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Abstract

In 1972 Erdés, Faber and Lovdsz made the now famous
conjecture: If a graph G consists of n copies of the complete graph K,
such that any two copies have at most one common vertex (such
graphs are called EFL graphs), then G is n-colorable. In this paper
we show that the conjecture is true for two different classes of EFL
graphs. Furthermore, & new shorter proof of the conjecture is given
for a third class of EFL graphs.

According to Jensen and Toft [6], in 1972 Erdés, Faber and Lovész made
the following conjecture which first appeared in print in [4]: If a graph G
consists of n copies of the complete graph K, such that any two copies
have at most one common vertex, then G can be n-colored. We call such
a graph G an EFL graph, and call n the rank of G. Despite initially
thinking that the conjecture would be easy to prove [2], they and
everyone else who considered the conjecture have been unsuccessful in
proving or disproving it. In 1981, Erdés [3] offered a prize of $500 for
settling the conjecture.

Most partial results up to now have given upper bounds on the
number of colors required. Specifically, Mitchem [8], and independently
Chang and Lawler [1], have shown that any EFL graph of rank n can be
colored with [3% —2| colors. Kahn [7] has an asymptotic result which
won $250 from Erdés [2): Any rank n EFL graph can be colored with
n +ocn> colors. Recently, Jackson, Sethuraman and Whitehead (5]
proved that EFL graphs of a certain class are n-colorable.
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In this paper we focus on proving that certain additional classes of
EFL graphs are n-colorable. We first introduce some definitions and
notation.

In any rank n EFL graph G the n copies of K, are denoted
Hy,H,,...,H,. The special degree of a vertex z, denoted sdeg(z), is the
number of complete graphs H; that contain z. An EFL graph is s-uniform
if every vertex has special degree 1 or s. An s-uniform EFL graph of rank
n is called mazimum if there exists no other s-uniform rank n» EFL graph
with more vertices of special degree s. Let ¢ and i be any two colors used
on the vertices of G. Then (a,i) denotes the subgraph of G induced by
all vertices colored a or i. Furthermore, if vertex z is colored a, then
(z,3) denotes the component of (a,i) that contains z. A vertex z is
adjacent to color i if z is adjacent to a vertex colored .

We begin with a shorter proof of a result given in (8]. We follow that
with our main results showing that two additional infinite classes of EFL
graphs can be n-colored.

Theorem 1. Given an EFL graph G of rank n such that each H; has at
most one vertex of special degree greater than 2, then G is n-colorable.

Proof. Obviously special degree 1 vertices can always be colored. Thus
we disregard them.

Cuse 1. n is even. We first (n — 1)-color a 2-uniform maximum EFL
graph G’ of rank n. Let z be the vertex in Hjand Hy, j <k If k<n,
then color z with j 4k —1(mod n —1). If k= n, then color z with
2j —1(mod n —1). This results in an (n — 1)-coloring of G’, which we
now use to color G: The special degree 2 vertices of G are colored the
same as in G’. Since this uses at most n — 1 colors, we use color n on all
vertices with special degree larger than 2, which completes our n-coloring
of G.

Case 2. n is odd. We first n-color a 2-uniform maximum EFL graph
G’ of rank n. Let z be the vertex that is in H; and H;. Color z with color
j+k—1(modn). In this way no two vertices in H; are colored the
same, and all vertices are colored.

We now use the coloring above to color G by first assigning all
vertices of special degree 2 the same colors as in G'. Then let z),%y,...,2;
be the vertices of special degree at least 3 and sdeg(z;) =3, 1<i<t
Also let py =0, and for 2<i <t let p; =) . s so that p; is the
sum of the special degrees of the predecessors of z; in the list.
Furthermore, by relabeling if necessary, let Hy,H,,...,H, be the Hjs
that contain zj, and in general let Hp ,i,...,Hp,, be the Hjs that
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contain z;. We then color z,2,...,7; by the following rule: For
1< i<, color z; with color 2p; + s;(modn). Now, z; is in both Hp, .,
and H,,,, and the vertex of special degree 2 in G’ that is in these
two Hj's is colored (p; +1)+ (p; +8)—1(modn) = 2p; + s;(modn).
Similarly the vertex of special degree 2 in G’ that is in both H, ,, and
Hy ., -1 also receives color 2p; + s;(modn), and so forth. Thus the s;
Hs that together contain z; can be paired so that in G’ the various z’s
in the pairs are all colored with 2p; + s; (modn). Also, in the case where
8; is odd, there is an H; that is not paired. However no vertex of this H;
in G’ has color 2p; + s; (modn). Thus no vertex except z; in the s Hjs
has color 2p; + s;(modn). Hence we have a legitimate coloring of G
with n colors. [ ]

Theorem 2. Let n, s be integers such that 3<s<n<s(s—1)(s—2)+1.
Then any s-uniform EFL graph G of rank n is n-colorable.

Proof. In coloring G with n colors it is obvious that the vertices of
special degree 1 can always be colored. Thus, we consider only the
subgraph G’ of G induced by the vertices of special degree s, and we let
H/ be the subgraph of H; induced by the vertices of special degree s.
Among all partial n-colorings of G’ choose one that colors the maximum
number of vertices. Assume there exists a vertex v that is uncolored. We
need only show that we can find a partial coloring of G’ that includes v
and all vertices that are already colored. Clearly v must be adjacent to
all colors i, 1<i< n. Let“":‘1 =k Then k+2<s For 1<j<n,

let 7; be the number of vertices in H. Then r; <|2=l| = [ks|. Thus the
number of vertices of G’ is u < |2|ks]).

Lemma 1. Given that G’ is colored as indicated, then some color is
used m < [k]—1 times. ‘

Proof. On the contrary, assume that each color is used at least [k]
times. Then n[k)+ 1 < u. However,

u< E[ks]] < [ls‘;ksJ <nk<nlkl+1<uq,
a contradiction. [}
Now if £ <1 then m = 0, and some color is unused on G’. Use that

color on v, and the theorem is proved. Thus ¥ > 1. Let 1 be a color that
is used exactly m <[k]—1 times. Let z;, 1 < j < m, be the vertices
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colored 1, and for 1< j <s, let H/ contain v. In order to prove the
theorem we use induction on m, and start with m = 1. Let z;, € H{ be
adjacent to v. The number b > 0 of vertices that are adjacent to both z;
and v is at most

lks| -2+ (s =12 S (ks—2)+ (> -2 +1) = +(k—2)s - L.

Also, there are n —1= k(s> —s) colors different from 1. Applying
§>k+1 gives

(k—1)8 > (k—1)k+1)s = (K —1)s > (2k—2)s -1,
which can be rewritten as
ks? — ks> +(k—-2)s—12>b

Therefore, there exists color i such that {x;,i) contains no neighbor of v.
Interchange colors on (z;,i); then use color 1 on v. This creates a larger
n-coloring of G’, and thus the theorem is proved for m = 1.

Now assume the theorem is true if color 1 is used exactly
1,2,...,or(m —1) times, m > 2. To complete the inductive proof let
color 1 be used exactly m times. Let g be the number of vertices colored
1 that are adjacent to v, and let z; € HJ' , 1< j < g, be those vertices.
Note ¢ <m <[k]l-1<k <s—1. Now in order to prove the general
case for m we use induction on ¢. Consider ¢ = 1. As previously, z; has
b < s® +(k~—2)s—1 neighbors that are also neighbors of v. Also, for
2 <i<n, {(z,i{) must contain a vertex colored i that is a neighbor of v;
otherwise, interchange colors on (z;,i), which results in v having no
neighbors colored 1. Then color v with 1, increasing the number of
colored vertices.

For 2 < i< m, (z,,i) has a shortest path from z; to a vertex colored
i that is adjacent to v. This shortest path is of length 1 or of length
larger than 1. There are b < s + (k —2)s — 1 of the former colors, and
n —1—b of the latter colors. For these latter colors, each of the paths
must go through at least one z;, j > 1. Furthermore, each z; is adjacent
to each color i > 1, for otherwise, recolor z; with the missing color and
then there are only m —1 vertices colored 1. By our inductive
assumption the theorem is proved. Each z;, j > 1, is adjacent to at least
one vertex of each of the b colors above. From the preceding discussion
each z; is adjacent to at least one vertex of each of the n —1-1b colors,
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and for each of these colors one g; is adjacent to at least two vertices of
that color. Thus,

D deg(z;) 2 (m—-1b+m(n—1-b)=m(n-1)=-b (1)

Jj=2
However, each vertex of G’ has degree at most s(|ks|—1) < ks® —s.
Thus, m
) deg(z;) < (m —1)(ks® - ). 2)
=2

In order to complete this part of the proof we only need to show that the
right-hand side of (1) is larger than the right-hand side of (2). Now
m < k <s-1, and k£ > 1. First note that

(k=Ls+(m+1)—k(m+1)=(k-1)s+(m+1)(1—k)
S(k=1)k+1)—(m+1)(k—-1)
=(k-1)(k-m)> 0.

It follows that

(k=-1) +(m=-1-mk-k+2)s+1 3)
=[(k-1)s+m+1—-mk—-k]s+1>0.

Thus,
m(n—1)—b=m[k(s* —s)]-b
> mk(s® —s)— [ +(k—2)s—1]
=(mk—-1)s®> —(mk+k—-2)s+1
> (mk — k)s® — (m —1)s,

where the last inequality follows from (3). Hence, the right-hand side of
(1) is larger than the right-hand side of (2) and the theorem is proved for
arbitrary m when ¢ = 1.

Now inductively assume that if color 1 is used exactly m times, and if
it occurs less than ¢ times, ¢>2, on H, 1< j<s then G’ is
n-colorable. Now assume that G’ has m vertices colored 1, and ¢ of them
are in H/, 1< j <s We will show inductively that we can color v,
increasing the number of colored vertices of G’. This contradiction will
complete our double induction proof of the theorem. We will either
reduce the number of vertices colored 1, in which case we apply our
inductive assumption on m, or we will keep the number of vertices
colored 1 at m and reduce their number ¢ in H,’ , 1< j<s, in which
case we apply our inductive assumption on q.

501



For 1< j<g, let z; € Hj. If (z;,i) has only one vertex colored i,
and it is not adjacent to v, then interchange colors on it. In so doing
either the number of vertices colored 1 is reduced to less than m, or that
number remains m and the number of vertices colored 1 that are
adjacent to v is reduced to less than ¢. Either way we use induction to
complete the proof. Thus, every (z;,i) with only a single vertex colored ¢
must have that vertex adjacent to . Let there be b such (z,i). Then
b <3 +(k—2)s—1. There are n —1—b other colors, and for each of
them (z;,i) has at least two vertices colored i. Hence, for each such
color i there is at least one z;, 1< j < m, in (z;,¢) that is adjacent to
two vertices colored i. Furthermore, each z;, 1< j < m, is adjacent
with all colors 4, 2 < i < n; otherwise recolor z; with the missing color
and again apply the induction because the number of vertices colored 1 is
less than m. By hypothesis

(ks—s)=(k—1)s>(k—1)(k+2)=k +k-2.
Hence,

(ks +m—mk—k)s=[k(s-1)—m(k—1)]s
>[k(s—1)—k(k—1)]s
=(ks—k2)s
>(k+s8-2)s-1>b

(4)

Each of the b colors is adjacent to each z;, and for each of the
n —1—b colors one g; is adjacent to two vertices of that color. Hence,

> deg(z;) > mb+ (m+1)(n —1-b)
j=1
’ =(m+1)(n-1)—b

= (m+1)(ks? —ks)—b

> m(ks® —s)

> 3" deg(;).

=1

The strict inequality follows from (4). We thus have a contradiction
which completes the proof. [ ]
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Before we prove our last theorem we need to introduce the
relationship between certain block designs and s-uniform EFL graphs.
For example, a Steiner triple system (one type of block design) consists of
3-element subsets (called blocks or triples) of a set of n elements such
that each pair of elements appears in exactly one triple.

Now consider any Steiner triple system where the n elements are
complete graphs Hi,H,,...,H, each with n vertices. Form an EFL graph
by letting each triple {H;,H, ,H; } correspond to the unique vertex
that is in the intersection of H;,H;,and H; . The fact that each pair of
complete graphs appears in exactly one triple implies that each pair of H;
intersects exactly once. Then each pair of H; has exactly one vertex in
common and the resulting graph corresponding to the Steiner triple
system is a rank n, maximum, 3-uniform EFL graph.

Given a Steiner triple system, a parallel class of triples is a collection
of triples in which each of the n elements appears in precisely one triple.
From the point of view of coloring the corresponding EFL graph this
means that the § vertices that correspond to the 4 blocks can all be
colored with the same color. A Steiner triple system in which the triples
can be partitioned into "5—1 parallel classes is called resolvable. Thus, a
resolvable Steiner triple system on 7 elements corresponds to a 3-uniform
EFL graph of rank n that can be colored with 251 colors (one color for
the vertices corresponding to the triples in each parallel class). These
resolvable Steiner triple systems are called Kirkman triple systems after
the famous “Kirkman'’s schoolgirl problem.”

In contrast to the fact that all EFL graphs that correspond to
Kirkman triple systems can be colored with 23! colors, it has not been
shown that all EFL graphs corresponding to Steiner triple systems can be
n-colored.

Suppose we have a set of n = st elements where s > 3 and ¢ are
integers. Partition the set into subsets 5;,9,,...,8, of size ¢. Suppose also
that we can form new subsets (called blocks) V},Vs, ...,V such that each
V; has exactly one element from each §j, and each pair of elements from
different S; appears exactly once among the various V;. The result is
called a transversal design.

Similarly to Steiner triple systems, a transversal design is called
resolvable if the blocks 1),V;,...,V;2 can be partitioned into 2 =¢
parallel classes. In this case a parallel class is a collection of 2 of the V;
such that each of the n original elements appears in exactly one of the

V.
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Lemma 2. Corresponding to each resolvable transversal design on
n = st elements is an s-uniform EFL graph G of rank n that can
be t-colored.

Proof. Let the n elements of the resolvable transversal design be n
complete graphs of order n, Hy,H,,...,H, Form graph G by
letting each block V; correspond to a vertex v; of special degree s
that is the intersection of the s complete graphs H; that are in V;.
That each pair of H; from different S; occurs exactly once among
the various V; implies that in G each pair of Hj intersect at most
once. So G is an s-uniform EFL graph. No H; occurs in two
different V; in the same parallel class. Thus the vertices v; that
correspond to blocks V;in a given parallel class can all receive the
same color. Since there are ¢ parallel classes, it follows that G can
be t-colored. O

Theorem 3. Let G be an s-uniform EFL graph of rank n where s > 3 and
t are integers. Suppose G contains a subgraph G' that corresponds to a
resolvable transversal design that has s subsets §),5,,...,S, of size t.
Then G is n-colorable.

Proof. Using Lemma 2 we color G’ with ¢ =% colors. We then have

— t remaining colors. By the definition of resolvable transversal design
each pair of complete graphs H, that come from different S; intersects at
a vertex in G'. Thus any vertex in G — G’ must be in the intersection of
Hjs that are all in one S;. These are called S;-vertices. If we can color all
Sl-vertxces with n —t¢ colors we can similarly color all S;-vertices,
2 < i < 3, with the same n — ¢ colors, yielding an n-coloring of G.

Thus to complete the proof it is sufficient to show that all S;-vertices
can be n — ¢ colored. The maximum number of S;-vertices is

I lt-—l t’—t
s—1

~# -5
The subgraph of G — G’ induced by all §)-vertices is formed by ¢ copies
of K,;. However, this can be viewed as ¢ copies of K;. (We just disregard
many vertices of special degree 1.) Now ¢t = 4 < 2. The number of colors
available for the Sj-vertices is n—t>%n >2t. By applying the
Mitchem/Chang-Lawler Theorem (as stated in the second paragraph of
this paper) the S)-vertices can be colored with n —¢ colors, and the
theorem is proved. [

504



References

[1] W. Chang and E. Lawler, Edge coloring of hypergraphs and a
conjecture of Erdss, Faber, Lovdsz, Combinatorica 8 (1988), 293-295.

[2] F. Chung and R. Graham, Erdés on Graphs: His Legacy of Unsolved
Problems (A.K. Peters, Wellesley, MA, 1998), 97-99.

(3] P. Erdés, On the combinatorial problems which I would most like to
see solved, Combinatorica 1 (1981), 25-42.

(4] P. Erdés, Problems and results in graph theory and combinatorial
analysis, Proc. of the Fifth British Combinatorial Conf. (Aberdeen,
1975), in Congr. Numer., No. XV, Utilitas Math. (Winnipeg, MB,
1976), 169-192.

[5] B. Jackson, G. Sethuraman and C. Whitehead, A note on the Erdss-
Faber-Lovdsz conjecture, Discrete Math. (to appear).

[6] T. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience,
New York, 1995), 160.

[7] J. Kahn, Coloring nearly disjoint hypergraphs with n + ocn> colors,
J. Combin. Theory, Ser. A 59 (1992), 31-39.

[8] J. Mitchem, On n-coloring certain finite set systems, Ars Combin. 5
(1978), 207-212.

505



