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Abstract: In this paper, we prove that for any graph G, A(G=**) =
6(G~**) and all but for a few exceptions, G—*+ is super edge-
connectivity where G=** is transformation graph of a graph G intro-

duced in [1].

1 INTRODUCTION

Consider the following network reliability defined on simple graphs.
A network is an undirected simple graph G = (V, E) with a probability
of failure p associated with each edge. We assume that the edge-failure
probabilities are equal and independent; it is also assumed that the vertices
do not fail. The global reliability R(G;p) of a connected graph G is defined
to be the probability that G remains connected. An edge-cut set of a graph
G is defined to be the set of edges whose removal disconnects G. The total
_number of edge-cut sets of size ¢ in G is denoted by C;(G) and the edge-
connectivity of G is denoted by A(G). The global reliability R(G;p) of G

can be expressed as
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R(Gip) =1~ 2 G(C)p'(1- p)IEl=

In general, the calculation of R(G;p) is NP-hard [2]. To minimize Cj,
in [3], Bauer defined a connected graph G to be super edge-connected, or
super-), if every edge-cut set of size A isolates one vertex with the minimum
vertex degree of G.

In the design of communication networks, constructing networks with
higher connectivity is one of methods to improve the reliability of networks.
There are many different construction of graphs such as total graphs, line
graphs, jump graphs, middle graphs etc. In these graphs, the total graph
of G, usually denoted by T(G), has V(G)U E(G) as its vertex set, and two
vertices of T(G) are adjacent if and only if they are adjacent or incident
in G. Wu baoyin and Meng jixiang defined the following transformation
graphs which inspired by the definition of total graph of a graph(1].

Definition 1.1 Let G = (V(G), E(G)) be a graph, and z, y, z be
three variables taking values + or -. The transformation graph G*¥# is the
graph having V(G) U E(G) as the vertex set, and for o, 8 € V(G) U E(G),
a and S are adjacent in G=¥# if and only if one of the following holds:

(1)a, B € V(G), o and 3 are adjacent in G if z=+; and are not adjacent
in G if z=-.

(2)e, B € E(G), a and  are adjacent in G if y=-+; and are not adjacent
in G if y=-.

(3)a € V(G),B € E(G), a and B are incident in G if z=+; and are
not incident in G if z=-.

Thus, as defined above, there are eight kinds of transformation graphs,
among which Gt*+ is usually known as the total graph of G. In this paper
,we study the connectivity of G=**. In [1], the authors have proved that:

theorem 1.2: G~*% is connected for any graph G.
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2 SUPER EDGE-CONNECTIVITY OF G~+*

Throughout the paper we only consider finite and simple graphs. Un-
defined symbols and concepts can be found in [5].

Let V(G~**) = V(G) U E(G), for any z € V(G), dg-++(z) =
(IV(G) — 1 - dg(x)) + da(z) = |V(G)| - 1, for any e = zy € E(G),
dg-++(€) = (de(z) +de(y) - 2)) +2 = (de(z) + de(y)). Thus, 6(G™**) =
min{|V(G)| — 1,d(e)} where §(e) = min{dg(z) + dc(y) : e = zy € E(G)}.

we will prove that:

Theorem 2.1: For a given graph G, G~++ is super-) if and only if
G2 Kl,n or Kl,n U K;.

Proof: If G & Kj,, then 6(G~**) = n. Let dg(z) = n, thus
S ={é=yee E(G**):y € V(G)\{z},e = yz € E(G)} is minimum
edge-cut set, |S| = A(G~+*) =n = §(G~**). Clearly, G-+ is not super-
AfG=2KaUK,, then §(G"t*) =n+1. Let dg(z) =n, S={é=
ye € E(G™*t):y e V(G)\{z},e =yz € E(G)}U{é =22 € E(G~**):
z € V(K;)} is minimum edge-cut set, [S] = A(G=**) = n+1 = §(G~+*).
Clearly, G=** is not super-A. Thus, the necessity is proved. Now we prove
the sufficiency.

Suppose S C E(G~**) be a minimum edge-cut set of G—*++, G-++—-§
has exactly two components, say G and G2. If one component has one ver-
tex, then the result holds. For any graph G, A(G) < §(G). So we only prove
that if each component has at least two vertices, |S| > §(G~*+). If G is

empty, then G~* is complete, the result is obvious. We assume E(G) # 0.

Case 1: one component contains V(G).
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Without loss of generality, suppose V(G) C V(G1). Let E; = E(G) N
V(Gy), i=1,2.

Subcase 1.1: E, = 0.

Then |S| = 2|E(G)| = &(e) — 1 + |E(G)| > 8§(G~T).

Subcase 1.2: E) #0.

Subcase 1.2.1: There is no edge between E; and F; in G~*+.

Then G is not connected and G[E) is a component of G. Thus

S| =2Ez|= 5 dem(z)= 3 do(a).

z€V(G|E,)) z€V(G[Ez))

Since |Ez| > 2, we have |V(G[E3])| = 3, so |S| > &(e).

Subcase 1.2.2: There are edges between E; and E; in G=+*.

Let [E1, Ey] = {é = eie; € E(G™**) i e; € Er,e; € Ep}

Claim 1: for any é = e;e; € [Ey, Ep), all ¢; and e; are the neighbor
edges of vertex z in G. Let |[Eg(z)NE;| = m;, m=1,2 and m; +m; = dg(z).
Thus, vertex z is a cut vertex in G, and we have:

S| = 2|E2| + my - m2 2 2|E2| +dg(z) — 1

= Y dgg(y) +de(z) -1
yeV(G|E3))

= dc(y) + dg(E,)(2) + da(z) — 1
veV(G[E2]\{z})

> dg(y) + da(z) > (e).

Claim 2: for any é = e;e; € [E1,E2], e; and e; are the neighbor
edges of at least two vertices in G. Suppose the set T is composed of these
vertices.

If there exist z,y € T such that they are adjacent in G. Let |[Eg(z) N
E,| = mg, |Ec(y) N E2| = my, then

S| 2 2| E2| + ma - (de(z) — mz) +my - (da(y) — my)

2 4+ (do(z) - 1) + (da(y) — 1) > 8(G~F).

Otherwise, there exist e = zz € Eg(z) N E; such that Eg(z) C Es. If

not, then z,z € T such that they are adjacent in G, contradiction. So we

have dg(2) = dg|E,)(2) and
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|51 2 2| B3| + m - (da(z) — mz) +my - (da(y) — my)
2 ) dggy)(v) +(de(z) — 1) + (da(y) - 1)

veV(C(Ea))
2 dg(z) + dg(E,)(z) + de(z) + de(y) — 2

> dg(z) +dg(z) = 6(G~*7).

Case 2: V;=V(G)NV(G;) # 0 and E; = E(G)NV(G;), i=1,2.

For any z € V1,y € V,. If z and y are adjacent with edge e in graph
G, then they contribute one edge for S in graphs G—+*. If z and y are
not adjacent in graph G, then they are adjacent in graphs G+, they also
contribute one edge for S. Thus

IS] 2 MI(V(G) - Vil) = [V(G)| - 1.

S| = [V(G)| — 1 only if [V} =1 (or |[Vz| = 1) and E; = {e =zy €
VG=**):z € V},y € Vo} and for any e; € E),e; € Ey, €; and ey are not
adjacent in graphs G—*+.

If E; # 0. Thus G is not connected and G[E;] & K, g, is a compo-
nent of G, we have d(e) < |E1|+1 < ([V(G)|-3)+1 < [V(G)| -2, s0
S| = [V(G)| - 1> 6(G~*¥).

If E; = 0, then Ey = E(G), G & K, |g(c) UmK; where [V(G)| =
|E(G)|+1+m. Thus §(G~**) = min{|V(G)|-1,|E(G)|+1} = min{|V(G)|-
L,|V(G)| = m}. Only if m=0 or 1, that is G = K, , or K; , UKy, G+t

is not super-A. o
Clearly, we contain the edge-connectivity of G—++:
Corollary 2.2: For any graph G, A(G—*+) = §(G-++).
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