n + 7) ( see [3]). Moreover, if c is a strict
k-coloring of M with color classes Cy,C,: -+, Ck, then Cy,Cs,+-+,Cy, T is
a strict (k + 1)-coloring of H*. Therefore H* is (k + 1)-colorable. O

We call the constructions in Lemma 2.1 and Lemma 2.2 Double-plus-
seven construction for CSTSs.

Notice that for any n =1 or 3(mod 6) and 2¥ —1 < n < 25+1 — 1, we
have 2F+1 —1 < 2n 4 1 < 2¥+2 — 1, Similarly, for any n = 1 or 3(mod 6)
and 2¥ — 1 < n < 2F+1 — 3, we have that 2¥*!1 —1 < 2n + 7 < 26+2 — 1,
Therefore, we get the following result.

Theorem 2.5. For any n such thatn =1 or 3(mod 6) and 2 -1 < n <
2k+1 _ 3 if there exists a CSTS(n) with upper chromatic number k, then
there exists a CSTS(2n + 7) with upper chromatic number k + 1.

Butifn=2F-3,then2*1—1<n<2*~land 2n+7=2F141>
2k+1 _ 1. We can not get a CSTS(2**! 4 1) using Double-plus-one con-
struction. If we construct a CSTS(2%+! + 1) from a CSTS(2* — 3) using
Double-plus-seven construction , we only know that this CSTS(2%+! + 1)
is k-colorable. But we hope to guarantee that it is (k + 1)-colorable. So
we need to find other method to construct a CSTS(2*+! + 1) with upper
chromatic number k + 1. Furthermore, we only need to consider the case
of k being even, since we have the following result.

Lemma 2.3. If n = 2251+ — 3 then n = 5(mod 6).
Proof. We prove this result by induction on k;. It is easy to notice that

the conclusion is true for k; = 1. Consider that

= 22(k1+1)+1 —3= 92k1+142 _ g
=4.92k1+1 _3=3.92k+1 | 92ki+1 _ 3
=6.2% 4 (22k1+1 - 3),

n

hence, if 2251+1 — 3 = 5(mod 6), we also have that 22(ki+t1)+1 _ 3 =
5(mod 6). This completes the proof. O

If n = 2251 — 3, then 2n + 7 = 22%1+1 4 1. In the following we try to
find other method to construct a CSTS(22%1+! 4 1) with upper chromatic
number 2k; + 1.
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Let us discuss another kind of constructions of n = 22k1+! 4+ 1, If
n= 2214141, then n = 2(22%1 — 1)+ 3 = 2m + 3(where m = 221 — 1), So
we try to construct a CSTS(2m + 3) from a CSTS(m) when m = 2%k —
We do this by two steps. The first step is to construct a CSTS(4v + 3)
from a CSTS(v) when v = 2% — 1 (thus 4v + 3 = 22P+2 _ 1), We get the
following result.

Lemma 2.4. For any positive integer p, we can get a CSTS(2%P —1) H* =
(X*,S8*) satisfying the following conditions:

(1) the upper chromatic number of H* is 2p;

(2) X* can be parted into 2==% parts such that every part contains three
vertices and these three vertzces form a triple in H*.

Proof. We begin with a CSTS(15) Let

Xs = {z1,%2,23}, X} = {a1,a2,a3,a4}, X = {by,b2,bs,b4} and
X3 = {c1,¢2,¢3,¢4} such that X30X4 =0, XinX] =0,4,7=1,2,3,i#£j
and X} = X3U X}, X2 = X3U X2, X3 = Xsu X3} Let'Hl—
(X-,,87), HE = (X-?,Sz) a.nd 7{3 = (X3,52) be three CSTS(7)s such that
they are isomorphic with each other and {z;,z2,z3} € 8§} NS? N S2.

We need to construct the triples among X}, X7, X3. Let

8{5 = {{ala bl’cl}) {ah b23 64}’ {al, b31 02}3 {ala b4, c3}
{021 bla 03}, {0'2: b2, 02}) {0'2a ba, 04}, {a2a b4, cl}
{GSa bl’ C4}, {0'3) b2: 01}, {03, b3a 03}, {035 b4, 02}
{a'47 b1, 62}’ {a4, ba, 03}" {a‘h bs, cl}1 {a"b by, 04}}.

Let X35 = X}UX2UX2 and 815 = SJUSZUS3US! 5. Then Hys = (Xis, Sis5)
isa CSTS(15). Since 01 = {21},02 = {232,.’1:3},03 = {0.1,02,0.3,0.4},04 =
{b1, b2, b3, bg, €1, c2, c3, ¢4} can give a strict 4-coloring of H35 and 15 = 2¢4-1,
we have that X(H15) = 4.

Notice that {xla T2, $3}, {al? bla 1 }1 {02, b2) 02}, {a3’ b3) C3}, {0.4, b47 04}
are all in 815.

Similarly, suppose that # = (X,S) be a CSTS(v) such that v =
2%P —1 = 3¢ (it is ease to verify by induction that v = 22? — 1 = 0(mod 3)),
X(H) = 2p and the vertex set X can be separated into ¢ parts such that
every part contains three vertices and these three vertices form a triple in
H. Then let Y, Z and U be three disjoint vertex sets of order v + 1 such
that XNY = XNZ = XNU = @. Assume that X = {z1,22,+-,2,}, ¥ =
{92, 9vr1}y Z = {21,22,- ", 2041}, U = {ug,u9,--+,up41} and
Hy = (XVUY,Sy), Hz = (XU Z,S8z), Hu = (X UU,Sy) are three
CSTS(2v + 1)s constructed from H using Double-plus-one construction.
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Now let

U:’fll{{y,,z.,u,}}
Us. q{{yterauWJ} j<i}

j-2{{ynz.7’u1+]+1} i< -7}
U{{yv+1’zj’uj+l} .7 = 1 2 U — 1}
U{{yuzv:u‘h} {yuzv+11'u'2z+1} i=1,2,--- ':L}
U{{wi> 20, w2it1 }s s v, s} : 22 + 1 <i<v+1}

(the subscripts of z’s and u's are reduced modulo v+1 to range {1,2,---,v+
1}).

Let X* = XUYUZUU and $* = SyUSzUSyUS’. Then H* = (X*,S*)
is a CSTS(22P+2 — 1). From the construction of H*, we can see that the
vertex set X* of H* can be separated into ¢ + 3¢ + 1 = 4¢ + 1 parts such
that every part contains three vertices and these three vertices form a triple
in H*.

It is easy to find that if ¢ is a strict 2p-coloring of H with color classes
Ci,Ca,- -+, Cap, then Cy,Ca,-++,C2,Y,Z U U is a strict (2p + 2)-coloring
of H*, that is to say, H* is (2p + 2)-colorable. Furthermore, since |X*| =
22r+2 _ 1. we have that X(H*) < 2p + 2. Therefore x(H*) =2p+2. O

We call the above method of constructions Four-time-plus-three con-
struction for CSTSs. Based on this construction, we can obtain the follow-
ing conclusion.

Lemma 2.5. There ezists a CSTS(22%+! +1) with upper chromatic number
2k +1.

Proof. We prove this result by construction. Let n = 22k-1 _1and X =
{z1,Z2,*,Zn}. Suppose that # = (X, S) is a CSTS(n) constructed using
Four-time-plus-three construction . Without loss of generality, assume that
§'= {{x1,22)33}’ {x4v Ts, mﬁ}a Tt {xn—%mn—l, xn}} cs.
Let Y = {y1,¥2,**,¥n} and Z = {21, 22,23} such that XNY =0, XnZ =
@ and Y N Z = 0. Define the collection S* of tripleson X* = XUY UZ as
follows.
(1) every triple belonging to S belongs to S*,too;
s (2){y1,¥2,¥3}, {va, vs, U6}y s {¥n-2,Yn-1,Yn} € S and {21, 2,23} €
(3){{21,33:‘,%} P i= 11 21 e ,n} c 8';
| (4‘)${{22,$3i+1;'y3£+2},{22:-'53i+2:y3i+3}s {22, z3i+3, Y341} : 1 =0,1,---,m—
1} C &*
} (5‘25{{23,$3z+1,y31+3} » {23, T3i42, Y3i+1}s {23, T3i3, Yaite} 1 =0,1,- -+, m—
1} c s
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. (?){{:c,-,yj,yz}, {zjs i, ui}, {=1, %6, 951} € 8" if and only if {z;,z;,7;} €
S\§'.

It is easy to see that H* = (X*,S*) is a CSTS(2n+3) and A is its sub-
system. Let c be a strict 2k-coloring of H with color classes C;, Ca,--+,Coy.
Then Cy,C2,--+,Ca%,Y U Z is a strict (2k + 1)-coloring of H*. Further-
more, since 2n + 3 = 2261 1 1 < 22k+2 _ 1 we have that X(H*) < 2k + 2.
Therefore, we get that X(H*) =2k+1. O

We call the above method of construction Double-plus-three construc-
tion for CSTSs, i.e., construct a CSTS(2n + 3) from a CSTS(n) when
n= 22k —-1=3m.

From the above discussion, we can obtain our main result.

Theorem 6. For any positive integer n such that n = 1 or 3(mod 6),
there ezists a CSTS(n) with upper chromatic number |loga(n + 1)].
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