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Abstract

The edge set of K cannot be decomposed into edge-disjoint oc-
tagons (or 8-cycles) when n # 1 (mod 16). We consider the problem
of removing edges from the edge set of K, so that the remaining
graph can be decomposed into edge-disjoint octagons. This paper
gives the solution of finding maximum packings of complete graphs
with edge-disjoint octagons and the minimum leaves are given.

1 Introduction and preliminaries

For k > 3, a cycle C. is the graph with vertex set {v;,vs,...,vx} and the
edge set {v1v2,v2vs,..., V51U, kv1} and it is denoted by (v1,va,...,v);
we also call it a k-cycle. An octagon packing of a graph G is a set P of
edge-disjoint octagons (or 8-cycles) of G. A leave L of an octagon packing
is a set of edges of G that occur in no octagon of the packing. When there
is no chance of confusion, we also regard a leave L as the remaining graph
obtained by removing an octagon packing from G. If P is a packing and
|P| is as large as possible (so that |L| is as small as possible), then P is
called a mazimum packing and L a minimum leave. A decomposition of G
is a packing of G with L the empty set. Throughout this paper we will
refer to a maximum packing of K, with octagons simply as a maximum
packing, so does a minimum leave.

The existence problem for k-cycle decompositions of complete graphs
K, has been completely settled by Alspach, Gavlas [1], Sajna [8], and
Hoffman, Lindner and Rodger [3]. A k-cycle decomposition of K,, may not
exist, however, it is of interest to see just how “close” one can come to a
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k-cycle decomposition. Maximum k-cycle packings of K, have been found
for all values of n when k € {3,4,5,6} (see [2, 4, 6, 7, 9]). In this paper
we solve the problem of finding a maximum octagon packing of K, for all
positive integers n > 8.

Consider two graphs G = (V(G), E(G)) and G’ = (V(G’), E(G")), for &
set A C E(G), the edge addition of A to G’ is the graph G’ + A obtained
from G’ by adding all edges of A together with all endvertices of the edges
in A; the edge deletion of A from G is the graph G — A by removing all
edges of A; the union of G and G’ is the graph G U G’ with vertex set
V(G) U V(G’) and edge set E(G) U E(G’). If the degree of any vertex in
G is even (resp. odd) then G is called an even (resp. odd) graph. We use
& (resp. O¢) to denote the even (resp. odd) graph with e edges. Let
Kn[v1,v2,...,v,] be the complete graph with vertex set {v1,v,...,v}
and Kp nla1,02,...,8m;b1,ba,...,by) the complete bipartite graph with
bipartition ({a},a2,...,am}, {b1,b2,...,bn}), respectively. Let L, be the
minimum leave of K,, furthermore, we denote by L,g, where O is an
alphabet, the minimum leave of type (n0) of K,. For example, L;2q4 is the
minimum leave of type (12d) of Kj2.

We have the following trivial decomposition.
Proposition 1.1. For a positive integer n with n > 4, K,[1,2,...,n] can

be decomposed into 8 subgraphs K4[1,2,3,4], Kn_4[5,6,...,n] and K4n_4
[1,2,3,4;5,6,...,n].

2 Complete graphs of odd orders

For a positive odd integer n > 9, K, is an even graph and the degree of
each vertex in an octagon is 2, so the leave must be an even subgraph of
K,,. First, we have the following theorem.

Theorem 2.1. ([5]) For positive integers k and q, Kgrq+1 has a Cyp-
decomposition.

Next, D. Sotteau [10] obtained the following useful result on the cycle
decomposition of complete bipartite graphs.

Theorem 2.2. ([10]) K » has a Car-decomposition if and only if m and
n are even, m > k, n > k and 2k | mn.

On the other hand, J. A. Kennedy [6] mentioned an (n + 12) MP con-
struction, which we modify as an (n + 16) MP Construction to suit our
need in the proof.
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The (n + 16) MP Construction. Let K, be a complete graph of odd
order n > 9 with vertex set X U {c0}, K7 a complete graph with vertex
set Y U {oo}, and K)x,y| a complete bipartite graph with bipartition
{X,Y}. Let P be a maximum packing and L a minimum leave of K,,. By
" Theorems 2.1 and 2.2, we assume that K;7 and Kix|,|v| have the octagon
decompositions H and B, respectively. Then PU H U B is a maximum
packing and L a minimum leave of K416 with vertex set X UY U {oco}.

There are eight cases to consider according to the residue classes of n
modulo 16. We will give for the initial value of each case the method of the
maximum packing. We then use the (n+ 16) MP Construction to solve the
problem of the maximum packing of K, for every odd order n.

n=1 (mod 16)
By Theorem 2.1, K, has an octagon decomposition, hence the minimum

leave is empty.

n=9 (mod 16)

We assume that n = 16m + 9, m > 0. Since (3) = (**37°) = 128m? +
136m +- 36, the minimum possible leave is an even graph with 4 edges, that
is, C4 in view of the divisibility requirement for the number of edges in K,.
Arguing in the same way, we may summarize our results in Table 1. Note
that there is no even graph with 2 edges or 1 edge, hence the minimum
possible leaves are even graphs with size 10 and 9 whenever n = 5 and 15

(mod 16), respectively.

Table 1: The minimum possible leave of K,, for every odd order n
nmod16: 1 3 5 7 9 11 13 15
Lea.ve: @ é’3 évam é’s 6’4 6’7 é’s gg

The initial value of n is 9 in this case. We first prove the following
lemma.
Lemma 2.3. There exists an octagon packing of Ko with Ly = C,.
Proof. This follows from the fact that Ky[5,8,...,13]—(5,6,7,8) can be de-

composed into 4 octagons: (6,9,5,7,10,11,13,12),(6,8,9,7,11,12, 10, 13),
(5,10,9,13,7,12,8,11) and (5, 12,9,11, 6, 10, 8, 13). a

n =11 (mod 16)
The initial value of n is 11 in this case. The minimum possible leaves

are even graphs with 7 edges listed in Figure 1.
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7
11

(11a) T (11b) (11¢) (11d)

Figure 1: The minimum possible leaves of K1, (£'7)

Lemma 2.4. There exists an octagon packing of K1y with L1y = &7.

Proof. The methods for the maximum packing of K11(5,6, ..., 15] are listed
in Table 2. a

Table 2: The maximum packings of K,

maximum packing type of minimum leave

5,8,11,6,14,7,13,12), (6,9,11,7,15,5,14,13),
(5,7,10,8,6,12,15,13), (6,10,5,9,7,12, 14, 15), (11a)
(8,12,11,15,10,14,9,13), (8,14,11,13,10,12,9, 15)

~(9,8,10,5,14,6,13,12), (5,7,11,6,15,9, 14, 13),
(9,6,8,11,5,12,15,13), (5,9,7,10,6,12, 14, 15), (11b)
(10, 12,8,15,11,14,7,13), (10,14, 8,13,11,12,7, 15)
(5,9,11,6,14,7,13,12), (6,8,10,7, 15,5, 14,13),
(5,7,9,10,6,12,15,13), (6,9,8,11,7,12,14,15), (11¢)
(8,12,11,15, 10, 14,9, 13), (8,14,11,13,10,12,9, 15)

~(5,9,11,6,14,7,13,12), (6,8,9,7, 15,5, 14, 13),
(5,11,8,10,6,12,15,13), (6,9,10,11,7,12, 14,15), (11d)
(8,12,11,15,10, 14,9, 13), (8,14, 11,13,10,12,9, 15)

Since there is no cycle with 2 edges, for convenience, we use (u,v) to
denote an edge {uv}. In the next lemma we show that there exists a certain
octagon packing of Ky n—4 for every odd order n > 13.

Lemma 2.5. For a positive odd integer n with n > 13, K4 n-4[1,2,3,4;5,
..,n]—{(1,11),(2,11),(3,9), (4,9)} has an octagon decomposition. More-
over, one of these octagons is (5,1,6,2,7,3,8,4). .

Proof. Since n is odd, we will distinguish two cases to discuss.

Case 1: n =1 (mod 4). Wesee that K40[1,2,3,4;5,6,...,13]—{(1,11),
(2,11),(3,9), (4,9)} can be decomposed into 4 octagons: (5,1,6,2,7,3,8,4),
(5,2,8,1,7,4,6,3),(9,1,13,4,12,3,10,2), and (10,1,12,2,13,3,11,4). On
the other hand, by Theorem 2.2, the graph K4 ,—13 obtained from K4 n—4
by removing the edges of K49 has an octagon decomposition. This com-
pletes Case 1.

Case 2: n = 3 (mod 4). We see that K411[1,2,3,4;5,6,...,15] —
{(1,11),(2,11),(3,9),(4,9)} can be decomposed into 5 octagons: (5,1,6,
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2,7,8,8,4),(5,2,9,1,10,4,11,3),(7,1,8,2,10,3,6,4), (12,1,13, 2, 14, 3, 15, 4),
and (14,1,15,2,12,3,13,4). On the other hand, by Theorem 2.2, the graph

. K4,n—15 obtained from K} ,_4 by removing the edges of K411 has an oc-
tagon decomposition. This completes Case 2. O

For a positive odd integer n with n > 13, define the subgraph ¢ of
Kin[1,2,...,n] as follows.

9 = K4(1,2,3,4 U (5,1,6,2,7,3,8,4) + {(1,11),(2,11), (3,9), (4,9)}

According to Proposition 1.1 and Lemma 2.5, the graph obtained from
K,[1,2,...,n] by removing the edges of the union of ¢ and L,,_4 has an oc-
tagon decomposition, where L,,_4 is the minimum leave of K,,—4[5,6, ..., n).
Hence we will try to decompose the union of ¢ and L,, .4 into some octagons
and L,,.

n = 13 (mod 16)

Let Ki3(1,2,...,13] be the graph associated with the initial situation
and the minimum possible leaves are even graphs with 6 edges listed in
Figure 2. By Proposition 1.1 and Lemma 2.3, the graph ¢ U (5,6,7,8)
can be decomposed into 2 octagons with minimum leaves L;3. We will
summarize the decompositions in Table 3.

1
2 5
3 5 2 8
N AL P
4
(13a) (13b) {13¢)

Figure 2: The minimum possible leaves of K13 (&%)

Table 3: The decompositions of ¢ U (5,6, 7, 8)

octagons type of minimum leave
2,11,1,6,7,3,9,4), (1,4,5,6,2,7,8,3 (13a)
2,11,1,6,7,3,9,4), (1,4,3,8,7,2,6,5 (13%)
2,11,1,6,7,8,5,4), (1,4,9,3,7,2,6,5 (13¢)
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n =15 (mod 16)

Let K5(1,2,...,15] be the graph associated with the initial situation
and the minimum possible leaves are even graphs with 9 edges listed in Fig-
ure 3. By Proposition 1.1 and Lemma 2.4, the graph ¥U(5,6,7,8,9,10,11)
can be decomposed into 2 octagons with minimum leaves L. We will sum-
marize the decompositions in Table 4.

T3 ACY BT AAA

(15a) (15b) (15¢) (15d)
1
7@9
9 8 f f f
8 4 2 4
(15¢) (15£) (159) (15h)
(15) (155) (15k) (150) (15m)

Figure 3: The minimum possible leaves of K15 (&)

n=5 (mod 16)

Let K2;[1,2,...,21) be the graph associated with the initial situation
and the minimum possible leaves are even graphs with 10 edges listed in
Figure 4.

By Theorem 2.1, we assume that one of these octagons in the octagon
decomposition of K;7[5,6,...,21] is (5,6,7,8,9,10,11,12). We will decom-
pose the graph 4 U (5,6,7,8,9,10,11,12) into 2 octagons with minimum
leaves Loy except Lgjo and Lajg. We will summarize the decompositions
in Table 5.

On the other hand, by Case 1 of Lemma 2.5, we will decompose the
graph 4 U (5,2,8,1,7,4,6,3) into 2 octagons with minimum leaves Laj,,
Lg1p and summarize the decompositions in Table 6.
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Table 4: The decompositions of ¥ U (5,6, 7,8,9,10,11)

octagons type of minimum leave
(2,11,10,9,3,1,5,4), (2,1,6,7,8,9,4,3) 15a)
2,11,1,6,7,3,9,4), (2,6,5,1,4,3,8,7) 150,
2,11,10,9,4,3,1,6), (2,1,5,6,7,3,8,4 15¢,
2,11,10,9,8,3,1,4), (2,1,6,5,4,8,7,3 15d
2,11,5,6,7,3,1,4), (1,5,4,8,3,9,10,11) 15¢)
2,11,10,9,3,7,6,1), (2,6,5,1,3,4,8,7 157
2,11,10,9,3,7,6,1), (2,6,5,4,1,3,8,7 15g
2,11,10,9,3,1,5,6), (1,6,7,3,8,4,5,11) 15k
2,11,5,4,8,7,6,1), (2,3,9,10,11,1,5,6) (153)
2,4,9,8,3,1,6,7), (1,4,8,7,3,9, 10,11) (157
2,11,10,9,3,7,8,4), (2,1,11,5,4,9,8,3) (15k
2,11,5,6,7,8,9,4), (1,5,4,8,3,9, 10, 11)
{2,11,10,9,4,8,3,7), (2,3,9,8,7,6,5,4

Table 5: The decompositions of ¥ U (a,b,¢,d, 1,2,3,4)

octagons type of minimum leave
3.11.10,0,3.1,5,4), ,1,6,7,5.9,4,3) (21a)
3,11,1,6,7.3,9,4), (3,7,8,3,4,1,5,6) 218
3,11,10,9,8,3,1,4), (5.1,6,5,4,9,3,7 3e
(2,11,10,9,4,3,1,6), (2,1,5,6,7,3,5,4 21
3.11,10,9,8,3,1,4), (2.1,6,5,4.8,7.3 3e
~2,11,10,9,3,7,6,1), (2,6,5,1,4,3,8,7 317
2,11,10,5,4,3,7,6), (3,4,5,6,1,3,8,7 71g
3,11,10,0,3,7.6.1), (2.6,5.1,3,4,8,7 oTh
3,11,10,9,3.7,6.1), (2,6,5,4,1,3,8,7 1)
3.1L,1,6,7.8,3,4), (1,3,9,10,11, 12,5,4 13)
311.1.5,4.8,3.7), (1.3,0.10,11,12,5.8 (31k)
311.10,9,3,4,5,1), (1,4,8,7.6,5, 12,11 [em)
3.1,5,13,11,10,9,4), (2,6,5,4,3,0,8.7) Tim)
3.4.9.8,3,1,6,7), (1.4.8,7,3,0,10,11) 3In)
3.11,1,4,9,8,3,7), (2,3,9,10,11,15,5,6) 3o
2,11,12,5.4,1,3,7), (1,6,7.8,3,9,10, 11 3ip
3,11,10,9,3.8,7,6), (2,4,5,12, 11, 1,3, (Ziq
%.3,1,5,4,8,7,6), (1,4,9,10,11, 12,5,6 2
3.3.0,8,4,5.6.7), (1.3.4,9,10,11,12.5 o1s
%,4.9,10, 11,12,5,6), (1, 5,4,3,9,5,7.6 630)
2,1.5.6,7.8,9,4), (3,8.4,5,12,11,10,9 Tu
2,3.1,5.4.9,8.7), (3,7.6.5,12, 11,10,9) i)
2,11, 1,5,4,3,8,7), (3,7.6,5,13,11,10,9) 3Tw)
3,11,10,9,4,8,3,7), (,5,9,8,7,6,5,4 TES
1.5,6,7,8,9,4,3), (3,8,4,5,12, 11,10, oy
(2,6,1,5.4,0.3.7). (5,6,7.8,9,10,11,12 GIF;

Table 6: The decompositions of ¥ U (5,2,8,1,7,4,6,3)

cctagons type of minimum leave
2,5,3,6,1,7,4,8), (5,1,11,2,7,3,9,4 21a
2,6,3,9,4,7,1,8), (1,6,4,8,3,7,2,11 218
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(21a) (216) (21¢) (21d)
1
11
AA ghe o)
1 n
(21¢) (215) (219) (21h)
6
7
(211) (215) (21k) (1)

. . 1 3
1 (’) 4
5 6 4 4
(21m) (21n) (210) (21p)
3 ﬁ ! 3
g 8 f
(219) (217) (21s) (21t)
1
/\
9 aw
. h
(21u) (21v) (21w) (21z)
8 8
° 11 8 s
(21y) (212) (21a) (218)

Figure 4: The minimum possible leaves of K2; (€10)
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n =3 (mod 16)

Let K[1,2,...,19] be the graph associated with the initial situation
and the minimum possible leave is a 3-cycle. By the result of the case K 15
we assume that the minimum leave L;s is a 9-cycle: (5,6,7,8,9,10,11,12,
13) of K35[5,6, . . ., 19]. We will decompose the graph 9 U(5,6,7,8,9, 10,11,
12,13) into 3 octagons (2,11,12,13,5,4,8,3), (2,1,5,6,7,3,9,4), (2,6,1,11,
10,9,8,7) and the minimum leave Lyg : (1, 3,4).

n =7 (mod 16) v

Let Ka3(1,2,...,23] be the graph associated with the initial situation
and the minimum possible leave is & 5-cycle. By the result of the case
K9, we assume that the minimum leave L9 is a 3-cycle: (5,6,7) of
Ki9[5,6,...,23]. We will decompose the graph ¢ U (5,6,7) into 2 oc-
tagons (2,1,5,6,7,3,9,4), (2,6,1,3,8,4,5,7) and the minimum leave L3 :
(1,4,3,2,11).

The results for the minimum leaves of K,,, when n is odd, now fol-
low from the above discussion, and they are summarized in the following
theorem.

Theorem 2.6. Let n be a positive odd integer with n > 9.
1. If n=1 (mod 16), then the minimum leave is empty.
2. If n=3 (mod 16), then the minimum leave is a S-cycle.

3. If n = 5 (mod 16), then the minimum leaves are those in Types
(21a)-(212), (21a) and (218).

4. If n=7 (mod 16), then the minimum leave is a 5-cycle.
5. If n =9 (mod 186), then the minimum leave is a 4-cycle.

6. If n = 11 (mod 16), then the minimum leaves are those in Types
(11a)-(114).

7. If n = 13 (mod 16), then the minimum leaves are those in Types
(132)-(13c).

8. If n = 15 (mod 16), then the minimum leaves are those in Types
(15a)—~(15m).

Proof. Starting with any one of the maximum packings in the initial cases
of this section, the (n + 16) MP Construction yields a maximum packing
and a minimum leave for every odd order n > 9. O
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3 Complete graphs of even orders

For a positive even integer n > 8, K, is an odd graph and the degree of each
vertex in an octagon is 2, so the leave must be an odd spanning subgraph
of K, and the size not less than n/2.

We have the following well-known theorem.

Theorem 3.1. ([1]) For positive even integers m and n with4 < m < n,
the graph K, — I can be decomposed into cycles of length m if and only if
the number of edges in K,, — I is a multiple of m, where I is a 1-factor in
K,.

n=0,2 (mod 8)

Note that 8 | [(3) — 2] for n > 8. By Theorem 3.1, the minimum leave is
a 1-factor, which is the smallest spanning subgraph of K, whenever n = 0,2
(mod 8).

There are four cases remains to consider according to the residue classes
of n modulo 16. However, if n = 4,6, 12,14 (mod 186), then the divisibility
requirement for the number of edges in Ky, (3) — (n/2+4) is divisible by 8,
hence a minimum possible leave has n/2 + 4 edges. We may summarize the
minimum possible leaves of the initial cases in Table 7. Note that such a
leave is an odd spanning subgraph of K,,. Accordingly, the only possible de-
gree sequences for such a leave with order n and size n/2+4 are: (9,1,...,1),
(7,3,1,...,1), (5,5,1,...,1), (5,3,3,1,...,1), and (3,3,3,3,1,...,1).

Table 7: The minimum possible leaves of K, for every odd order n
(odd spanning subgraph of Kp)
K, 12 14 20 22
Leave: 019 01 O Oss

Similar to the previous section, we modify the (n + 8) Construction as
follows.

The (n + 8) Construction. Let K, be a complete graph of even order
n > 8 with vertex set X, Kg a complete graph with vertex set Y, and
K)x),|v| & complete bipartite graph with bipartition {X,Y}. Let P, bea
maximum octagon packing, L; a minimum leave of K,; P, be a maximum .
octagon packing, L, a minimum leave of Kg. By Theorems 2.2, we assume
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that K|x| |y| has the octagon decomposition B. Then P, UP,UB is a
maximum octagon packing and L; U L, a minimum leave of K,,g with
vertex set X UY.

We will give for the initial value of n in each case the method of the
maximum octagon packing. We then use the (n + 8) Construction to solve
the problem of the maximum packing of K,, for every even order n.

For later use in our proof, the following lemmas give specific methods for
maximum packings of Kjs, Kjo and the octagon decomposition of Ky n—4
for every even order n > 12.

Lemma 3.2. There ezxists an octagon packing of Kg such that Lg is a
1-factor of Kg.

Proof. This follows from the fact that K35, 6, ...,12]—{(5, 7), (6, 8), (9, 11),
(10,12)} can be decomposed into 3 octagons: (5,6,7,8,9,10,11,12), (5,8,
12,9,7,10,6,11), and (5,9,6,12,7,11, 8,10). a

Lemma 3.38. There ezists an octagon packing of K19 such that Ly is a
1-factor of Kig.

Proof. This follows from the fact that K10[5,6, ..., 14]—{(5,7), (6,8), (9, 11),
(10,12), (13, 14)} can be decomposed into 5 octagons: (5,6,7,8,9,10,11,12),
(5,14,8,11,7,12,6,13), (11,6,10,7,9, 14,12, 13), (5, 10,8, 13,7, 14, 6,9) and
(5,8,12,9,13, 10, 14, 11). o

Lemma 3.4. For a positive even integer n withn > 12, K4 »—4[1,2,3,4;5,
6,...,n] has an octagon decomposition. Moreover, two of these octagons
are (5,1,6,2,7,3,8,4) and (1,12,2,11, 3,10, 4, 9).

Proof. Since n is even, we will distinguish two cases to discuss.

Case 1: n = 0 (mod 4). We see that K,g[1,2,3,4;5,6,...,12] can be
decomposed into 4 octagons: (5,1,6,2,7,3,8,4),(1,12,2,11, 3,10,4,9), (5,
2,8,1,7,4,6,3), and (9,2,10,1,11,4,12,3). On the other hand, by Theo-
rem 2.2, the graph K4 »_12 obtained from Ky ,_4 by removing the edges
of K48 has an octagon decomposition. This completes Case 1.

Case 2: n = 2 (mod 4). We see that K4 10[1,2,3,4;5,6,...,14] can be
decomposed into 5 octagons: (5,1,6,2,7,3,8,4),(1,12,2,11,3,10,4,9), (5,
2,8,1,7,4,6,3),(12,3,14,2,13,1,11,4), and (9,2,10,1,14,4,13,3). On the
other hand, by Theorem 2.2, the graph K414 obtained from K4 _4 by
removing the edges of K4 10 has an octagon decomposition. This completes
Case 2. (]
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For a positive even integer n > 12, define the subgraph 5¢ of K,[l,2,
...,n] as follows.

X = K4[1,2,3,4]U (5,6,7,8,9,10,11,12) + {(5,7), (6, 8), (9,11), (10, 12)}
U (5,1,6,2,7,3,8,4) U (1,12,2,11,3,10,4,9)

According to Proposition 1.1, Lemmas 3.2, 3.3 and 3.4, we have Kj2[1,2,
..., 12]—E(s#) and K14[1,2, ..., 14— E(5#)—(13, 14) have octagon decom-
positions, respectively. Hence we will try to decompose J# (or S£°+(13,14))
into some octagons and L,,.

n =12 (mod 16)

Let K12[1,2,...,12] be the graph associated with the initial situation
and the minimum possible leaves are odd graphs with order 12 and size 10
listed in Figure 5.

By Lemma 3.4, there is an octagon (5,2,8,1,7,4,6,3) of the octagon
decomposition of K4g[1,2,3,4;5,6,...,,12]. We will decompose the graph
H#U(5,2,8,1,7,4,6,3) into 4 octagons and the minimum leaves Li24, L12s;
decompose the graph J# into 3 octagons and the minimum leaves in types
(12¢) through (12s). We will summarize the decompositions in Tables 8
and 9.

n =14 (mod 16)

Let K14(1,2,...,14] be the graph associated with the initial situation
and the minimum possible leaves are odd graphs with order 14 and size 11.
They are composed of a minimum leave of K2[1,2,...,12] together with
a disjoint edge (13,14) to form minimum possible leaves in types (14a)
through (14s). We also list in Figure 6 the minimum possible leaves L;4;
and Li4,. By the result of Ko, it suffices to show the existence of the
minimum possible leaves L14; and Ly4,. Here we give another octagon
packing of Ko for our discussions.

Lemma 3.5. There erists an octagon packing of Kip such that Ly is a
1-factor of Kig.

Proof. This follows from the fact that Ki0[5,6, ..., 14]—{(5,7), (6,8), (9,12),
(10,13), (11, 14)} can be decomposed into 5 octagons: (5,6,7,8,9,10,11,12),
(5,14,8,11,7,12,6,13), (11,6,10,7,9, 14,12,13), (5, 10,8,13,7,14,6,9) and
(5,8,12,10, 14,13,9,11). O

Then the graph 5# + {(9, 12), (10, 13), (11, 14)} - {(9,11),(10,12)} can
be decomposed into 3 octagons and the minimum leaves L4, L1su. We
will summarize the decompositions in Table 10.
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Figure 5: The minimum possible leaves of Ko
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(14t) (14u)
5 2
Figure 6: The minimum possible leaves L4, and L4,

Table 8: The decompositions of S U (5,2,8,1,7,4,6,3)

octagons type of minimum leave
(2,11,9,8,4,6, 3,5, (2,12,5,6,8,7, 3,4 (1%a)
(3,10,9,4,5,7,6,2), (3,11,12,10,4,7,2,8)
2,11,9,8,4,6,3,5), (2,12,5,6,8,7,3,4 12h

(3,10,4,5,7,6,2,8), (3,11,12,1,9,4,7,2)
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Table 9: The decompositions of %

octagons type of minimum leave
2,12,10,11,9,4,8,3), (2,6,8,9,10,4,5,7), (2,11,12,5,6,7,3,4 12¢)
2,11,10,3,1,4,5,7), (2,12,5,6,7,8,4,3), (2,6,8,3,11,12,10,4 12d)
2,11,9,8,4,5,7,6), (2,12,11,10,9,4,1,3), (2,4, 10,12,5,6,8,7 12¢)
2,11,9,1,6,8,4,3), (2,4,10,11,3,8,7,6), (2,12,5,4,9,10,3,7) 12f
2.4,9,1,6,7,8,3), {2,12,5,4,10,11,3,7), (2,11,12,10,3,4,8,6 12g
2,12,10,4,5,6,7,3), (2,4,3,10,11,12,5,7), (2,11,3,8,4,9,1,6 12h
2,12,11,9,8,6,5,4), (2,11,3,10,4,8,7,6), (1,4,9,10,12,5,7, 3) (124)
2,4,3,10,12,1,6,7), (1,4,5,7,8,3,11,9), (4,9,8,6,5,12,11,10) 12j
2,11,9,1,3,4,8,6), (2,12,5,4,9,10,3,7), (1,4,10,11,3,8,7, 6) 12k
2,11, 12, 10, 3,4, 8,6), (2,12,5,4,9,1,3,7), (1,4,10,11,3,8,7,6 120)
2,11,10,4,1,6,8,7), (2,12,11,9,4,3,7,6), (1,3,8,4,5,12,10,9 (12m)
2,11,3,1,4,5,6,7), (2,12,10,3,4,9,1,86), (4,10,11,12,5,7,3,8 (12n
3,11, 10,3,4,1,6,7), (2,4,8,9,1,12,5,6), (3,11,9,10,4,5,7,8) 120)
2,11,10,3,4,1,6,7), (2,4,8,9,1,12,5,6), (3,11,12,10,4,5,7,8 12p
3,12,11,3,10,9,1,6), (2,4,8,3,1,12,5,7), (4,10,11,9,8,7,6,5 129
2,12,1,9,10,3,8,4), (2,6,1,5,12,11,3,7), (4,10,11,9,8,7,6,5 12r
2,11,3,10,4,9,1,12), (2,6,1,5,4,8,3,7), (5,6,7,8,9,10,11,12 125)

Table 10: The decompositions of % + {(9,12),(10,13),(11,14)} —
{(9,11), (10,12)}

ons type of minimum leave
,11,10,3,8,4,1,12),(2,1,9,12,5,4,3,7),(2,3,1,5,7,8,9,4 (14t)
2,11,10,3,8,4,1,12),(2,3,7,8,9,4,5,6),(2,4,3,1,9,12,5,7 (14u)

1517 19

ANATT A

122 3 4141012166 71 1214101116 6 7 13 8 18 20
(20t) (20u)
3 4

17 19

AANANAMNI

51214101116 3 4 136 7 161820
(20v)

Figure 7: The minimum possible leaves Lo, L2ou and Lgoy
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n =4 (mod 16)

Let Ko[1,2,...,20] be the graph associated with the initial situation
and the minimum possible leaves are odd graphs with order 20 and size 14.
They are composed of a minimum leave of K5(1,2,...,12] together with
four disjoint edges {(13,14),(15,16),(17,18),(19,20)} to form minimum
possible leaves in types (20a) through (20s). We also list in Figure 7 the
minimum possible leaves Lo, Logy and Lgg,. By the result of Ko, it
suffices to show the existence of the minimum possible leaves Lag;, Lagy

and Lgg,.

By Theorems 2.2, without loss of generality, we assume that one of
the octagons in Kis5(1,2,...,12;13,14,...,20] is (13,1,14,8,15,9,16,5).
Since Lzog = leg + {(13, 14), (15, 16), (17, 18), (19, 20)} and Log; = L1gy +
{(13,14), (15,16), (17,18), (19, 20)}, we have

Laog U (13,1,14,8,15,9,16,5) = Ly, U (13,1,5,16,15,9,8,14) ,
Lo U (13,1,14,8,15,9,16,5) = Lo, U (13, 1,5, 16,15,9, 8, 14).

To obtain the minimum leave of type (20v), we assume that one of
the octagons in Kj238(1,2,...,12;13,14,...,20] is (13,1, 14, 8, 15,9, 16, 2).
Since Lagn = L12s + {(13, 14), (15, 16), (17,18), (19,20)}, we have

Laon U (13,1,14,8,15,9,16,2) = Lag, U (13, 1,2, 16, 15,9, 8, 14).

n =6 (mod 16)

Let K2[1,2,...,22] be the graph associated with the initial situation
and the minimum possible leaves are odd graphs with order 22 and size 15.
They are composed of a minimum leave of K14[1,2,...,14] together with
four disjoint edges {(15,16),(17,18),(19,20),(21,22)} to form minimum
possible leaves in types (22a) through (22u). We also list in Figure 8 the
minimum possible leave Lag,. By the result of K4, it suffices to show the
existence of Lag,,.

192

AANMIII

61216101118 3 4 156 7 1714
(22v)

Figure 8: The minimum possible leave Lss,
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By Theorems 2.2, without loss of generality, we assume that one of
the octagons in Ki4s(1,2,...,14;15,16,...,22] is (15,1,16,8,17,9,18,2).
Since Log, = Ly4n + {(15,16),(17,18), (19, 20), (21,22)}, we have

Lgo, U(15,1,16,8,17,9,18,2) = Lag, U (15,1, 2,18,17,9, 8, 16).

The results for the minimum leaves of K,,, when n is even, now fol-
low from the above discussion, and they are summarized in the following
theorem.

Theorem 3.6. Let n be a positive even integer with n > 12.

1. Ifn =4 (mod 8), then the minimum leaves are those in Types (12a)-
(12s) for n = 12. For n > 20 the leave is one of those in Types
(20a)-(20v) plus a disjoint 1-factor of Kn—20.

2. Ifn =6 (mod 8), then the minimum leaves are those in Types (14a)-
(14u) for n = 14. For n > 22 the leave is one of those in Types
(22a)-(22v) plus a disjoint 1-factor of Kn—22.

Proof. Starting with any one of the maximum packings in the initial cases
of this section, the (n + 8) Construction yields & maximum packing and a
minimum leave for every even order n = 4,6 (mod 8) > 12. O
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