COLUMN-PARTITIONED MATRICES OVER RINGS
WITHOUT INVERTIBLE TRANSVERSAL SUBMATRICES

STEPHAN FOLDES AND ERKKO LEHTONEN

ABSTRACT. Let the columns of a p x ¢ matrix M over any ring be
partitioned into n blocks, M = [M, ..., My). If no p x p submatrix
of M with columns from distinct blocks M; is invertible, then there
is an invertible p X p matrix Q and a positive integer m < p such that

= [@M,,...,QMy] is in reduced echelon form and in all but at
most m — 1 blocks QM; the last m entries of each column are either
all zero or they include a non-zero non-unit.

1. COLUMN-PARTITIONED MATRICES AND TRANSVERSAL SUBMATRICES

Generalizing the concept of row-reduced form of matrices over fields, we
shall say that a matrix M over any ring with identity is in reduced echelon
form if among all matrices QM where Q is invertible it has the maximum
possible number of distinct standard unit vectors appearing as columns.
(A p x p matrix Q over a ring R with identity is called invertible if it is
an invertible member of the ring of all p X p matrices over R, i.e., if there
is a p X p matrix Q' over R such that QQ’' = Q'Q is the p x p identity
matrix. The ring R is not assumed to be commutative, but even when it is
commutative, the ring of p x p matrices will generally not be commutative.
With the above definition of reduced echelon form, while for any matrix
M there is a square matrix Q such that QM is in reduced echelon form,
this Q and QM are clearly not unique. There is an essential uniqueness of
the reduced echelon form for matrices over fields, well known from classical
linear algebra, which does not extend to matrices over arbitrary rings. For
the general theory of non-commutative rings, see, e.g., [3].)

Theorem. Let R be any ring with identity, possibly non-commutative. Let
the columns of a p x q matric M with entries in R be partitioned into
n blocks, M = [My,...,M,). Suppose that no p x p submatriz eztracted
from M with columns from distinct blocks M; is invertible. Then there
zs an invertible p X p matriz Q and a positive integer m < p such that
= [QM,...,QM,] is in reduced echelon form and in all but at most
- 1 blocks QM; the last m entries of each column are either all zero or
they include a non-zero non-unit.
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Remark 1. If n = ¢ and R is a field, then the Theorem is an obvious
consequence of a rank-deficient matrix over a field having a null row in its
reduced row-echelon form.

Remark 2. If n < p, then the Theorem trivially holds with the identity
matrix as @ and m = p.

Remark 3. Excluding the trivial case mentioned in Remark 2, we have
m<p<nsq

In order to prove the Theorem, it will be convenient to recast it in a
somewhat more general form, using the following definitions and notation
for purposes of precision and simplicity in the proof.

An A x B matriz with entries in a ring Risany map M : Ax B — R,
where A, B are finite sets of positive integers. The matrix product M N of
M:AxB—+Rand N: BxC — Risamap A x C — R whose value
on (a,c) € A x C is defined by the usual convolution formula. For A’ C A,
B’ C B, we denote by M[A’, B'] the restriction of M (as & map) to A’ x B,
thus M = M[A, B). If any of A’ or B’ is a singleton {a}, then we may omit
the set braces and write a for {a}.

Whenever we refer to elementary row operations on an A x B matrix
M, we mean left multiplication of M by an A x A matrix E of one of the
following two types:

(1) a diagonal matrix all whose diagonal entries are units (scaling of
rows by units),

(2) the sum of the identity matrix and a matrix with a single non-zero
entry in an off-diagonal position (adding a multiple of a row to another
row).

All such matrices E are invertible.

Remark 4. Rows i and j can be transposed by a composition of elementary
row operations as follows: add row ¢ multiplied by —1 to row j, add row j
to row i, scale row j by —1, add row ¢ to row j. The transposition of rows
is not included here as an elementary row operation, because in the current
setting, the order of rows is irrelevant.

For any set B, a partition is a set IT of nonempty pairwise disjoint subsets
of B the union of which is B. A partial transversal of II is a subset J of B
intersecting every partition class K € IT in at most one element.

Reformulation of the Theorem. Let R be any ring with identity, pos-
sibly non-commutative, and let M be an A x B matriz with entries in R.
Consider a partition I1 of B into n classes, [1 = {Bs,...,Bn}. Suppose that
for every partial transversal J of I with |J| = |A|, the submatriz M(A, J] is
not invertible. Then there is an invertible A x A matriz Q and a nonempty
subset A’ C A such that QM is in reduced echelon form and at most |A’| -1
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of the matrices (QM)[A’, B;], 1 < i < n, can have a column containing a
unit entry but no non-zero non-units.

2. PROOF OF THE REFORMULATION

If n < |A|, then the statement clearly holds with A’ = A. Therefore we
can assume that n > |A|.

If there is no subset P C B with |P| = |A| such that M[A, P] is invertible,
then let ¢ < |A| be the largest positive integer such that there is some
invertible A x A matrix Q and ¢ distinct standard unit vectors that appear
as columns of QM. (In case there is no such positive ¢, then obviously
no entry of M is a unit and the claimed result holds with any singleton
A') Clearly QM has exactly m = |A| — t > 0 rows without units, and the
Theorem easily follows.

Suppose therefore that there are subsets P C B, |P| = |A| (but none
with P being a partial transversal of IT) such that M[A, P] is invertible.
Call such subsets P admissible sets.

Define the spread of an admissible set P as the set {i € {1,...,n} :
PN B; # 0}. The weight (with respect to P) of a block B; is defined as
w; = |P N B;|. The profile of P is the multiset of the weights w; where i is
in the spread of P. The profile sequence of P is the monotone increasing
ordered profile of P. Denote the inverse of M[A, P] by Q. For each 1 <
1 < n, define the set

Ai={r€A:(QM)[r,cj=1,c€e PN B;}.
For an admissible set P, denote
A = U Ai, B = U B‘i,

wi<2 wi<1

and let Dy = (AU{0})x Bx A. The elements (s, c,t) € Dy will be considered
as the arrows of a directed graph Gp with vertex set A U {0}, where the
source of (s,c,t) is s and its target is ¢, and the element ¢ distinguishes
between parallel arrows; we say that (s, c,t) is an arrow from row s to row
¢ through column ¢. For any subset D’ C Dy, we shall mean by “the graph
D™ the subgraph of Go which contains all vertices (i.e., AU {0}) but only
those arrows that are in D’. Let D be the set of arrows (s, c,t) € Dy that
satisfy the following conditions: (QM)([t,c] is a unit; s # ¢; if ¢ belongs to
a block B of weight 1 then s is the unique member of Ay, else s = 0. A
directed path (ay,...,cq) = ((81,61,%1),...,(s1,¢1, %)) in the graph D is
said to be clear if for all 1 < i < I, denoting by T} the set of targets of the
arrows o, j > i, we have QM|[T;, ¢;] = 0.

Define pairwise disjoint subsets Dy, Da, ..., Dy, ... of D inductively
as follows, denoting Uwi:2 Ai by T. The members of D; are the arrows
of the graph D with target in T. The members of Dy, are the arrows
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(s,c,t) of the graph D whose target is the source of an arrow in the graph
Dy, and for which there is a clear path in the graph U,_l D; U {(s,c,t)}
starting at (s,c,t) and ending with an arrow with target in 7. Let Dp be
the union of all D, k > 1, and call the graph Dp the connection graph of
P, and denote it by Gp. We will need to distinguish two cases. If there is
no directed path from 0 to a member of T in Gp, then we say that P is of
the first kind. Otherwise we say that P is of the second kind and the length
of the shortest directed path from 0 to a member of T in Gp is called the
connection distance for P.

Let P be the set of all admissible sets of maximum spread (i.e., meeting as
many blocks of IT as possible). This set is quasi-ordered by the majorization
relation between profile sequences. (Recall that a monotone sequence a; <
as < --- < ag is said to majorize a sequence by < by < -+ < b; when for all
1<i<s, a1+ -+a; > b +---+b;, with equality for i = s. Majorization
is a partial order on the set of finite monotone increasing sequences of
integers.) Let P be the set of maximal members of P (i.e., the members of
P whose profile sequence is not strictly majorized by the profile sequence
of another member of P). Let P be an admissible set in P, of the first kind
if such exists, otherwise let P be a member of P; (necessarily of the second
kind) whose connection distance is as small as possible.

Lemma (Gap Condition). There are no units in (QM)[A;, B;] whenever
w; > wj + 2.

Proof. Suppose on the contrary that (QM)r,¢] is a unit for some r € A;,
c € B; with w; > w;+2. Then thereisa ¢’ € A;NP such that (QM)[r,c] =

1, and we can make column c into a standard unit vector with elementary
row operations that do not affect the columns indexed by P\ {c'}. Thus
the set P’ = PU {c} \ {¢} is admissible, but it either has a larger spread
than P (if w; = 0) or it has the same spread as P (if w; > 0) but its profile
sequence majorizes that of P’, a contradiction. O

We now continue the proof of the Theorem. Since P is not a partial
transversal of I, there must be a block of weight at least 2, and there is of
course a block of weight 0. Assume first that there is no block of weight
2. In this case, let I = {i : w; > 2}, and the claimed result holds by
choosing A’ = |J;; Ai, because by the Gap Condition, (QM)[A’, B;] does
not contain a unit for any i ¢ I, and |I] < |A’].

We can thus assume that there is a block of weight 2. If P is of the
first kind, let S be the set of indices ¢ € {1,...,n} such that w; = 1 and
there is no arrow (s, ¢,t) with ¢ € B; on any path in Gp terminating in T
In this case we obtain the result, if we let I = {1,...,n} \ S and choose
A’ = U;ep Ai- For, if i ¢ I and (QM)[r,c] is a unit for some r € A',
¢ € B;, then there is an 7/ € T such that (QM)[r’, ¢] is a non-zero non-unit.
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(Such an r is necessarily in an Ay with wg = 1: this follows from the Gap
Condition for blocks of weight 0; and if B; is a block of weight 1 and r € A
with wy = 2, then there would be an arrow from the single element of A;
to an element of T through ¢, and so < € I, a contradiction.)

If P is of the second kind, it is clear that the connection distance is
at least 2. In Gp, take a shortest directed path ((sy,c¢1,t1),...,(s1,c1,t1))
from 0 to a vertex in T. For the last arrow (s;, ¢, ¢;) in this path, we
have t; € Ay for some k with wy = 2 and ¢ belongs to a block B; of
weight 1. There is a ¢ € By N P such that (QM)[t;,c;] is a unit and
(QM)[t,c] = 1, and we can do elementary row transformations and make
By, into a block of weight 1 and B; into a block of weight 2 with respect
to a new admissible set P’ = PU {¢;} \ {c¢}. These row transformations
do not affect the columns indexed by {c1,...,¢i-1} U P\ {c}. Therefore
((s1,e1,t1),. .., (S1-1,€1-1,ti—1) is a clear path in Gp: from O to ¢_; and
t1—1 now belongs to the set A; of rows corresponding to a block B; of weight
2 with respect to P’. The set P’ has the same spread, the same profile,
and the same profile sequence as P, it is still of the second kind, but its
connection distance is smaller than that of P, a contradiction exhausting
the last possible case. This completes the proof of the Theorem. O

Remark 5. The Gap Condition in the above proof shows that the matrix
QM will indeed have some rows in which some blocks are completely free

of units.
3. MATRICES OVER FIELDS

The Theorem above applies to any ring R, whether commutative or not.
In the special case that R is a field, the Theorem overlaps as we shall show
below with Rado’s [7] matroid-theoretical generalization of Hall’s [2] theo-
rem on systems of distinct representatives as reformulated and extended by
Perfect [5, 6]. (See also Welsh [8] for an exposition of these results based
on the submodularity of the rank function.) However, the Rado—Perfect re-
sults do not apply to matrices over arbitrary rings, as the columns of such
matrices do not have the combinatorial properties stipulated by matroid
theory’s abstract generalization of linear independence.

Perfect’s version of Rado’s theorem, specifically as in Theorem 2 of (6],
states the following, when applied to any A x B matrix M over a field, any
partition II of B into n classes, and any positive integer k:

There is a partial transversal P of II of size k such that
M{[A, P has rank k if and only if for all © C II the rank of
M([A,|J®)] is at least k + |©| — n (where | JO denotes the
union of the partition blocks in ©).
The “only if” part is obvious here, while the “if” part states in particular
that if M[A, P) is non-invertible for all partial transversals P of II of size
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|A| then for some © C II the rank p of M[A, ) ©] is less than |A|+(0| -n =
| A|- (|TI} = |©]), in other words |A|—p > |IT\ ©|. Gaussian elimination then
yields an invertible A x A matrix Q and a set A’ C A of size | A|—p such that
the matrix (QM)[A’,|J ©)] is identically null, i.e., at most |IT\ ©] < |A’| -1
of the matrices (QM)[A’, B'], B’ € II, can have a non-null entry.

Thus the Rado-Perfect result on independent partial transversals in ma-
troids and our Theorem above overlap in the following Corollary, where the
implication (2) = (1) is obvious.

Corollary. Let the columns of a px g matriz M with entries in any field be
partitioned into n blocks, M = [My, ..., My]. The following are equivalent.

(1) All p x p submatrices extracted from M with columns from distinct
blocks M; are noninvertible.

(2) There is an invertible p x p matriz Q and a positive integer m < p
such that in QM = [QM,,...,QM,) the last m rows are null in all
but at most m — 1 blocks QM;.

4. CONCLUDING REMARKS

An application arises in the algebraic theory of n-ary operations on any
set A, i.e., maps A™ — A. Let C be a fixed set of operations on A, pos-
sibly of different arities. For operations f and g on A of arities n and
m, respectively, we denote f <¢ g if and only if f = g(hi,..., hm) Where
Ra,...,hm € C are all n-ary. The relation <c is a quasi-order (a reflexive
and transitive relation) on the set of all operations on A if and only if C is
a clone on A (a set of operations that contains all projection maps and is
closed under functional composition). The Corollary as applied to matrices
with entries in the two-element field is used in (4] to establish the descend-
ing chain condition in the quasi-order <¢ in the particular case where C is
the clone of projections and quasi-linear functions of Burle [1] on a finite
set of k > 3 elements. An operation f on A is quasi-linear if it has the form
f=g(hi(z1)® -+ ®ha(zn)), where by,...,hn: A—{0,1},g: {0,1} - A
and @ denotes addition modulo 2.

As noted before, the Theorem in its full generality relating to matrices
over arbitrary rings does not seem to fit within matroid theory. However, it
may be possible to develop some relaxation of matroid transversal theory or
of submodular function theory, possibly in the spirit of Welsh [8, Chapter 7],
which could shed additional light on why the Theorem works over arbitrary
rings.
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