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Abstract

In 1990, Anderson et al. [1] generalized the competition graph of
a digraph to the competition multigraph of a digraph and defined the
multicompetition number of a multigraph. The competition multi-
graph CM(D) of a digraph D = (V, A) is the multigraph M = (V, E')
where two vertices of V' are joined by k& parallel edges if and only if
they have exactly k common preys in D. The multicompetition num-
ber k* (M) of the multigraph M is the minimum number p such that
MU, is the competition multigraph of an acyclic digraph, where I,
is a set of k isolated vertices. In this paper, we study the multicom-
petition numbers for some multigraphs and generalize some results
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provided by Kim and Roberts [9], and by Zhao and He [18] on general
competition graphs, respectively.
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1 Introduction

In 1968, the notion of competition graph was introduced by Cohen [4] in
connection with a problem in ecology. Let D = (V, A) be a digraph, in
which V is the vertex set and A is the set of directed arcs. The competition
graph C(D) of D is an undirected graph G with the same vertex set as D
and with an edge uv € E(G) if and only if there exists some vertex x such
that (u,z), (v,z) € A(D). We say that a graph G is a competition graph if
there exists a digraph D such that C(D) = G. If (z,a) and (y, a) are arcs
of digraph D, we say that a is a common prey of z and y.

Roberts [14] observed that, for any graph, the graph with sufficiently
many isolated vertices is the competition graph of some acyclic digraph.
The minimum number of such isolated vertices was called the competition
number of the graph G and was denoted by k(G). We use I to denote the
graph only consisting of r isolated vertices, and GUI, the graph consisting
of the disjoint union of G and I,.

Since the notion of competition graph was introduced, there has been
a very large literature on it. For surveys of the literature of competition
graphs, see [6, 7, 11, 14, 17]. Several variants of competition graphs also
have been studied, see [1, 2, 3, 8, 12, 15, 16]. Much of the study focused on
competition numbers, since the characterization of competition graphs of
acyclic digraphs equals to compute the competition number of an arbitrary
graph. But it seems to be difficult to compute the competition numbers of
graphs in general. Opsut [13] showed that the computation of the competi-
tion number of a graph is an NP-hard problem. The competition numbers
are known only for some special graph classes, see 7, 9, 10].

A clique of a graph G is a complete subgraph of G. An edge clique
cover of a graph G is a family of cliques of G such that each edge of G is
contained in some clique in the family. The minimum size of an edge clique
cover of G is called the edge cligue cover number of the graph G, and is
denoted by (G). For the competition number and the edge clique cover
number of a graph G, Opsut [13] provided the following result.

Theorem 1 (Opsut [13]) For any graph G, 6.(G) < k(G) +|V(G)| - 2.

In 1990, Anderson et al. [1] generalized the competition graph of a
digraph to the competition multigraph of a digraph and defined the multi-
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competition number of a multigraph. The competition multigraph CM (D)
of a digraph D = (V, A) is the multigraph M = (V, E') where two vertices
of V' are joined by k parallel edges if and only if they have exactly k com-
mon preys in D. We call a multigraph M a competition multigraph if there
exists a digraph D such that CM (D) = M. The multicompetition number
k*(M) of the multigraph M is the minimum number p such that M UI,, is
the competition multigraph of an acyclic digraph.

For a multigraph M = (V,E’), the underlying graph M | of M is
obtained by replacing each multiple edge by a simple edge, and the mul-
tiplicity of each edge uv € E’, denoted by ppr(u,v) (or p(u,v)), is the
number of edges joining vertices 4 and v in M. Let |E'(M)| denote the
edge number of M, and it is easy to see that |[E'(M)| =Y, ¢ My BT Y)-
For any subgraph G; of M |, the corresponding mu!tigmpz, Iljl of Gyisa
submultigraph of M such that G; = M; | and pp, (z,y) = pm(z,y) for
any edge zy € E(G1). An edge cliqgue partition of a multigraph M is a
family {Q1,...,Qn} of not necessarily distinct cliques of M | such that
w(vi,v;) = |{k : viv; € E(Qk)}| for each v;jv; € E(M |). For a multigraph
M, let 6;(M) be the edge clique partition number of M, i.e., the smallest
number of cliques which form an edge clique partition of M.

Anderson et al. [1] showed the relation between competition numbers
and multicompetition numbers as follows,

Theorem 2 (Anderson et al. [1]) For a multigraph M, k(M |) < k*(M).

For any multigraph M, they provided the following bounds for the mul-
ticompetition number.

Theorem 3 (Anderson et al. [1]) If M is a multigraph, then %(M) —
[V(M)|+2 < k(M) < 6(M).

If a multigraph M is triangle-free and connected, they also got the
following explicit formula for the multicompetition number.

Theorem 4 (Anderson et al. [1]) If M is a connected triangle-free multi-
graph, then k*(M) = |E'(M)| — |[V(M)| + 2.

In this paper, we continue to study the multicompetition numbers for
some multigraph classes. In Section 2, we study the multicompetition num-
bers for Type 1 multigraphs (the multigraphs whose underlying graphs have
exactly one triangle). In Section 3, we study the multicompetition numbers
for Type 2 multigraphs (the multigraphs whose underlying graphs have at
least one not K3 clique, and any two different maximal cliques of the un-
derlying graph have at most one common vertex). In Section 4, we show
that the results in this paper generalized some results provided by Kim and
Roberts in [9], and by Zhao and He in [18], respectively.
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2 Multigraphs of type 1

In 1997, Kim and Roberts [9] investigated the competition number for the
graphs with exactly one triangle. In this section we study the multicom-
petition number for the multigraphs whose underlying graphs have exactly
one triangle. We first introduce a lemma.

Lemma 5 (Harary et al. [5]) Let D = (V, A) be a digraph. Then D is
acyclic if and only if there exists an ordering of vertices, o = [v1,va,...,vn),
such that one of the following two conditions holds,

(1) For alli,j € {1,...,n}, (vi,v;) € A implies that i < j,
(2) Foralli,je{1,...,n}, (vi,v;) € A implies that i > j.

In the following we use the similar but much more complex ways than
those used in [9] to get some analogue results. A multitree is a multigraph
whose underlying graph is a tree. A multiforest is a multigraph such that
each connected component of it is a multitree.

Lemma 6 For a multitree T and a vertezv of T, there is an acyclic digraph
D so that T U I}, is the competition multigraph of D and so that v has only
outgoing arcs in D, where k = |E'(T)| - |V(T)| + 2, Ir = {u1,u2,...,ux}
and uy,ug,...,ur are new vertices not in T'.

Proof. By Theorem 4, k*(T) = |E'(T)| — |V(T')| + 2. Now we construct
an acyclic digraph D so that T'U Iy is the competition multigraph of D,
where k = |[E'(T)| = |V(T)|+2, Ix = {u1,u2,...,ur} and uy, uy,..., ux are
new vertices not in T'.

Let Ty = T, V(D,) = V(T) and A(D;) = 0. Choose a vertex v; from
T, such that the degree of v; in T} | is 1. If v] is adjacent to v in T}, then
let T, =Ty — v, V(D2) = V(D1) U {21,1,%1,2, - - -y Y1, u(wy,0}) } fOT p(v1,07)

vertices not in D, and A(D;) = U;‘i"l""‘){(vl,ul,,) (vl,ul,,)} Choose a
vertex vo from T such that the degree of v2 in T | is 1. If vj is adjacent to
v in T, let T3 = To —ws, V(D3) = V(DQ)U{‘uz 1,U2,2y + + +» U2, u(va,vh) - 1} for
w(va, vz) —1 vertices not in V(D3), and A(D3) = A(DQ)U{(‘UQ, ), ('vz, n)ju
Jf’""’)— {(v2,u2,5), (vh, ua,7)}. Suppose that we have defined T; and D;,
i > 3, choose a vertex v; from T; such that the degree of v; in T} | is 1.
If v} is adjacent to v; in Tj, then let Tiyy = T; — v;, V(Diya) = V(D) U
{u‘i,l: Ui2y 000y ui,u(vg,vQ)-—l}’ and A(Di+l) = A(Di)u{(vi’ vf—l)’ (vév v‘i—l)}u
A= (g, g 5), (v, s 5)}- Repeat the last step until Dyy()j has been
defined. Let D = DlV(T)|-
In the procedure, we may avoid selecting v until we select all other
vertices since there are at least two vertices of degree 1 in a tree with
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more than one vertex, thus we may guarantee that v has only outgoing
arcs in D. Note that in the whole process for constructing D, we add
2zyeery) Bz y) = 1) + 1 = |E'(T)| - V(T) + 2 new vertices to V(Dy)
and get V(Djv(ry;). It is easy to check that CM(D) = T U I, where k =
IE'(T)|—|V(T)|+2 and I = {ul,U2, ven ,uk} = {u1,1,‘u1,2, vee ,ul,,‘(,,hvi)}U

vV(T)|-1
Ul=; )I {uivl’ uiyz’ e ’uil”(”‘r'v‘)—l}' l

Theorem 7 If a multigraph M is connected and M | has ezactly one
triangle, then

[E'(M)| = [V(M)| — 25+ 2 < k*(M) < |E'(M)| - [V(M)| - s+2,
where 8 = min{u(u,v) : uv is an edge in the triangle of M |}.

Proof. Note that, except for the triangle, all the other cliques of M | are
K3, so (M) = |E'(M)| — 3s + s = |E'(M)| — 2s, and the lower bound
k*(M) 2 |E'(M)| — |V(M)| — 23 + 2 follows from Theorem 3.

To prove the upper bound k*(M) < |E'(M)|-|V(M)|-s+2, let {z,y, z}
be the vertex set of the triangle and we may assume that u(z,y) = s.
Deleting the parallel edges between = and y from M, the resulting graph,
denoted by M —zy, is a multitree, so Theorem 4 implies that k* (M —zy) =
|B'(M — zy)] = V(M —zy)| +2 = |[E'(M)| — [V(M)| — s+ 2. Let D’
be an acyclic digraph whose competition multigraph is (M — zy) U I,
where k = |E'(M)| — |V(M)| — s+ 2. Since there are u(z, 2) edges joining
z and 2, and p(y,z) edges joining y and z in M — zy, there are arcs
(z,a:), (2,a:), (v,b;) and (2,b;) in D’ for vertices a; and b; of D’, where
i =12,...,u(z,2) and j = 1,2,...,u(y,z). Since there are no edges
between z and y in M — zy, then a; # b; for any i € {1,2,...,u(z,2)}
and any j € {1,2,...,u(y, 2)}. By Lemma 5, there is an acyclic labelling
7 of D' such that whenever (u,v) is an arc of D', w(v) < w(u). So we
have 7(z) > m(a;) and w(y) > w(b;) for any ¢ € {1,2,...,u(r,2)} and
j€{1,2,...,u(y, 2)}. Since n(z) # 7(y), we may assume that 7(z) < m(y).
Add arcs (y,a;) to D' and delete arcs (y,b;) from D’ fori = 1,2,...,s to
obtain a digraph D. The digraph D is acyclic because w(y) > #(z) and
w(z) > m(a;) imply m(y) > 7w(a;) for all i € {1,2,..., u(z,2)}. Therefore,
CM(D) = M U I}, where k = |E'(M)| - |V(M)| — s+ 2, and so k*(M) <
|B'(M)| = |[V(M)|-s+2. 1

Theorem 8 Suppose that a multigraph M is connected and M | has at
least two cycles, including at least one triangle. Then

k(M) < |E'(M)] - |V(M)| - 25 +2,

where s = min{u(u,v) : uv is an edge in the triangle of M |}.
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Proof. Let {z,y, z} be the vertex set of an triangle S which has at least one
edge with multiplicity s. Let T be a spanning tree of M | that has exactly
two edges of S. Now we delete those two edges from T'. Then the resulting
graph is a forest with exactly three tree components, say T, T2 and T3.
Clearly, each component contains exactly one of {z,y, 2}. We may assume
that z belongs to T3, y belongs to T, and 2 belongs to T3. Since there is one
more cycle other than S, there is an edge fg € E(M |) — E(T). We may
assume that T} does not contain f or g. Whether or not f and g belong to
the same component, we may assume that g belongs to T3. We use T} to
denote the corresponding multitree of T; and let ¢; = |E'(T{)| - |V (T})|+2,
where ¢ = 1, 2,3. Without loss of generality, we consider the following three
cases.

Case 1. T} and T are trivial, T3 is nontrivial.

Note that in this case, either f = y or f also belongs to T3. By Lemma
6, there are an acyclic digraph Ds and added vertices u31,u3sz2,...,us
so that the competition multigraph of D is T3 U {us,1,u32,...,u3,¢}. By
the proof of Lemma 6, we may assume that each u3; has no outgoing arcs
in D3. Let D' be a digraph whose vertex set is

u(f9)-1
V(M)uU{us.}uU{yl}u U {v5}
i=1 J=1
and whose arc set is
u(f.9)-1
A(Da)UU{(fB W), @, 9], (zyDI{(f,2), (g, 20 | {(F9d), (0, 98))
j=1 k=1

— {(v,us3,1) : (v,u3,1) € A(D3)} U {(v,9) : (v,u3;1) € A(Ds)}.

We note that D’ is acyclic, and u3,; has neither incoming nor outgoing arcs
in D'. Let D" =D’ - u3,1.

Case 2, T; is trivial, T5 and T3 are nontrivial.

By Lemma 6, there are acyclic digraphs D; and added vertices u;,1,ui,2,

.., Ui ¢, 80 that the competition multigraph of D; is T{U{u; 1, us2,. .., %},

where ¢ = 2,3. By the proof of Lemma 6, we may assume that each u; ;
have no outgoing arcs. In each digraph D;, the vertices v and v’ of the
highest and the second-highest indices, respectively, in an acyclic labeling
can be assumed to have only outgoing arcs since the only possible incoming
arc to either of these vertices is from v to v’ and we can always delete this
arc without changing the competition multigraph. Now let =2 and y; be
the vertices having only outgoing arcs in Ds. Let D’ be a digraph whose
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vertex set 1s

3 8
V(M)u U{ue,l,w,z, ey Ui JU U{yf}

=2 j=1

and whose arc set is

A(D2) U A(D3) U | {(=, 4], (0, 9], (=, 9])}
j=1
= {(v,u2,1) : (v,u2,1) € A(D2)} U {(v,2) : (v,u2,1) € A(D2)}
- {(v,u3,1) : (v,us,1) € A(D3)} U {(v, 22) : (v,u3,1) € A(Ds)}.

We note that D’ is acyclic, and ug,1, u3,1 have neither incoming nor outgo-
ing arcs in D'. By Lemma 6, we may assume that f = z5 if f belongs to
T,. Now we delete vertices ug; and us; from D’ and add vertices y& and
arcs (f,y2), (9, ¥2), (£, 93), (9,93) to D' fori = 1,2,..., u(f, g) — 1 to obtain
D”. This still leaves an acyclic digraph since the arc (g, y2) goes from D3
to Dy and the arc (f,y2) goes from D3 to Ds, or from a vertex with no
incoming arcs in D,

Case 8, Th, T» and T3 are nontrivial.

By Lemma 6, there are acyclic digraphs D; and added vertices u; 3, u; 2,
..+, Uj ¢, S0 that the competition multigraph of D; is T/U{u; 1, ui2,...,uie,},
where i = 1,2,3. By the proof of Lemma 6, we may assume that the u; ;
have no outgoing arcs and x has only outgoing arcs in D;. By the same
case as in Case 2, let y; be another vertex that has only outgoing arcs in
D and let z2 and y2 be vertices having only outgoing arcs in Dy. Let D’
be a digraph whose vertex set is

3 8—-1
V(M)u U{u.-,hui.z, vy Ui JU U{Vi}

and whose arc set is

3 8~-1
U A(Dt) U {(:L’, yl)’ (y’yl)a (z> yl)} U U{(z,y{), (y, y{)) (Z, y{)}
i=1 Jj=1
—{(v,u2,1) : (v,u2,1) € A(D2)} U {(v,7) : (v,u2,1) € A(D2)}
—{(v,u3,1) : (v,us,1) € A(D3)} U {(v,x2) : (v,u3,) € A(D3)}.

We note that D' is acyclic, and uz 1, us,1 have neither incoming nor out-
going arcs in D’. By Lemma 6, we may assume that f = z5 if f be-
longs to T2. Now we delete vertices uz; and us; from D', add ver-
tices y3, arcs (f,v2),(9,¥2), (f,93),(9,43) to D' to obtain D", where i =
1,2,...,u(f,g) — 1. This still leaves an acyclic digraph.
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Let E = E(M |)—U,<i<3 E(Ti)— {2y, z2,yz, fg}. Now we construct D
from the D" constructed in each case above, by adding u(u, v) new isolated
vertices to D", corresponding to each edge uv € E, and arcs from the end
vertices of uv to each of these vertices. For each edge ab in the triangle
whose multiplicity is bigger than s, adding p(a,b) — s vertices and arcs
from the end vertices of ab to each of these vertices. It is easy to check
that D is still acyclic and its competition multigraph is M U I}y (py - jv(a)}-
Now we count |V (D)| — |V(M)| by summing the number of vertex added
to V(M) in each step (we just count it for the D that was gotten from D"
constructed in Case 3, and the other two cases are similar).

V(D)| - V(M)

3
=Y b+ (s-D)+ @ -D-2+ Y muw)+ Y (wwv)-9)
i=1 uwelE wve€{zy,yz,zz}

3
=Y (E@- V@ +D+pfi)+ D puv)-28-4
i=1 weBU{zy,yz,zz}

3 3
=V IE@I+ufa+ Y swe) =Y V(T -2s+2

i=1 wweBU{zy,yz,z2} i=1

= |E'(M)| - [V(M)| — 25 +2.

Therefore, CM(D) = M U IIE’(M)l—lV(M)|—23+2 and we have k*(M) <
|[E'(M)| — [V(M)| - 2s + 2. |
By Theorems 7 and 8, we immediately have the following result.

Corollary 9 Suppose that a multigraph M is connected and M | has ex-
actly one triangle. Let s = min{p(u,v) : uv is an edge in the triangle in M |}.
If M | has a cycle of length at least 4, then

k*(M) = |E'(M)| - [V(M)| - 2s+2.
Otherwise

|E'(M)| ~ |[V(M)| - 25 +2 S k"(M) < |E'(M)| - [V(M)| - s +2.

3 Multigraphs of type 2

In this section, we study the multicompetition number for a class of multi-
graphs whose underlying graphs include at least one clique of size at least
3, and any two different maximal cliques of the underlying graph have at
most one common vertex. Note that the subgraph of G = (V, E) induced
by E, C E is denoted by G[E].
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Theorem 10 Suppose that a multigraph M is connected, all the maxi-
mal cliques of size at least 3 of M | are Ky, K,,,...,Ky,, and 8; =
min{pu(u,v) : ww € E(K,,)}, wheret > 1 andn; 2 3 fori =1,2,...,¢t
If any two different mazimal cliques of M | have at most one common
vertez and Ky, [{uv : p(u,v) > s;,uv € E(K,,)}] is triangle-free for each
i€ {1,2,...,t}, then

wani-won- 3 ((7) -1)s+25K00

i=1

¢
’ n;—1
JLCOTTED o PR DR

Proof. Suppose that any two different maximal cliques of M | have at
most one common vertex and Ky, [{uv : p(u,v) > s;,uv € E(Ky,)}] is
triangle-free for each ¢ € {1,2,...,t}. By the condition of the theorem,
each clique Kn,,i=1,2,...,t, has (")) edges, and the other cliques of M |
are all K5, so we have

02() = |E(OD) - 3 ( )s, s = (B0 -3 ( (’;) - 1) 5.

i=1 i=1 i=1

By Theorem 3,

t
E(M) 2 03(M) = V(M) +2 = |B'(M)| -3 ((’;) ~1) sV () 2.

i=l1
(1

In order to prove the upper bound, Let {v],v,...,v} } be the ver2
tex set of K, where r = 1,2,...,t. Let E, = U2<.<;<n,{'”: v} }, where
r=1,2,...,t Deleting the edges in U, E- from M |, the resulting graph
M| - U,= E, is connected and triangle-free. Let M’ denote the corre-
sponding multigraph of M | — U:=1 E,. Theorem 4 implies that k*(M’) =
|E'(M")|=|V(M')|+2 = |E'(M")|—|V (M)|+2. Let D' be an acyclic digraph
whose competition multigraph is M’ U I E'(M")|-|V(M)|+2- For each r €
{1,2,...,t}, since {v]v}, v{va, .,v]v; } isasubset of E(M | — ., Ev),
there are arcs (vf,af;), (v] ,J) in D' for a vertex ai; of D', where
i=23,...,n, andj=12 -y (T, vl). Foreachre 1,2,...,t} and
any different ¢;,ip € {2,3,. ,n,}, since v} v, ¢ E(M | — U,._1 E',), then
a} ; is distinct for each < € {2 3,...,n.} and ‘each J €{1,2,...,p(v],])}.
By Lemma 5, there is an acyclic labelmg 7 of D' such that m(y) < n(z)
whenever (z,v) is an arc of D’. Without loss of generahty, Wwe Imay assume
that w(v3) < w(v]) foranyi € {3,4,...,n.} and r € {1,2,...,t}. Let D be
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the digraph obtained from D’ by adding arcs (v],aj ;) to D', deleting arcs
(vf,a} ;) from D', and for each edge uv € E, adding p(u,v) — s, vertices
to D’ and adding arcs from the end vertices of uv to each of these vertices,
where i = 3,4,...,n,, j = 1,2,...,8, and r = 1,2,...,t. Note that the
number of the vertices adding to D’ in this step is

Z Z (w(u,v) — 8) = Z ( E p(u,v) - (nr; 1)31') .
r=luvek, r=1 \uvekE,

It is easy to see that D is acyclic. Therefore, the competition multigraph
of Dis

P>

r=1

MU Lgny-iviny+2 YT
|E/(M)I-IV (M) ( 5 #(u,v)_(..,z_,),r)

uvEEy

I ‘ .
1B M=V 3 ("7 )ort2

Hence .
P —1
consiEai-vani-3 (" Narz @
r=1

Combining (1) and (2), the conclusion follows. §

The following corollary is the special case of the theorem above when
t=1and n; =m.
Corollary 11 Suppose that a multigraph M is connected, M | has a
cliqgue K., every triangle of M | is included in the cligue Kn,, and s =
min{u(u,v) : w € E(Kn)}, where 3 < m < |[V(M)|. If Knl[{uv :
p(u,v) > s,uv € E(Km)}| is triangle-free, then

m

a0l -voni- ((3) -1) s+2< w0
<iEen|-wani- ("5 Hs+2.
On the other hand, if n; = 3 for i = 1,2,...,t, then the following

corollary follows from Theorem 10.

Corollary 12 Suppose that o multigraph M 1is connected, all the mazimal
cliques of size at least 3 of M | are triangles A1,Aq,..., A, and s; =
min{u(u,v) : w € E(A;)}, where i = 1,2,...,t. If any two different
triangles of M | have no common edge, then

|E/(M)| = [V (M)| -2 s +2 < k*(M) S [E'(M)| = V(M) =) _si+2.

i=1 i=1
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» It is easy to see that Theorem 7 follows from Corollary 11 when m = 3,
or from Corollary 12 when t = 1.

4 Conclusions

Theorems 7, 8 and 10 generalize Theorems 5, 6 in [9] and 2.4 in [18],
respectively. The following three corollaries show the details. Note that
we may regard a simple graph G as a multigraph such that each edge with
multiplicity one. So we have E'(G) = E(G) and |E'(G)| = |E(G)|.

Corollary 13 (Kim and Roberts [9]) If a graph G is connected and
has ezactly one triangle, then k(G) = |E(G)|—-|V(G)| or |E(G)|-|V(G)|+1.

Proof. Since G has exactly one triangle, then 8.(G) = |E(G)| -3+ 1 =
|E(G)|-2. By Theorem 1, k(G) 2> |E(G)|-2—|V(G)|+2 = |E(G)|-|V(G)|.
By Theorems 2 and 7, k(G) <k(G) L |E'(G)|-|V(G)|-1+2 = |E(G)|-
V(&) +1.1

Corollary 14 (Kim and Roberts [9]) Suppose that a graph G is con-

nected and has at least two cycles, including at least one triangle. Then
k(G) < |E(G)| - [V(G)I.

Proof. By Theorems 2 and 8, k(G) < k*(G) < |E'(G)| - |[V(G)|-2+2=
|E@G)| - V(G)- 1

Corollary 15 (Zhao and He [18]) Suppose that all the mazimal cliques
of size at least 3 of a connected graph G are Ky, ,Kp,,...,Ky,, wheret > 1
and n; > 3 fori = 1,2,...,t. If any two different mazimal cliques of G
have at most one common vertez, then

IE(@)|-IV(G)|- Z( ) +42 < KO < [BO)I-V(G)- E( ; 1)+2.

i=1

Proof. Suppose any two different maximal cliques of G have at most
one common vertex. By the condition of the corollary, 8.(G) = |E(G)| —

t_1 (%) + t. By Theorem 1, k(G) > 8.(G) — [V(G)| + 2 = |E(G)| -
|V(G)| Y1 (%) + t + 2. By Theorems 2 and 10, k(G) k*(G) <
IlE'(G)I ~IV(G) = Zret ("3 +2= |E(G) - V(O - T1.y (""1) +2.
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