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Abstract

A graph-pair of order t is two non-isomorphic graphs G and H on
t non-isolated vertices for which G U H 2 K, for some integer ¢ > 4.
Given a graph-pair (G, H), we say (G, H) divides some graph K if
the edges of K can be partitioned into copies of G and H with at
least one copy of G and at least one copy of H. We will refer to this
partition as a (G, H)- multidecomposition of K.

In this paper, we consider the existence of multidecompositions
of K, — F into graph-pairs of order 5 where F is a Hamiltonian cycle
or (almost) 1-factor.

1 Introduction

The authors in [2, 3] defined the graph-pair (G,H) as a pair of non-
isomorphic graphs on the same number of vertices, say m, such that GUH =
K. The authors defined the (G, H)- multidecomposition of K, as follows:
given a graph-pair (G, H), we say the graph-pair (G, H) divides K,, if the
edges of K, can be partitioned into copies of G and H with at least one
copy of G and at least one copy of H. They referred to this partition as a
(G, H)- multidecomposition.
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The five graph-pairs of order &

The authors in [2, 3, 4] settled the problem for the (G, H)- multidecom-
position of AK,, for all the graph-pairs of order 4, and 5. We will consider
simple graphs of the form K, — F, where K, — F denotes the graph K,
from which a Hamiltonian cycle or (almost) 1-factor has been removed.
An almost 1-factor on n vertices, where n is odd, is a 1-factor on n — 1
vertices. In [1], the first author together with Clark and Leach settled the
problem for the graph-pair of order 4. In this paper we will consider mul-
tidecompositions into the graph-pairs of order 5. For other graph-theoretic
terminology used but not defined herein, see [5).

Let [a,b] = {z : @ < z < b,z € Z}. We will also use [a, f] to denote
the set {a,b,c,d,e, f}. Let [a,b; c,d] denote vertices of the bipartite graph
consisting of the vertices grouped as [, b] and [c, d]. Let F be a Hamiltonian
cycle, or (almost) 1-factor of order n. We will assume that vertices of F are
labeled by [0,1,...,n — 1]. For notional simplicity, we will use HC to denote
a Hamilton cycle, and F,, to denote an (almost) 1-factor on n vertices.
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2 The First Graph Pair

We denote G1 by [(u,z,v)(y, 2)] and H; by [z,y, z,u,].
T . z
GI = Hl

*>—e
Yy z y. z

IR

We need the following lemma for the general theorems:

Lemma 2.1 There exists an H; decomposition of K34 and K¢ where
n>2

Proof: Let [0,2;3,6] be a labeling of K34. The following is an H; decom-
position of K3 4:
H, 2 [0,3,4,1,2], [0,5,6,1,2]

For any n > 2, then n can be written as n = 2a + 3b where e and b are
not both zero. Since H; = Ko 3, we can decompose Kz,+356 into 2a + 3b
copies of H;. [ |

We are ready for the following:

Theorem 2.1 There exists a (G, H1)- multidecomposition of K, — HC if
and only if n =0 or 8 mod 4 and n > 11.

Proof: Since |E(K, — HC)| has 1@2 edges and since G, and H; each
has an even number of edges; » = 0 or 3 mod 4.

Let {0,6] be a labeling of the vertices of K7 — HC. Since K7 — HC has
14 edges, a (G1, H;)- multidecomposition of K7 — HC must consist of 1
copy of H; and 2 copies of G;. Because we only have 7 vertices and we
cannot place any edges between adjacent vertices, when we place a copy of
H,; we must have the 3 vertices of degree 2 adjacent to each other and the
2 vertices of degree 3 adjacent to each other. Let us assume that we place
a copy of H; at [5,0,1,3,4]. Then vertices 0 and 1 will each have degree 3.
Since there is only one edge left incident to each of them, this means that
{0,2} and {1,6} will need to be the loose edges on the copies of G;. Any
C3 formed from the remaining edges must then include {1,5}, which has
already been used.

401



Let [0,7) be a labeling of the vertices of Ks — HC. Since Kg— HC has 20
edges, a (G, H;)- multidecomposition of Kg — HC would need to consist
of 2 copies of H; and 2 copies of G;. After placing the first copy of H;
at [3,0,1,5,6], our choices for placing the second copy of H, are [0,2,3,6,7],
[0,2,4,6,7], [2,6,7,3,4]. Placing the H; copy on [0,2,4,6,7] or [2,6,7,3,4] leaves
at most 1 Cs in the remaining graph, and placing the second copy of H;
on the vertices [0,2,3,6,7] leaves 2 Cj3’s, but requires that one of the loose
edges of one copy of G; be incident to vertex 4, which is part of both Cj’s.

Hence there is no (G1, H1)- multidecomposition of K7—HC or Kg—HC.

Let [0,10] be a labeling of the vertices of K11 — HC. The following is a
(G1, Hy)- multidecomposition of K13 — HC:

Gl = [(0: 21 9)(33 7)]7 [(0: 3’ 8)(1$ 10)]’ [(1’ 31 9) (2s 7)]’
[(1,5,8)(2,10)], (2, 4,8)(1,6)], (3,5, 10)(4,6)],
[(4,7,9)(3,6)],(6,8,10)(5,7)]

H, = [0,4,7,1,10),[0,5,6,2,9]

Let [0,11] be a labeling of the vertices of Kj2 — HC. The following is a
(G1, Hy)- multidecomposition of K12 — HC:

G = [(2,4,8)(3,9)((2,59)(8,11)],((3,5,7)(6, 11)],
[(3,6,8)(4,7)],[(4,6,9)(5,8)],((7,9,11)(8,10)]

H = [2,0,10,6,7),(3,0,1,4,5],[3,10,11,4,5],
[8,0,1,9,10},(6,1,2,7,11]

We will prove the general case using a recursive construction. If n > 11,
thenn =3k +4+1t,t€ {6,7,8}, k € Z. Let [0,n — 5] be a labeling of the
vertices of K,,—4 — HC that has a (G, H,)- multidecomposition. Next we
show how to find a (G1, H})- multidecomposition of K, — HC on vertex set
[0,n~5]U[a, d] with the Hamiltonian Cycle being [0, a,1,,2,¢,3,d,4,...,n—
5]. Note that the (G1, H1)- multidecomposition of Kn_4 — HC does not
include the edges {0,1}, {1,2}, {2,3}, and {3,4} as these are part of the
Hamiltonian cycle on n — 4 vertices. If n = 1 mod 3 (so t = 6), then we use
the following multidecomposition on the remaining edges involving vertices
[0,5] and [a,d]:

G1 = [(L,¢64d)5,a)]((2,e,3)( ) [(3,b,4)(2,d)),
[(a,4,¢)(0,1)], [(a,b,d)(1,2)]
Hl = [ba015’c)d]

If n = 2 mod 3 (so ¢t = 7), then we use the following multidecomposition
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on the remaining edges involving vertices [0,6] and [a, d}:

Gi = [(0,1,¢)(a,d)), [(0,5,d)(a,c)], [(1,2,d) (b, )],
[(2,3,a)(6,d)],[(5, a,b)(8, 4)],((5,¢,d)(3,b)]
H, = [a,4,6,b,(]

If n = 0 mod 3 (so t = 8), then we use the following multidecomposition
on the remaining edges involving vertices [0,7] and [a, d}:

G = [(0,1,¢c)a,d)],[(0,b,d)(a,0)],[(1,2,d)(7, a)),[(2,3, a)(6, d)],
(5, a,b)(7,d)], [(5,¢,d)(3,b)], [(7,b,¢)(3,4)]
H, = [a,4,6,b,c]

The remaining edges are between [t,n — 5] and [a, d] which can then be
partitioned using Lemma 2.1 into copies of H;.

Note that the construction does not include edges {0,a}, {a,1},{1,5},
{b,2},{2,¢c}, {c,3}, {3,d}, and {d, 4} as these are used to change the Hamil-
tonian cycle on n — 4 vertices to the Hamiltonian cycle on n vertices:
[0,a,1,b,2,c,3,d,4,....,n— 5]. [ |

Theorem 2.2 There ezists a (G, Hy)- multidecomposition of K,, — F, if
and only tf n > 7.

Proof: Let [0,6] be a labeling of the vertices of K7 — Fy. The following is
a (G1, Hy)- multidecomposition of K7 — Fr:

[(1,3,4)(2,5)), [(2,4,6)(0, 3)], (3, 5,6)(0, 4)]
[2,0,1,5,6]

G
H

R R

Let [0,7] be a labeling of the vertices of Ks— Fg. The following is a (G, H)-
multidecomposition of Kg — Fg:

G = [(0: 2, 4)(1s 3)]1 [(0» 3, 5)(1: 4)]: [(11 2, 5)(3v 4)]
H = [0,6,7,1,2],[3,6,7,4,5]
Let [0,8] be a labeling of the vertices of Kg—Fp. The following is a (G1, H)-
multidecomposition of Kg — Fg:

Gl [(Oa 2, 4)(57 6)]! [(01 3, 5)(1’ 4)]v [(1’ 2, 5)(43 7)]:

((4,6,8)(1,3)],((5,7,8)(3,4)]
H = [6,0,3,7,8],[6,1,2,7,8]

R
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Let [0,9] be a labeling of the vertices of Ko — Fio. The following is a
(G, H1)- multidecomposition of Ko — Fio:

[(0,2,4)(1,6)],[(0,3,5)(2,6)}, [(1,2,5)(0,6)), [(1,3,4)(2, 7))
2,8,9,3,4),[3,6,7,4,5),[5,8,9,6,7],(7,0,1,8,9]

G1
Hy

R

Let [0,10] be a labeling of the vertices of K1; — F11. The following is a
(G1, Hy)- multidecomposition of K13 — F1;:

Gl = [(0: 21 4)(5! 6)]: [(03 3’ 5)(1’ 4)]: [(1, 21 5)(4» 7)]?
((4,6,10)(1,3)}, [(5,7,10)(3,4)]

H = [0,8,9,1,2],[3,8,9,4,5],[6,0,3,7,10],
6,1,2,7,10],[6,8,9,7,10]

For n > 12, we will find the (G, H1)- multidecomposition recursively.
We place the following G decomposition of Kg — Fg on vertices [0,5]; Gy &
[(0,2,4)(1,3)), [(0,3,5)(1,4)], [(1,2,5)(3,4)], and we place & Kn_g — Fn-s
design on vertices [6,n-1]. Finally, apply lemma 2.1 to partition the edges
in the bipartite graph on the vertices [0,5;6,n — 1] into copies of H;. [ |

3 The Second Graph Pair

We denote both G and H; by [z, ¥, z,u,v)].

x T

IR

G2

IR

Hy
Y z Y z
We need the following lemma for the general theorems:

Lemma 3.1 There is an Hy decomposition of Ko 5 and Ky, 10 for n > 4.

Proof: Let [0,1;2,6] be a labeling of K3 5. The following is an Hz decom-
position of K3 5:
H2 = [21 3, 6, 01 1]1 [5)41 6v la 0]

Note that any n > 4, can be expressed as 2a + 5b for some a,b € Z and
both K210 and K3 10 can be decomposed into copies of K2 5. [ |
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We are ready for the following:

Theorem 3.1 There ezists a (G2, Ha)- multidecomposition of K, — HC if
and only ifn= 0 or $ mod 5 and n > 8.

Proof: Since G and H; each has five edges and K, — HC has 223
edges, then n = 0 or 3 mod 5.

Let [0,7] be a labeling of the vertices of Kg — HC. The following is a
(G2, Hz)- multidecomposition of Kg — HC:

G: = [0,2,4,1,3],[3,5,0,6,2]
Hy, = [3,4,56,7),[57,6,21]

Let [0,9] be a labeling of the vertices of K1 — HC. The following is a
(G2, Hz)- multidecomposition of K9 — HC:

G2
H,

[0,2,5,1,6]
2,3,8,7,6),3,4,7,0,1],[4,1,5,8,9)],
(7,6,2,9,4],(8,7,6,5,0],[8,9,5,2,3]

R IR

Ifn > 11, then n = 2k + 5+ ¢t,t € {6,7}, k € Z. We are going to

use a recursive construction, so let [0,n — 6] be a labeling of the vertices
of K,—s — HC that has a (G, H2)- multidecomposition. Next we show
how to find a (Ga, Hz)- multidecomposition of K,, — HC' with the new
Hamiltonian cycle HC' being [0,¢,1,5,2,¢,3,d,4,e,5,...,n — 6]. Note that
the (G2, H2)- multidecomposition of K,_5— HC does not include the edges
{0,1}, {1,2}, {2,3}, {3,4}, and {4,5} as these are part of the Hamiltonian
cycle on n — 5 vertices.

If n is odd (so ¢ = 6), use the following multidecomposition on the edges
involving vertices [0,5] and [a, e]:

G2 = [0,d,e,3,4],(1,d,¢,e2],[a,be 1,2

Hy = |[ba,4,d,d,ba,5,3,4],[cb1,5,0][dqa,3,5,2

If n is even (so t = 7), use the following multidecomposition on the edges
involving vertices [0,6] and [a, e]:

Gy = [1,d,¢4,5],[6,d,e,0,1),[a,3,4,b,c,]a,b,6,c,e,[e, 1,23,
Hy, = [2,5,¢,d,aq],[ba,3,d,e],(cb,d,5,0)
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The remaining edges are between [t,n — 6] and [a, €], and can be parti-
tioned into copies of Hz using Lemma 3.1.

Note that the construction does not include edges {0,a}, {a,1},{1, b},
{6,2},{2,¢},{c,3},{3,d}, {d,4},{4,e}, and {e,5} as these are used to
change the Hamiltonian cycle on n — 5 vertices to the Hamiltonian cycle on
n vertices: [0,4,1,b,2,¢,3,d,4,¢,5,...,n— 6]. [ |

Theorem 3.2 There erists a (G2, Hp)- multidecomposition of Ky, — Fy, if
and only ifn= 0, 1, or 2 mod 10 and n > 10.

Proof: Since |E(K, — F,)| is either 1("2;21 if n is even or 1"—'2—1): if nis
odd, and since Gz and H, have 5 edges; n = 0, 1, or 2 mod 10.

Let [0,9] be a labeling of K10 — Fio. The following is a (G2, Hs)- mul-
tidecomposition of K19 — Fio

G,
H,

0,3,5,7,8],[0,4,2,9,7},(1,2,5,6,3],[1,3,4,9,6, [2,6,8,5,9]
[0,1,3,8,9],[0,1,4,7,6],[3,4,2,8,7]

[V 1"

Let [0,10] be a labeling of K11 — F11. The following is a (G2, Hp)-
multidecomposition of K11 — F1;

G. = [0,3,7,2,6],[0,8,5,1,3],[1,4,8,6,9],
2,5,9,4,10],3,6,10,8,7),(7,9,10,5,3]
[0,1,3,10,9],[0,1,10,6,2],(2,3,0,8,4],[4,5,1,6,7)

[

H,

Let [0,11] be a labeling of K2 — Fi2. The following is a (G2, Hz)-
multidecomposition of K12 — Fi2

[0,3,5,7,8],0,4,2,9,7),1,2,5,6,3],[1,3,4,9,6],[2,6,8,5,9]
[0,1,2,10,11},[0,1,3,8,9],[0,1,4,7,6],(3,4,2,8,7]
3,4,2,11,10),[5,6,7, 10,11, [8,9,7,11, 10}

G2
H,

R mw

Let [0,n — 1] be a labeling of K, — F.. Again we are using a recursive
construction to find a (G2, Hz)- multidecomposition of K, — F;,. Place a
K10 — Fio (G2, Hz)- multidecomposition on [0,9], a (G2, H2)- multidecom-
position on Kp—10 — Fp—10 on the remaining vertices labeled (10,7 — 1],
and use Lemma 3.1 to finish the edges in the bipartite graph with vertices
labeled [0,9;10,n — 1]. |
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4 The Third and Fourth Graph Pairs

We denote G3, Hi, G4, and Hy by [z,y, 2,u,v).
z z
u v u v
Gs & Hy >~
y z y z
z z
u v u v
G, = Hy =
Y z Y z
We need the following lemma for the general case:

Lemma 4.1 There ezists an H; decomposition of K, 4, where i € {3,4}
andn 2 2.

Proof: For any n > 2, n can be written as n = 2a + 3b where a and

b are not both zero. Thus it is sufficient to show that there exists an Hj
decomposition of K2 4 and K3 4 and an Hy decomposition of K 4 and K3 4.

Let [0,1;2,5] be a labeling of the vertices of K3 4. The following is an Hz

decomposition of K3 4:
Hj = [2:31014)1]a[2,311:510]

The following is an Hs decomposition of K 4:
H, ={2,5,3,0,1], 4,3,5,0,1]

Let [0,2;3,6] be a labeling of the vertices of K3 4. The following is an Hs

decomposition of K3 4:
H; = [0,1,3,2,4], [0,2,5,1,4], [1,2,6,0,4]

The following is an Hy decomposition of K3 4:
H,; = [4,5,3,2,0], [5,6,3,0,1], [6,4,3,1,2] [ |

We are ready for the following:

Theorem 4.1 For ¢ € {3,4}, there ezxists a (G;, H;)- multidecomposition
of K, — HC if and only if n = 0 or 3 mod 4 and n > 17.
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Proof: Since K, — HC has 1("—':?1 edges, and since each of Gs, Gy, Hg,
and H4 has an even number of edges, n=0or 3 mod 4.

Let [0,6] be a labeling of the vertices of K7 — HC. The following is a
(G3, H3)- multidecomposition of K7 — HC:
Gs [5,3,6,0,1]
Hj [2,1,4,6,3),(6,5,2,0,4]

R R

The following is a (G4, Hs)- multidecomposition of K7 — HC:

Ga [4,0,2,5,3)
H, [1,0,3,5,6],4,2,3,6,1]

R IR

Let [0,7] be a labeling of the vertices of Kg — HC. The following is a
(G3, H3)- multidecomposition of Kg — HC:

Gs [0,2,1,6,4],(1,3,2,7,5]

H; (1,4,6,3,0],[2,4,7,5,0]

R R

multidecomposition of Kz — HC:

[0,2,4,1,6],(2,5,7,3,0]
[3,0,1,6,5],[7,3,6,1,4)

The following is a (G4, Hy)-

G4
Hy

Ly

’ IR

Let i € {3,4} and let [0,n— 5] be a labeling of the vertices of Kn—4— HC
that has a (G;, H;)- multidecomposition. Next we show how to find a
(Gi, H;)- multidecomposition of Ky, —HC with the Hamiltonian Cycle being
[0,2,1,,2,¢,3,d,4,...,n — 5|. Note that the (G;, H;)- multidecomposition
of Kn_4 — HC does not include the edges {0,1}, {1,2}, {2,3}, and {3,4} as
these are part of the Hamiltonian cycle on n — 4 vertices. The proof will
be using a recursive construction.

The following is a (G3, H3)- multidecomposition on the edges involving
vertices [0,4] and [a, d]:

Gy = [0,1,4,d,c]

Hs = [4,a,3,b,0],[4,¢,b,0a,d],[bc,d,23][c,4,a,2,1]
The following is a (G4, H4)- multidecomposition on the edges involving
vertices [0,4] and [a, d]:

Ga = [d1,2,a,d
Hy = [4,2,b,3,d,]a,b,¢,3,d],(b1,a,0,4],[d,a,c,b,0]
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The remaining edges are between [5,n — 4] and [a,d] which can then be
partitioned into copies of H3 and Hy respectively using Lemma 4.1. |

Note that the construction does not include edges {0, a}, {a, 1}, {1, b}, {b, 2},
{2,¢},{c,3},{3,d}, and {d,4} as these are used to change the Hamil-
tonian cycle on n — 4 vertices to the Hamiltonian cycle on n vertices:
[0,a,1,b,2,¢,3,d,4,...,n—5].

Theorem 4.2 If i € {3,4}, there exists a (G;, H;)- multidecomposition of
K,-F, foranyn>T.

Proof: Let [0,6] be a labeling of the vertices of K7 — Fy. The following is
a (Gs, H3)- multidecomposition of K7 — Fy:

G = [0,2,6,4,5]
Hj [0,4,3,1,6],[0,4,6,3,5],[4,5,1,2,6]

w1

The following is a (G4, Hs)- multidecomposition of K7 — F:

G4 [0,2,4,1,5]
H4 [31 01 1) 5: 6])[4’ 1: 5731 6]: [Ga 113a 2: 0]

R R

Let [0,7] be a labeling of the vertices of Kg — Fy. The following is a
(Gs, H3)- multidecomposition of Kg — Fg:
Gs [0,2,6,4,5],(1,3,0,6,7]
H; [0,4,6,2,1},[0,5,3,4,1],[2,4,7,5,1]

R IR

The following is a (G4, Hy)- multidecomposition of Kg — Fj:

Ga [0,2,4,1,6],[1,3,5,2,7]
H4 [07 3: 5)6a 7]’[014: 61 31 5]: [7s 2: 61 1,4]

R R

Let [0,8] be a labeling of the vertices of K9 — Fy. The following is a
(G3, H3)- multidecomposition of Ko — Fy:

Gs = [0,2,6,4,5),[1,2,8,6,7]
Hy = [0,5,7,4,3],[1,2,8,0,6],3,5,1,4,6],[4,5,8,3,0], 5,7,3,6,8]
The following is a (G, Hy)- multidecomposition of Ko — Fp:

Gs = [0,2,4,1,6],[0,5,6,3,8],[0,7,8,2,1),1,3,5,2,7
Hy = [4,0,8,3,6],(4,1,5,8,7]
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Let [0,9] be a labeling of the vertices of K19 ~ Fio. The following is a
(G3, H3)- multidecomposition of Ko — Fio:

Gs

Hj

[0,2,6,4,5),[0,3,9,7,6],[1,3,9, 4,5, [1,6,9,8,2]
2,3,8,0,9],[4,3,9,7,2],[5,8,7,1,9), 6,7, 4,8,5]

R IR

The following is a (G4, Hg)- multidecomposition of K10 — Fio:

Gs = [0,2,4,1,6),[1,3,5,2,7]
H, = [0,1,2,8,9],0,3,5,6,7],[0,4,6,3,5],[3,2,1,8,9],
4,5,6,8,9],[7,2,6,1,4],(7,6,5,8,9]

Let [0,10] be a labeling of the vertices of K11 — F11. The following is a
(G3, Hs)- multidecomposition of K13 — F11:
Gs = [0,2,6,4,5],[1,2,8,6,7),[9,10,8,1,0]
H; = [0,5,7,4,3),(1,28,6,0}2,3,9,5, 10}, [2,3,10,4, 9],
3,5,1,4,6],[4,5,8,3,0],[5,7,3,6, 9),[6,8,10,7,9}

The following is a (G4, Hs)- multidecomposition of K1 — Fi;:

G: = [0,2,4,1,6],[0,5,6,3,8],(0,7,8,2,1],
[0,9,10,8,6],[1,3,5,2,7]

Hy, = [2,1,4,10,9},(3,1,7,9,10],[4,0,10,3,6],
4,1,5,8,7],(5,4,7,10,9]

Let [0,11] be a labeling of the vertices of K12 — F2. The following is a
(Gs, Hj)- multidecomposition of K3 — Fyo:

Gs
H;

[0,2,6,4,5],[0,3,9,7,6],(1,3,9,4,5], [1,6,9,8,2]
[0,1,10,2,11},[0,1,11,3,10], [2,5,8,0,9),
[4,5,10,6,11], 4,5,11,7,2],[4,7,9,3,8],
[5,8,7,1,9),[6,7,4,8,11],(7,8,10,9,11]

R

The following is a (G4, Hq)- multidecomposition of K12 — Fia:
Gy = [0,2,4,1,6], [0,5,9,6, 10},[1,3,5,2, 7,
1,7,9,38, 0], [5,6,8,4,3], (7,8,10,9, 11)
Hy =~ [4,3,11,10,6},[8,6,2,0,1],(10,9,11,2,0],
[11,4,8,7, 2],[11,7,8,5, 3],11,9,10,4, 1) ‘
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Let [0,12] be a labeling of the vertices of K;3 — Fi3. The following is a
(G3, H3)- multidecomposition of K3 — Fis:

Gs [0,2,6,4,5],(1,2,8,6,7]

Hs [0,5,7,4,3],[2,10,8,0,6],[3,5,1,4,6], [4,5,8,3,0],
[5,7,3,6,8],[6,8,11,9,10],[9, 10,0, 12, 1), [9, 10, 1,11, 0),
[9,10,2,12,3],[9, 10,3,11,2], (9, 10, 4,12, 5], [9, 10,5, 11, 4],
[10,11,7,12,9),[10,12,6,9,7], [10,11,12,8, 1]

R R

The following is a (G4, Hy)- multidecomposition of K13 — Fia:

G: = [0,2,4,1,6],[0,5,6,3,8],[0,7,8,2,1],
[0,9,10,8,6],[1,3,5,2,7],[4,7,9,12, 10]

Hy = [2,1,3,12,9],4,0,10,3,6],[4,3,5,11,12],
[6,5,7,11,12],[9,8,12,1,11],[10,8, 12,4, 3],
[10,9,11,5,2],[11,10,12, 1,0}, [11,5,12,7, 8]

Let [0,13] be a labeling of the vertices of K14 — Fi4. The following is a

(G3, H3)- multidecomposition of K14 — Fi4:

Gs = [0,2,6,4,5],[1,3,0,6,7]

Hy = [0,4,6,2,1],[0,5,3,4,1),[2,4,7,5,1],[4,5,13,9,10],
4,11,9,7,8], 4,12,8,13,10],[7,8,10, 4, 12], [8,9,0, 10, 1],
[8,10,2,9,1],[8,10,6,9,5], (8, 11,5, 10,12], [8, 13, 11,12, 9],
[9,10,3,8,1],[11,12,0,13,1], [11,13,2,12, 1], [11, 13,6, 12, 5],
[12,13,3,11,1], [12,13,7, 11, 4]

The following is a (G4, Hs)- multidecomposition of K14 — Fiq:

G: = [0,2,4,1,6],[1,3,5,2,7]

Hy = [0,1,3,12,13],(0,3,5,6,7],[0,4,6,3,5),(1,0,2,8, 10],
[2,0,1,11,13],[2,3,0,8,9],[3,0,1,10,9}, (3, 1,2, 11, 12],
[, 4,6,8,10),[5,4,6,11,13],[6,4,7,9, 8], [6, 4,7, 12, 11,
7,2,6,1,4],[7,4,5,10,9], 7, 4,5,13,12],
[8,10,12,13,11], [9, 10, 11,12,13], [10, 11,12, 9, §]

For any n > 15, place a Kg — Fg-design on the vertices [0,7) and place
a K;,_g — F,_g-design on the vertices [8,n — 1]. The remaining edges in
the bipartite graph on the vertices [0,7;8,n — 1] can be partitioned using
Lemma 4.1 into copies of Hz or Hy. [ |
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5 The Fifth Graph Pair

We denote Gs by [z,¥, z,4,v] and Hs by [(u,z,v)(y, 2)]

T T

174

Gs

IR

Hs

Yy z Y z
We need the following lemma:
Lemma 5.1 There exists an Hs decomposition of K, 3 for n > 2.

Proof: For any n > 4, n can be written as n = 2a + 3b where a and
b are not both zero. Hence, it is sufficient to show that there is an Hs
decomposition of K2 3 and an Hs decomposition of K33. Let [0,1;2,4] be a
labeling of K> 3. The following is an Hs- decomposition of Ks3:

HS = [(210’3)(1)4)]: [(21133)(014)]

Let [0,2;3,5] be a labeling of K3 3. The following is an Hs- decomposition
of K. 3,3:

H;s = [(0,3,1)(2,4)], [(0,4,1)(2,5)], [(0,5,1)(2,3)] [ |

We are ready for the following:

Theorem 5.1 There exists a (Gs, Hs)- multidecomposition of K, — HC if
and only if n =8 orn > 10.

Proof: An edge count implies that there are no (Gs, Hs)- multidecompo-
sition of K¢ — HC and K7 — HC.

Since Ky — HC has 27 edges, a multidecomposition must consist of 3 copies
of G5 and 2 copies of Hs. A vertex degree count argument shows that this
is not possible.

Let [0,7] be a labeling of Kg — HC. The following is a (Gs, Hs)- multide-
composition of Kg — HC:

Gs = [0,3,5,1,7),[7,2,4,0,6]
HS = [(174"2)(3!5)]1[(1’6’3)(2’5)]
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Let [0,9] be a labeling of Ko — HC. The following is a (G5, Hs)- multide-
composition of K9 — HC:

Gs = [0,3,7,1,9],[0,4,6,2,8]
H5 = [(2a 9! 5)(4’ 7)]a [(4s 1, 5)(6a 9)]v [(51 Oa 2)(3a 6)]: [(5a 21 7)(03 8)]:
[(7,3,8)(4,6)), ((7,5,8)(4,9)}, (8,1, 6)(3, 5)]

Let [0,11] be a labeling of K12 — HC. The following is a (G5, Hs)- multi-
decomposition of K1, — HC:

Gs = [0,5,8,2,11],[1,6,9,3,0},[2,7,10,4, 1]

Hs = [(1’ 5,10)(7, 9)], [(21 0,4)(5, 7)]! [(2r 9,4)(6,8)],
[(3,8,4)(6,10)], [(4, 2, 6)(1,3)], (5,3, 7)(6, 11)],
[(6,4,11)(7,10)],[(7,0,10)(5, 9)], [(7,11,9)(8, 10)],
((8,1,11)(6,9)],[(10,3,11)(5, 8)]

The remaining cases will be shown using a recursive construction. Let
[0,n—4] be a labeling of the vertices of K,,—3—HC that has a (G5, Hs)- mul-
tidecomposition. Next we show how to find a (Gs, Hs)- multidecomposition
of K, — HC with the Hamiltonian Cycle being [0,q,1,b,2,¢,3,...,n — 4].
Note that the (Gs, Hs)- multidecomposition of K,,_3—HC does not include
the edges {0,1}, {1,2}, and {2,3} as these are part of the Hamiltonian cycle
on n — 3 vertices.

We use the following multidecomposition on the edges involving vertices
[0,3] and [e, ¢):
Hs 2 [(1,0,b)(a, o)), [(2,1, ¢)(a, b)), [(3,2, a)(b, c)l; [(a,3,5)(0,¢)]

The remaining edges are between [4,n — 3] and [a, ¢] which can then be
partitioned into copies of Hs using Lemma 5.1. |

Note that the construction does not include edges {0,a}, {a, 1}, {1,b},
{b,2},{2,c},and {c, 3} as these are used to change the Hamiltonian cycle on
n—4 vertices to the Hamiltonian cycle on n vertices: [0,q,1,5,2,¢,3,...,n—
4].

We need the following lemma for the general case

Lemma 5.2 There ezists an Hy decomposition of K¢ — Fg
Proof: Let [0,5] be a labeling of the vertices of K¢ — F. The following is

an Hs decomposition of Kg — F
Hs = [(0,4,3)(2,5)), [(2,0,3)(1,4)], [(3,5,1)(2,4)], [(2,1,3)(0,5)]. - 1
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We are ready for the following:

Theorem 5.2 There exists a (Gs, Hs)- multidecomposition of K, — Fy, for
anyn 2 9.

Proof:
Let [0,8] be a labeling of the vertices of Ko — Fs. The following is a
(Gs, Hs)- multidecomposition of Ko — Fy:
Gs = [1,6,7,4,8),[2,7,8,3,5]
Hs = [(0: 2, 1)(3’ 4)]’ [(Oa 3, 1)(2’ 4)]: [(0: 4, 1)(2’ 5)]’
[(0,5,1)(2,6)), (0, 6,3)(1,8)],(7,0,8)(5,6)]

Let [0,9] be a labeling of the vertices of K19 — F1o. The following is a
(Gs, Hs)- multidecomposition of K19 — F1o:

Gs = [0,8,9,2,7),(3,0,1,2,4],(6,0,1,5,7],(8,5,6,3,9

Hs = [(52,6)(3,7)},[(6,4,7)(3,8)),((8,1,9)(3,4)},((8,4,9)(5,6)]

Let [0,10] be a labeling of the vertices of K13 — F11. The following is a
(Gs, Hs)- multidecomposition of K33 — F1;:
Gs = [0,2,8,1,4],[0,9,10,4,7],[1,6,7,2,8],
6,3,5,9,10],(8,3,5,0,7]
[(47 0’ 6)(1’ 3)]’ [(4’ 31 5)(8’ 10)]’ [(9’ 1’ 10)(2’ 5)]’
[(9,2,10)(4,6)], (9, 6,10)(1,5)].

R

Hs

Let [0,11] be a labeling of the vertices of K12 — F13. The following is a
(Gs, Hs)- multidecomposition of K2 — Fya:
Gs = [3,8,9,5,6],[5,0,1,4,6],5,10,11,4,8],
[6,10,11,7,9],[7,0,1,2,8],[9,0,1,3, 10]
[(0,11,1)(2,4)], [(2,5,3)(4,9)}, [(3,7,8)(2,9)],
[(4,3,6)(5,7)],[(6,2,7)(3,11)],[(10,2,11)(4, 7)]

IR

Hs

Let [0,12] be a labeling of the vertices of K13 — Fi3. The following is a
(Gs, Hs)- multidecomposition of K13 — Fi3:
Gs = 10,7,8,1,2,[0,9,10,3,6,(3,11,12,6,8),
[4,7,8,3,5],[10,4,5,11,12], [11,7,9,10,12]
Hs = [(0,2,4)(1,9)],1(0,3,1)(5,8)), (0,4, 1)(2,10)], {(0,5,1)(2,6)],
[(0,6,1)(2, 11)], [0, 11, 1)(2, 12)], [0, 12, 1)(2, ),
[(2,9,4)(1,10)},((3,4,6)(7,8)}, ((5,9,7)(8,10)]
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Let [0,13] be a labeling of the vertices of K34 — Fi4. The following is a
(Gs, Hs)- multidecomposition of K4 — Fig:

Gs = [3,8,9,5,6],[50,1,4,6],[5,10,11,4,8],
6,10,11,7,9],[7,0,1,2,8],(9,0,1,3,10]

Hs 2 [0,11,1)(2,4)],[(0,12,1)(2,13)], (0, 13,1)(2, 12)),
(2,5,3)(4,9)],((3,7,8)(2,9)], [(3, 12,4)(5,13)),
((3, 13, 4)(5, 12)], [(4, 3, 6)(5, 7)], (6, 2, 7)(3, 11)},
[(6,12,7)(8,13)), [(6,13,7)(8,12)], [(9, 12, 10)(11, 13)],
[(10,2,11)(4, 7)), [(9, 13, 10)(11,12)]

If n > 15; place an Hs decomposition of K¢ — Fg on vertices [0,5], a
Kn_¢ — F,_¢ design on vertices [6,n — 1}, and finally apply lemma 5.1 to
partition the edges between the vertices [0, 5;6,n — 1]. [ |

6 Conclusions

We have established the necessary and sufficient conditions for a complete
graph to have a multidecomposition into a graph-pair of order 5 with a
Hamiltonian cycle or (almost) 1-factor leave. A nice extension of this would
be to find the multidecomposition for specified feasible number of copies of
G or H. Future topics suggested by this work would allow for a different
leave, a different set of graph pairs (order 6 or higher), or the possibility of
a A-fold graph or any combination of the above.
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