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1 Introduction.

The perception of cyclic structures is a crucial step in the analysis of graphs.
Cycle bases of a cycle spaces have a variety of applications in sciences
and engineering, for example, in structural flexibility analysis, electrical
networks, and in chemical structure storage and retrieval systems (see (7],
[8] and [16]). The basis number of a graph is one of the numbers which give
rise to a better understanding and interpretations of a geometric properties
of a graph (see [17]).

In general, required cycle bases is not very well behaved under graph
operations. That is, the basis number 5(G) of a graph G is not monotonic
(see [18]). Hence, there does not seem to be a general way of extending
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required cycle bases of a certain collection of partial graphs of G to a re-
quired cycle basis. Global upper bounds b(G) < 2v(G) + 2 where ¥(G) is
the genus of G is proven in [18].

Getting new graphs from known graphs through different kinds of graph
products and operations on graphs originated as early as the beginning of
graph theory as an independent subject. Actually graph products are the
best natural way to enlarge the space of graphs. In the literature there are
a lot of graph products. We mention out of these products; the cartesian
product, the direct product, the strong product, the semi-strong product,
the lexicographic product, the semi-composition product and the special
product. Many researchers employed their efforts to study the properties of
graphs obtained by the graph products and related some of these properties
to those of the graphs incorporated in the products. The enthusiasm of
studying graph products led Klavzar and Wilfried to write a whole book
that focuses on materials regarding four of the above mentioned graph
products (see [9]).

In this paper, we give a new upper bound of the basis number of the
lexicographic product of graphs. And as a results, we determine the basis
number of the lexicographic product of classes of graphs.

2 Definitions and preliminaries.

The graphs considered in this paper are finite, undirected, simple and con-
nected. Most of the notations that follow can be found in [5]. For a given
graph G, we denote the vertex set of G by V(G) and the edge set by E(G).

2.1 Cycle bases.

Given a graph G, let ey, ey,...,€g(g) be an ordering of its edges. Then a
subset S of E(G) corresponds to a (0,1)-vector (b1,b2,...,bE(G)) in the
usual way with b; = 1 if e; € S, and b; = 0 if ¢; ¢ S. These vectors form
an |E(G)|-dimensional vector space, denoted by (Z2)!B(®)l, over the field
of integers modulo 2. The vectors in (Z2)!Z(®) which correspond to the
cycles in G generate a subspace called the cycle space of G and denoted
by C(G). We shall say that the cycles themselves, rather than the vectors
corresponding to them, generate C(G). It is known that for a connected
graph G dim C(G) = |E(G)| — |V(G)| + 1 (see [6]).

Given any spanning tree T’ of G, every graph T +e, e € E(G) — E(T),
contains exactly one cycle C. and the collection of cycles {Cele € E(G)—
E(T)} forms a basis of C(G), called the fundamental basis associated with
T. Note that each edge e € E(G) — E(T) occurs in exactly one cycle of
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this basis, but each edge of T' itself may occur in many cycles of the basis.
This obrervation led Schmeichel to define what is called the basis number.

A basis B for C(G) is called a cycle basis of G. A cycle basis B of G
is called a d-fold if each edge of G occurs in at most d of the cycles in
B. The basis number, b(G), of G is the least non-negative integer d such
that C(G) has a d-fold basis. The required basis of C(G) is a basis with
b(G)-fold. Let G and H be two graphs, ¢ : G — H be an isomorphism
and B be a (required) basis of C(G). Then B' = {o(c)|c € B} is called the
corresponding (required) basis of B in H. The following result will be used
frequently in the sequel.

Theorem 2.1.1.(MacLane). The Graph G is planar if and only if b(G) <
2.

Although MacLane is the first who gave an important result regarding
the basis number when he proved the above result, Schmeichel is the first
who gave a formal definition of the basis number when he proved that

b(K,) < 3.

2.2 Products.

Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. (1) The
cartesian product GOH has the vertex set V(GOH) = V(G) x V(H)
and the edge set E(GOH) = {(u1,v1)(ug,v2)|t1ue € E(G) andv; =
vy, or vivz € E(H) and u; = ug}. (2) The Lexicographic product G1(Gs)
is the graph with vertex set V(G[H]) = V(G) x V(H) and the edge set
(E(G[iH]])) = {(u1,u2)(v1,v2)lu1 = vy and ugvy € E(H) or wyv1 € E(G)}
See [9]).

Many authors studied the basis number of the lexicographic product.
Schemichel (18] and Ali [1] proved the following results.

Theorem 2.2.1. (Schmeichel) For any null graph N,, of order m and
path, Pa, of order 2, we have that b(Pa[Np,)) < 4.

Theorem 2.2.2. (Ali) For any null graph N,, of order m > 5 and a
complete graph K, of order n > 5, we have that b( K,[Nn]) < 3+2b(K,,).

There after, Ali and Marougi [3] gave an upper bound of the basis num-
ber of the lexicographic product of a cycle (path) with a semi-Hamiltonian
graph. In fact, they gave the following result:

Theorem 2.2.3. (Ali and Marougi) Let C and P be a cycle and a
path and H be o semi-Hamiltonian graph. Then b(C[H]),b(P[H]) <
max {4,2 + b(H)}.
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Jaradat [12] gave the following upper bound of the basis number of the
lexicographic product of graph where the upper bound is achieved:

Theorem 2.2.4. (Jaradat) For each two connected graphs G and H,
b(G[H]) < max {4,2A(G) +b(H),2+b(G)}.

Other products were studied by the author (see [10], [13] and [14]) and
Ali and Marougi [2]. Note that the upper bound in Theorem 2.3.3 is re-
stricted to some classes of graphs of the factors and the upper bound in
Theorem 2.3.4 is large if the degree in the first factor of the product is large.
Therefore, it was needed to give a new upper bound deals with any graphs
and gives a reasonable bound.

In this work we give a new reasonable upper bound of the basis number
of the lexicographic product of any two graphs. Also, as a results, we
determine the exact basis numbers of the lexicographic product of some
classes of graphs.

In the rest of this paper fg(e) stand for the number of cycles in B con-
taining e where B C C(G). Bg stand for the required basis of G. Moreover,
if A is a set of cycles, then E(A) = UceaE(c).

3 Lexicographic product of trees.

In this section, we give a new upper bound of the basis number of the
lexicographic product of trees. In fact, we give an exact basis num-
ber of the lexicographic product of some classes of trees. The graph
G[H] consists of |V(G)| copies of the graph H and |E(G)| copies of
the graph P[Njy(ay] where Ny is the null graph with vertex set
V(H). Let {e1,e2,...,€E(c)} be the edge set of the graph G. We say
that B = {B1,Bs,...,B|gc)} is a foundation of G[H] if B; is a basis -
of C (e;[Njvm)]) for each i = 1,2,...,|E(G)|. A tree T consisting of
n equal order paths {P(l),P(z),...,P("‘)} is called an n-special star if
there is a vertex, say v, such that v is an end vertex for each path in
{PW,p@ ..., Pt™} and V(PM) NV (PW) = {v} for each i # j (see
[10]).

Lemma 3.1. Let B = {By,Ba,...,B|gq) } be a foundation of G[H|. Then
UIBONRB, is linearly independent subset of C (G[H]).

i=1

Proof. The result follows from being that ei[Nyv(m)), e2[Ny ), .-,
€5(e)|[Mv(a) are mutually edge disjoint subgraphs of G[H) and B; is a
basis of C (eilva(H)]) for each i = 1, 2, ceey |E(G)|
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The following result follows immediately from the definition of the foun-

dation.
Lemma 3.2. Let G and H be two graphs such that G is decomposable into
edge disjoint subgraphs G1,Gz,...,Gr. Then B is a foundation of G[H]
if and only if B=uUk B where B(’) is a foundation of G;[H] for each
i=12,...,h.

The question regarding the basis number of lexicographic product of
graphs can not be resolved directly, simply because graphs has no uni-
form form. Therefore, we recall the following result of Jaradat [15] which
decomposes trees into well known subgraphs.

Proposition 3.3 (Jaradat) Let T be a tree of order > 2. Then T can
be decomposed into edge disjoint subgraphs S, 8() .. S for some
integer 1, such that, the following holds:

(i) For each i > 1,80} is either a star or a path of order 2 such that S()

8 a path incident with an end vertez, soy v(l)

(ii) For each v € V(T), if dr(v) 2 2, then [{é : v € V(§®)] = 2, and if
dr(v) =1, then |{i:v € V(§W)| = 1. .

(i) V(SOINUIZIV(SD) ) = vf? where dge (v{7) = Mo,y sy dr(v),
and dug;:v(s(,))(vgi)) =1 for each i =2,3,...,r, and vgi) # 'ugj) for each

i j.

Let Ty = Uh ;8% Ty = Uk, S®) be decompositions of T; and Tj as in
the above proposition, respectlvely, with V(S?)) = {ugt),ug), ,uﬁ,ﬁ)‘}

and V(S®) = {vg"),v ,v,(:)} for each t = 1,2,...,h and i =

1,2,...,k. Thus, we may assume that {ugl), ugl), . uﬁ,ﬁ, ug"), . us,ﬂ, ugs),

,ussg, g, S,’:,{} and {u?’,vg", T Y Y

,,538), ,vgk), ,v,(,’f‘)} are ordering of the vertices of T; and T5, respec-
*

tively. Moreover, we may assume that u ,), and v(k) are end vertices
in 77 and T3, respectively. Note that for i > 2, v(’) = v{? for some
1 <1 <i-1;1 € 8 < n, similarly, t > 2,'0?) = v,(.f) for some
1< f<t-—1;1 £r < my. Throughout this work, for simplicity, we
plot the vertices of T1(T3] in the coordinates plane and arrange them in the
following manner: (u(t),v(') ) is directly to the lift of (u,(_?l,v(')) and below
of (u,(t) @ +1); the vertex (u,(‘), vm)) is directly to the lift of ('“z +1"""¢) and
below of (u(t),'ug“) ); also, the vertex (us,?g,v( )) is directly to the lift of

( (H'l),v}i)) and below of (ug) ;:),1), the vertex (ug,),,vn)) is directly to

427



the lift of (u{"*",v{?) and below of (u{®),v{*"). Finally, from the proof

of Proposition 3.3 (see [15]) one can chose S and S® and label their
(t) (¢+1)

vertices in such a way that um, = v, if T1 has no 3-special star of order
7 as a subgraph and vs.? = v§'+1) if T3 has no 3-special star of order 7 as a

subgraph.
For each t = 1,2,...,h; ¢ = 2,3,...,k; r = 2,3,...,m; and j =
3,...,n, set

O = @, o) (u®, v (@, v{") (u®, 02 ) (WP, V),

2 ,. .
i = @, o) u®, ) (u®, o) (u?, v{V),

and
2 - -
C: = (), v®)(W®, v§) (W®, o) (uf?, v

Moreover, for each t = 1,2,...,h;i=2,3,...,k and j =3,...,n;, set

i = (@, o) @, o) (wl?, o) wf?, vf2) (uf?, 07,
and foreacht =1,2,...,h;i=1,2,3,...,k set

Cfi? = @i, o) f?, o) (wf?, o) @, 017,
Let B = {Cf7|2 < j < n:} and By,r = UL, B{).
Lemma 3.4. B; = U2, B, » is linearly independent set.

Proof. First, we proceed using mathematical induction on n; to show that
Bf‘z is linearly independent for each i = 1,2,...,k. If n; =2, then Bgl con-
sists only of one cycle Ct(f,'z). So B£:2. is linearly independent. Assume n; > 2
and it is true for less than n;. Note that Bg_'} = {Cffr"j )|2 <j<ng— 1} U
{C,(f,""‘) } Since Ct(,",‘"‘) contains (u{?, v)(u®, v{?) which is not in Ct(f;j)
for each j =1,2,...,n; — 1, and by the inductive step Bt(,? is linearly inde-

pendent. We now show that B; . = Ui=13§2 is linearly independent. It is
an easy task to see that for ¢ # I, say ¢ < [, we have that
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(u?, o), o), I s=2722

and ,v(’) (l),
ECENNECE) = @, o) @l o), i s=2r=1
and v(') (1),

a, othemnse

(3.1)
And so,

[ @), ifr22
and for some
1<i<l-1,
1 < .7 _<. n4,
BUL B nE(B)) = J P, vM)@P, o),  ifr=1
and for some

1<i<i-1,
1 < .7 < ng,
| 9, otherwise,
(3.2)

because E(U{JVSW) N E(S®) = o = vj() forsome1<i<!-11<
J £ n;. We now show that B, , is lmearly independent for each ¢,r. As-

sume that 30, 377, C("W ) (mod 2). Then 3%, Z Ct('ir-,jf) =

721G ("”" ) (mod 2). Thus,

E(es~1 @‘7. (anf)) _ E($ ('m.jf))_ (3.3)

Since B,(",Z is linearly independent for each 7 = 1,2,...,k and C’t(f,? 1) e
3§_‘:’, the ring sum @};ICS: 91 is g cycle or a pairwise edge-disjoint union
of cycles. Hence, @7" C:, (i" 94) consists of at least 3 edges and so by equation
3.3 the ring sum @2 @7 i1 C(" 71) consists of the same edges, on the other
hand and by using equations (3.1) and (3.2) @72, C(i°"j’ ) and E(@2} oF

C(‘"’J . ) consists of at most one edge, a contradiction. Thus, B, is lmearly

mdependent set for each t = 1,2,...,h;r = 1,2,...,m;. To this end, we
show that U2, B, , is linearly independent. Note that if 7y # 7o, then
{ (ugt),v,(,':))(ugt),vgl)), if one of 7y and r; is
E(B, ., )NE(B;,,) = 1 and the other is 2,
a, otherwise.
(34)
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By equation (3.4), E(B:r,) N E(B;r,) = ¢ for each r; # r2 and ry,72 2> 2
and so UX_,B, , is linearly independent. Moreover, any linear combination
of cycles of B;jconsists of at least three edges. Thus, as in the above
argument and by equation 3.4 any linear combination of cycles of B;; can
not be written as a linear combination of cycles of U’F___2Bt,r. Therefore,
B, = U’,‘=lBt,, is linearly independent. The proof is complete.

Remark 2.1. One can notices that (1) if e = (ugt),v?))(ug),v](.")) or
; e s (i) (i+1)
® ,(Dy,,0 6 <!l 2 ifj=niandvs/ =07,

if e= (“S't),ugl))(us‘t)’vy))r '01(1? = 'Ug"‘H)’ then fg(e) < 2.

Forr=2,3,...,m — 1, let P{” = u®u{u{) . Note that V(P{™)n
(r1)y — [,,(8) (®),,(t) (r) ®,,@©
V(P™V) = {u}”} for any 7y # r2 and u; upy; € E(P3’) but ui’u.y,; ¢
U;;QE(P:,U)). Moreover, BE(S{") = U;.';‘{lE(Pé’)). Foreacht=1,2,...,h;

i=1,2,...,k and r = 3,4,...,m;, we set

o) = ®, o) (w?, o) 2, o) @, {2 ), 1)

for j =3,4,...,n; and
i) = (@, o) (o) (w21, v 0, 02 W, o)

for j = 2,...,m; — 1. Moreover, for t = 1,2,...,h;i = 2,3,...,k and
r=3,4,...,m, we set

08 = O of), o) @, o), o)W, 01

@ r2 nGi-1)

o™ = @®,o®) @, v )u®,, o) @l o) (u®, o)
oMY = @®, o), v, o) @, o), ")

v = (w®, )@, v, o)l o) u®, o).

Let

ol = upt, {all) } and o3 = Up3? {af})
Lemma 3.5. U3 U, ag’l,:") and Upta Uy a,g",'.’i) are linearly independent
sets of cycles.

Proof. First, we use mathematical induction on n; to prove that ag,l;i)

is linearly independent for each ¢ = 1,2,...,k. If n; = 2, then a'g,’i) is
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linearly independent because it consists only of one cycle ailr”% Assume

that n; > 3 and it is true for smaller values of n;. It is an easy matter

to see that a{’") contains the edge (u(t), (1))(u§‘),vn)) which is not in

t,r,ng
any cycle of U;'LEI { a,fl,‘])} Therefore, a,(,l,:’) is linearly independent. We

now proceed using mathematical induction on k to show that U,Hlaglf')

linearly independent. Note that for i # I, say ¢ < [ we have that

w9 W {(uv('t):vgl))(ugt)avn)), ifl=1i+1
E(at,,’,'j) N E(a;,.s) = (u(‘_) . vfl))(ugt), S:'))} and s = 2,
2, otherwise.
(3.5)
And so,
(), o), 8),
i 1,1 ifl=i+1,
B@)NB@E) = ¢ @@, o), )]},
2, otherwise.
(3.6)
Thus, for each g = 2,3,...,k
9_1 (l)‘) (119) — (t) (1) (t) (g_l)
B(UZ{af) N Blalp®) = (o), o5, -

(1 -1
(ur-u”l )) (ugt)» r(ts;_ ))}

The first step of the induction whenever k = 1 follows from the above
argument and noting that U,_la?,’) agl,.l) Assume that £ > 2 and it is
true for less than k. Now suppose that Zt, C; = 0 (mod 2) where C; is a

linear combination of cycles of agl,.'), then Zf_ Ci=C (mod 2). And so
E(Ci10C0: - -®Ck—1) = E(Cy) where @ is the ring sum. By inductive step

and being agl'k) is linearly independent, we conclude thatC,®Cy®- - -®@C—_1

and C;, are two identical cycles or two identical edge disjoint union of cycles
which contradict equation 3.7. Hence, UX_ 1a§’,) is linearly independent.
By noting that u,_,a?,‘) C C(P(r-l)[NT]) for each r = 3,4,...,m, and
any linear combinations of cycles of UX_; agl,.') must contain an edge of the
form (u?, v{M)(w{?, J(-‘)) which is not in UTZ2C(P{”[Nr)) (because u{?u{
is an edge of P{""" but it is not an edge of UT=2P{”), we have that
U, UE a§1,‘) is linearly independent. In a similarly argument one can
show that U2, UK., aﬁ'; *) is linearly independent. The proof is complete.

Lemma 3.6. Let A,B and D be any linearly independent sets of cycles
such that E(A) N E(B) = @ and each cycle of D contains at least one

431



edge of E(A) and at least one edge of E(B). Then AUBUD is linearly
independent set of cycles.

Proof. Since any linear combination of cycles of D contains at least one
edge in common with the edge set of A and since E(A)NE(B) =@, DUB
is a linearly independent set. Now, let C be any linear combination of of
cycles of DU B. Since C is a cycle or an edge disjoint union of cycles and
since E(D)NE(B) # @ and E(A)NE(B) = @, as aresult E(C)NE(DUB)
is either an empty set or an edge set of a forest. Thus, C can not be written
as a linear combination of cycles of A. Therefore, AUBU D is linearly
independent set. The proof is complete.

The following lemma follows easily from the definition of ag;"') and ag'lr’") .
L 3.7. U™ Uk, E(a{™)) and
emma J.7. Yp_3 and r is odd i=100G¢ an
Jd (Ui?:lE(agl’i))) are disjoint sets.

r=4 and r is even na

Lemme. 3.8. Let By be a union of cycles of a foundation of T} [T2). Then
B(T}[Tz)) = B U (U}, B:) U

[Uf=1 ([U’rn_ia and r is odd ( i=1a§;’i))] U [U:'f—f4 and r is even ( i=la'§,11:i))])]

is o basis of C(Ty[T2)) where B, is as in Lemma 3.4 for each t = 1,2,..., h.
Proof. By Lemma 3.2, we may assume that By = U{‘=IB§P where B}t) isa

foundation of S [Ty] for each t = 1,2,...,h. Note that

dim C(Ty[T2)) = |ET)|[V(T2)]® + | E(T2)IV(T)I- (3.8)
V(T)IIV(T2) +1
= [E@)|IV(T2) - [V(Ty)| + 1.

Now, fort =1,2,...,h

me
89| =3 dim u{?u{ Ny (2, (3-9)
i=2

=3 (V@R - 2V(T)] +1)

=2

=S V() - 1?

i=2

= (m: — D)(IV(T2)| - 1)?,
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From (3.9), (3.10) and (3.14), we have

B9 + 18| +

m k n,i)
LJr=‘3 and r is odd (Ui=la§,r )I +

Uf"n="4 and T is even (U§=lag.l7:i))|

(me = DY(IV(T2)| = 1)? + me (IV(T2)| = 1) + (me — 2) (IV(T2)| - 1)
(me = 1) [(IV(T2)] - 1)* + 2(|V(T2)| - 1)]

= (m-1)[IV(T)I* -1].

Therefore, By (3.8)

h
BOIT) = Y ((me-1) V()P -1])

i=1
h
= V@ -1] 3 me-1)
t=1

= [V(T)P -1 V(T +h-1-h]
= [IV(T2)? - 1) |E(Ty)|

= |[V(T2)P|EM)| - [V(T1)i +1

= dim C(TA[T3)).

Thus to prove that B(T}[T3)) is a basis of C(T1[T2)), it suffices to show that
the cycles of B(T}[T2]) are independent. For simplicity we assume that

_ (ni) (14
'7:' - [U:n='3 and r is odd (Ui=1a‘t.r )] U [U::% and r is even ( i=1at,r ))]

We now prove that
B(Th[T))e = BOUB,UF,

is linearly independent set of C(Sﬂt) [T2]) for each t =1,2,... h. By Lemma
3.1 and Lemma 3.4 each of B®) and B; is linearly independent. By Lemma
3.5 and Lemma 3.7 we have that F; is a linearly independent set. Any non-
trivial linear combinations of cycles of F; is a cycle or an edge disjoint union

of cycles each of which consists of 4 edges two of them from ugt)ug? [Ny )
and the other two from ugt)u_f,?[NW(H)] for some s; # 8. Therefore, by
Lemma 3.6, B U F; is linearly independent. Any linear combination of
cycles of B, must contains at least one edge of u,(t)DTg for some ! which is
not in any cycle of B(®) U F,. Therefore, B(T1[T%]): is linearly independent
for each t = 1,2,...,h. To this end, we use mathematical induction on h
to prove B(T}[T2)) is linearly independent. The result is done for h = 1.
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Assume that & > 2 and the theorem is true for smaller than h. We now
prove that the cycles of B(T}[T])» are linearly independent of cycles of
UA=! B(T1[T3]);. Since

V(Uizs)nvs?) = (uf},

we have . . ]
B} (SOm) nEEPD) = BP0n). (3.19)

Suppose that 3 i, C;, = C (mod 2) where C;, and C}, are nontrivial linear
combinations of cycles of B(T1[T3]);, and B(Ti[T2])n, respectively, then
E(C;, €Cj, @ -®Cj,) = E(Cn) where the ring sum C;, C;, &--- & C;,
and Cj, are cycles or edge disjoint union of cycles. On the other hand, by
equation 3.15, C;, ®Cj, ®-- - Cj, C ul )OT, which contradicts the fact
that ugh)DTg is a tree. Hence, B(T[T3]) is a basis of C(T}[T%]). The proof
is complete.

Let {z1,22,...,Zjv(1y)} and {y1,¥2,- - ., Yjv(y) } be the two vertex sets
of the complete bipartite graph K|v(t,)|,|v(13))- Then

S = {zy;Tin1yi41%ill < 4,7 < V()| - 1} (3.16)

is the Shmeichel 4-fold basis of C(K|v(z,)),|v(1y)|) (see [18] Theorem 2.4).
Lete= u(t) ) and let N\v (1)) be the null graph with vertex set V(T3). By
replacing :1:1 by (u1 ,vll)), :c by (ugt),vzl)), .y Zn, by (u(t),vn1 )s Tag41
by (u(t)rvz )y ZTny42 by (u rva )""’ Zny4ng—1 DY (ult)s”ﬂi )’ Tny+ng
by (u$?,0$),..., and a:|V(T,)| by (w{,v%) and y; by @, o ), yg by
(u?,057), - v BY (0, 82)), s By (%059, 2 by (12,05 ")
v Ynyoema—1 bY (U, 0E2), Yy 4mg by (w8, 08Y), ..., and ywer by (8,
,(1,,)) in equation 3.16, we obtain that S is a 4-fold basis of C(e[Njv(1y))])-

From now on B‘(;) stand for the Shmeichel 4-fold basis of C(e[Njv(z,)|]) as
in equation 3.16 after the above replacement.

Remark 3.2. Notice that for each i = 1,2,...,k and j , if
e =, o), v](-')) or (ug),v(l))(ugt),vy)) or (u{?, vﬁﬁ))(ugt),v(')) or
«?, v,(,'f,))(ugt),vy)) then fg,(€) < 2. Moreover, if e = (ul?, v{")(u! (‘) o
or (9, ), o) or (@, o)) or (4, oD D),
then fg.(e) = 1. Finally, if e is not of the above forms, then fg,(e) < 4.

Lemma 3.9. {B_(;) :e € E(T1)} is a foundation for T1(T2).
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The following Lemmas are needed in the proof of next result.

Lemma 3.10. Let m,n be two positive integers with m > 2 and

4m—1)(n® - 1) < 3 (n*(m — 1) + m(n — 1)).
Then n < 5.

Proof. Since 4(m — 1)(n? — 1) < 3 (n?(m — 1) + m(n — 1)), we have that
n*(m—-1)-4m+4 < 3n%(m—1)+3mn —3m. Andson?(m—-1)+4<
m(3n + 1). Thus, n2/(3n + 1) +4/[(3n+ 1)(m - 1)] < m/(m - 1) < 2,
and so n2/(3n + 1) < 2 which implies that n < 6. For n = 6, the direct
substitution in the inequality yells that 17m < 22 which is a contradiction.
Therefore, n < 5.

Lemma 3.11. Let m,n be two positive integers and

(m—1)(n? - 1) < s+ | (3n*(m — 1) + 3m(n — 1) - 3s) /4]
where s < 3m(n—1). Then 1) if m =2, then n < 11, 2) if m = 3, then
n<93)if n>4, then m <8.

Proof. Suppose that
(m—1)(n® —1) < s+ [(3n%*(m — 1) + 3m(n — 1) — 35) /4] .
Since
| (3n%(m — 1) + 3m(n — 1) — 3s) /4] < (3n*(m — 1) + 3m(n — 1) — 3s) /4,

we have 4(m — 1)(n® — 1) < 4s + (3n*(m — 1) + 3m(n — 1) — 3s) which
implies that 4(m — 1)(n? — 1) < 3n%(m — 1) 4+ 3m(n — 1) + s. Thus,
4(m—1)(n%—1) < 3n2(m—1)+3m(n—1)+3m(n—1) and so (m — 1)n? -
4(m-1) < 6m(n 1). Which gives, (n? — 4) < 6m(n—1)/ (m 1). Thus,
if m =2, thenn?+8 < 12n and son < 11. if m = 3, then n?+5 < 9n and
so n < 9. Finally, if m > 4, then n? +4 < 8n and so n < 8. The proof is
complete.

Theorem 3.12. For any Ty and Tp with |V(T1)| 2 2 and |V(T3)| = 2,
we have b(T1(T3]) < 5. Moreover, b(T1[T2]) = 4 whenever Ty contains no
subgraph isomorphic to 3-special star of order 7 and (|V(T1)| = 2 and
V(T2)| = 12) or (JV(T1)l = 38 and |V(T3)| 2 10) or (|V(T1)| > 4 and
V(T2)| =2 9).

Proof. Let Bg = UeeE(T,)B.(;) and
B(Ty[T3)) = Bs U (U=, B:) U
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U?:l ([U;’:S and r is odd (Uéc=1a£’f;ﬂ))] U [U:'n=t4 and r is even ( i=la£};‘))]) .
By Lemma 3.9 and Theorem 2.6 B(T}[T3)) is a basis of C(T}[Tz]). Note that
if T; contains no subgraph isomorphic to a 3-special stars of order 7, then
o8 = v{”'l). Therefor, by Remarks 3.1 and 3.2 one can show that the fold
of any edge does not exceed 5 and if T> contains no subgraph isomorphic
to a 3-special stars of order 7, then the fold of any edge does not exceed 4.
To complete the proof of the theorem we show that C(T;[T3]) has no 3-fold
basis under the constraints which stated in the theorem on |V(T})| and
|V(Tz)|. Assume that B* is a three fold basis of C(T}[T%|) under the stated
constraints. Then we consider the following three cases:

Case a. B* consists only of 3-cycles. Then |B*| < 3|V(T1)|( [V(T2)| - 1)
because every cycle must contains at least one edge of Uyev(ry)(u0T32) and
the fold of every edge is at most 3. This is equivalent to the inequality
that [V(T2)?|V(T1)| - [V(T2)]? - [V(T1)| + 1 < 3[V(T)|( IV(T2)| - 1)
and so [V(TR)2(IV(Th)| - 1) < [V(T1)|(3|V(T2)| — 2) + 1, which implies
that [V(T2)|* < (IV(T)IGIV(T2)| = 2)) /(IV(T1)| - 1) + 1/([V(T1)| - 1) £
2(3|V(T2)| - 2) + 1. Thus, [V(T2)|? < 6]V(T2)| — 3. Hence, |V(T2)| < 5, a
contradiction.

Case b. B* consists only of cycles of length greater than or equal to 4.
Then 4|B*| < 3|E(T1[T2])| because every edge is of fold 3 and the length of
every cycle of B* is greater than or equal to 4. That is 4(|V(T2)|?|V(T})| -
[V(T2)P? - [V(T1)[+1) < 3(IET)IIV(T2)P+ |E(T2)I|V(T1))). By Lemma
3.10, it follows that |V (T3)| < 5, a contradiction.

Case c. B* consists of s 3-cycles and ¢ cycles of length greater than or equal
to 4. By Case a, s < 3|V(T1)|( [V(T2)| — 1). Since the fold of every edge
of T1[T3] is three and at most 3s edge are joint to make the s 3-cycles, we
have that ¢ < |(B[IV(T2)P(IV(Th)l - 1) + [V(TW)I(IV(T2)] -1)] - 3s)/4).
Hence, |B*| = s+t < s+|(3[|V(T2)P(IV(T1)| - 1) + [V(TL)|(IV(T2)| - 1)]-
3s)/4]. By Lemma 3.11, |V(T3)| < 11, a contradiction. The proof is com-
plete.

Remark 3.3. One can easily see from the proof of Theorem 3.12 that if
e€ E(us.t)Eng) where u{? is an end vertez of Th, then fg(r,(my))(e) < 2.

By specializing trees in the above theorem into paths and stares we
obtain the following results.

Corollary 3.13. Let S, and S, be two stars of order n,m, respectively.

Then b(Sp[Sm]) = 4 whenever (n =2 and m > 12) or (n =3 and m > 10)
or(n>4and m>9).
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Corollary 3.14. Let P, and P, be two paths of order n,m, respectively.
Then b(Pn[Pn]) = 4 whenever (n =2 and m > 12) or (n =3 and m > 10)
or(n>4and m>9).

Corollary 3.15. Let P, and Sp, be e path and a star of order n,m,
respectively. Then b(P,[Sm]) = 4 whenever (n=2and m >12) or (n =3
and m 2 10) or (n > 4 and m > 9). Also, b(Sn[Pn]) = 4 whenever
(m=2andn>12)or (m=3andn>10) or (m>4 and n>9).

4 Lexicographic product of graphs.

Throughout this section, T'C stands for the complement graph of a spanning
tree T in G. Also, T stands for a spanning tree of G such that A(Tg) =
min{ A(T)|T is a spanning tree of G}. Moreover, for e = uw € E(G) we
set

Ae = Be1UB.oUBS)
where B, and B, 2 are the linearly independent sets as in Lemma 3.4 which

obtained from B, and By, respectively, by replacing uﬁ‘) by u and ug) by
w . Thus, by theorem 3.12, A, is linearly independent subset of C(e[T2]).

Theorem 4.1. Let G,Ty and Tobe a graph, a spanning tree of G and
o tree, respectively. Then, b(G[T3]) < max {5,2(2+ A(TP)),2 +b(G)}.
Moreover, If Ty contains no subgraph isomorphic to a 3-special star of
order 7, then b(G[T3]) < max {4,2(2 + A(TF)),2 + b(G)}.

Proof. Note that G[Tz) = Ti[T3] U (ueeE(TF,e[N,V(T,),]). Let B =
B(Ty[T;]) where B(Ty[T3)) is as in Theorem 3.12. Let B = U,¢pro)Ae

and B be the corres;gonding required basis of Bg in G'Dvg:). Set
B(G[Ty]) = B UB" UB". Since

BGm) = |8|+|5"|+|8"]
= |[V(B)PIET)| - |B(T) + dim CG)(V(T2)* - 1)
+dim C(G)
= |V(T2)* (|E(Ty)| + dim C(G)) — (IE(T1)| + dim €(G))
+dim C(G)

V(T2)RIE(G)| - |E(G)| + dim C(G)
V(T2)RIEG)] - V(G)| +1
dim C(G[T2)),
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it suffices to show that B(G[T3]) is linearly independent and satisfies the
fold whlch is stated in the Theorem. Since each linear combination of cycles
of B” contains at least one edge e € E(GDv,(,',‘,)) E(Tll:lv(k)) and no cycle
of B’ contains such edge, as a result B UB" is hnea,rly independent. By a
similar argument as in lemma 3.4, we show that B” is a linearly independent
set. Note that for any e = uw € E(TG), we have that

B(ww [T3]) 0 (E(T: (T3] U E(GDu))
¢ {BaOT) UB@OR) U (u,v®)(w, o) }

which forms edges of a tree. Thus, if zl = Z ¢; (mod 2) where ¢; €

i=1

BUB” andl; e B, then L@l @ @1 is a subgraph of the forest.
Which contradicts the fact that {; 1l @- --@l; is a cycle or an edge disjoint
union of cycles. Thus, B is linearly independent and so B is a basis. Let
e € E(G[Ty)).

(1) If e € E(GTwY), then fgr g (e) < 2 and fg (e) < b(G).

(2) If e € E(Uyev(c)E(uDT3)), then fur(e) < 4, fgr(e) < 2A(TF) and
fo(e) =

(3) If e € E(e [To]) — [E(GOYY) U E(Uyev () E(uOTy))], then

{ 4, if Ty has no subgraph isomorphic
ferup(e) < to a 3-special star of order 7, and fg(e) =
5, otherwise.

0 for ¢ € E(G). The proof is complete.

Theorem 4.2. Let G ,H and Ti be two graphs and a spanning tree of
G, respectively. Then b(G[H]) < max {5,4+ 2A(TF) + b(H),2 + b(G)}.
Moreover, If T contains no subgraph isomorphic to a 3-special star of
order 7, then b(G[H]) < max {4,4 + 2A(TF) + b(H),2 + b(G)}.

Proof. Let B' = B( G[Tz]) where B(G[T2]) is the basw of C(G[T3]) as in

Theorem 4.1 where T3 is a spanning tree of H. Let B U B, where
)

B, is the corresponding required basxs of By in vOH. Now, E(xOH) N
EwOA)=2 for each u # w. Thus, B” is linearly independent. Moreover,
each cycle of B contains an edge of E(Nyv(cyOT§) which is not in any
cycle of B' where Ny ()| is a null graph with vertex set V(G). Thus
B(G[H]) = B UB" is linearly independent. Since
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IB(G[H))|

[+ 15|

V(T2)I? |E(G)| - [V(G)| + 1+ |V(G)| dim C(H)
IV(T2)? [E(G)| + V(G IEH)| - [V(A)IV(H)| +1
dim C(G[H])),

B(G[H]) is a basis for C(G[H]). It is an easy matter to see that B(G[H])
satisfies the fold which stated in the theorem. The proof is complete.

]

In the rest of this work T}, stands for a spanning tree for G such that
A(TS,,) = min{ A(T)|T is a spanning tree of G}. The following result

follows immediately from Theorem 4.2 and from the definition of Tiy.

Corollary 4.3. Let G and H be two graphs. Then b(G[H]) < max {5,4+
2A(TS,,) + b(H),2 + b(G)}. Moreover, If there is a Tmin containing no
subgraph isomorphic to a 3-special star of order 7, then b(G[H]) < max {4,

44 2A(TS,) +b(H),2+ b(G)}.

The following corollary is a straightforward consequence from the proof
of Theorems 4.1 and 4.2 and from Remark 3.1.

Corollary 4.4. Let G and H be two graphs. If G has a spanning
tree T such that TC is a matching and each edge of TC joins two end
vertices of T, then b(G[H]) < max{5,4+b(H),2+b(G)}. In addition,
If H has a spanning tree contains no 3-special star of order 7, then
b(G[H]) < max{4,4 + b(H),2 + b(G)}.

The following follows immediately by the same line of proof of Theorems
4.1 and 4.2 and by the aid of Corollary 4.4 and Remark 3.1.

Corollary 4.5. If H is semi-Hamiltonian graph, then b(G[H]) < max {4,
2+ A(TS,,) + b(H),2+ b(G)}. In addition, If G has a spanning tree T
such that TC is a matching and every edge of TC joins two end vertices of

T, then b(G[H]) < max {4,2 + b(H),2 + b(G)}.

By specializing graphs in the above results into paths, cycles, theta
graphs, ladders and circular ladder and by using arguments similar to the
last paragraph in Theorems 3.12 we obtain the following results.

Corollary 4.6. (Ali and Marougi) b(P, [Cp]) = 4 for n,m > T;5(Cx [Pn])
= b(Cp [Cm]) =4 for n,m > 6.



Corollary 4.7.(Jaradat and Alzoubi) b(P, [Lm]) = b(P,[CL.)) = 4 for
n 22 and m > 7; also, b(Cp [Lm]) = b(Cp [CLy]) = 4 for n > 4 and
m25.

Corollary 4.8.(Alzoubi and Jaradat) b(6y, [Pp]) = b(8y, [Cr]) = 4 for n >
5 and m > 10, b(P, [0]) = b(Crn [0m]) = 4 for n > 4 and m > 8 and
b(6n [0m)) =4 for n > 5 and m > 13.

b(6n [Sm]) = Y(Cpn[Sm]) = 4 for n > 5 and m > 10; b(Ly, [Pn])
b(Ln [Cm]) = BCLy[Pm]) = 4 for n > 3 and m > 6; b(8y [Lm])
b(6, [CLy]) = 4 for n > 4 and m > 4 and b(S, [Lyn]) = b(Sp [CLm]) = 4
forn>2and m>T.

Corollary 4.9. b(Sn[0m]) = b(Sn[Cm]) = 4 for n > 4 and m > 8;
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