On flag-transitive $6-(v,k,\lambda)$ designs with $\lambda < 5$ *

Xianghong Xu and Weijun Liu[†]

School of Sciences, Nantong University, Nantong, Jiangsu, 226007, P. R. China

Abstract

Until now, all known simple $t-(v,k,\lambda)$ designs with $t\geq 6$ have $\lambda\geq 4$. On the other hand, P. J. Cameron and C. E. Praeger showed that there are no flag-transitive simple $7-(v,k,\lambda)$ designs. In the present paper we considered the flag-transitive simple $6-(v,k,\lambda)$ designs and proved that there are no non-trivial flag-transitive simple $6-(v,k,\lambda)$ designs with $\lambda\leq 5$.

2000 Mathematics Subject Classification: 05B05, 20B25 Keywords: t—designs, flag-transitive, automorphisms, 3—homogeneous

1 Introduction

A t-design $\mathcal{D}=(X,\mathcal{B})$ means a finite set X of points and a finite set B of blocks, with an incidence relation between points and blocks (for which we always use ordinary geometric terminology such as point on block, etc.) such that there are integers λ , t, k with $k \geq t$, $\lambda > 0$, for which:

- (i) each block consists of exactly k points;
- (ii) each set of t distinct points is on exactly λ common blocks.

If the number of points in X is v, then we shall say that \mathcal{D} is a t-design denoted $t-(v,k,\lambda)$. We will use b to denote the number of blocks. A t-design is trivial if every t-subset of X is in fact a block; i.e., the number of blocks is $b=\binom{v}{k}$, the binomial coefficient. And a design is simple if no two blocks are identical. An automorphism of a t-design is a one-to-one mapping of points onto points, blocks onto blocks, which preserves incidence. An automorphism group of $\mathcal D$ will be called s-transitive if it is s-transitive when considered as a permutation group on the points. The flags of $\mathcal D$ are the order pairs (x,B), where x is a point and B is a block containing x. A group is flag-transitive if it is transitive on the set of flags; this is equivalent to the assertion that the group is transitive on blocks (points) and the subgroup fixing a block (point) is transitive on the points of that block (the blocks through that point). In this paper, we assume always that the designs are simple and nontrivial.

Constructing t-designs is an important task for the combinatorician. Until now, all known simple $t - (v, k, \lambda)$ designs with $t \ge 6$ have $\lambda \ge 4$. On the

^{*}Supported by the NNSFC (Grant No. 10871205 and 10971252).

[†]Corresponding author: wjliu6210@126.com

other hand, in 1993, P. J. Cameron and C. E. Praeger studied nontrivial block-transitive simple $t-(v,k,\lambda)$ designs for large t, and showed that there are no nontrivial block-transitive simple 8-designs, and no nontrivial flag-transitive simple 7-designs. As a continuation of their works, in this paper we consider nontrivial flag-transitive 6-designs, and show that there are no nontrivial flag-transitive simple $6-(v,k,\lambda)$ designs with $\lambda \leq 5$.

Theorem 1.1 Let $\mathcal{D} = (X, B)$ be a nontrivial simple $6 - (v, k, \lambda)$ -design and $G \leq \operatorname{Aut}(\mathcal{D})$. If G is flag-transitive, then $\lambda \geq 5$.

The second section describes the definitions and contains several preliminary results about flag-transitivity and t-designs. In the third section we give the proof of the Main Theorem.

2 Preliminary Results

Let $\mathcal{D}=(X,\mathcal{B})$ be a $t-(v,k,\lambda)$ design, and $G\leq Aut(\mathcal{D})$. Let b denote the number of blocks of \mathcal{D} , and r the number of blocks that is incident with a fixed point of \mathcal{D} . Now, we introduce the following results which play the role of important in the proof of Main Theorem.

Lemma 2.1 Let $\mathcal{D} = (X, \mathcal{B})$ be a $t - (v, k, \lambda)$ design. Then the following holds:

1. bk = vr;

2.
$$r = \frac{\lambda(v-1)...(v-t+1)}{(k-1)...(k-t+1)};$$

3.
$$b = \frac{\lambda v...(v-t+1)}{k...(k-t+1)}$$
.

Lemma 2.2 ([2]) If $v \le k + t$, then $t - (v, k, \lambda)$ is a trivial design.

Lemma 2.3 (Fisher's Inequality) If \mathcal{D} is a $2 - (v, k, \lambda)$ design, with b blocks, then $b \geq v$.

By the results of Propositions 2.3 and 2.4 and Corollary 4.3 in [4], we have the following lemma:

Lemma 2.4 Let \mathcal{D} be a nontrivial simple $6 - (v, k, \lambda)$ design admitting a flagtransitive automorphism group G. Then G = AGL(d, 2) and $v = 2^d \ge 8$.

3 The Proof of Main Theorem

First, we give a very useful lemma.

Lemma 3.1 If \mathcal{D} is a $t - (v, k, \lambda)$ design, then

$$\lambda(v-t+1) \ge (k-t+1)(k-t+2).$$

Proof. The well known that we can get a $2 - (v - t + 2, k - t + 2, \lambda)$ design from \mathcal{D} . Thus by Lemmas 2.1 and 2.3 we get

$$\frac{\lambda(v-t+2)(v-t+1)}{(k-t+2)(k-t+1)} \ge v-t+2,$$

that is

$$\lambda(v-t+1) \ge (k-t+2)(k-t+1).$$

Now we may prove our Theorem 1.1 occurring in Introduction. Suppose that $\mathcal{D}=(X,\mathcal{B})$ is a non-trivial simple $6-(v,k,\lambda)$ design with $\lambda\leq 5$, and $G\leq Aut(\mathcal{D})$ acts flag-transitively on \mathcal{D} . By Lemma 2.4, G=AGL(d,2) and $v=2^d\geq 8$. By Lemma 2.2, $6< k< v-6=2^d-6$. This yields that $d\geq 4$. Let e_i denote the i-th standard basis vector of the vector space V(d,2) and $\langle e_i\rangle$ the 1-dimensional vector subspace spanned by e_i . Then any six distinct vectors are non-coplanar and hence generate a subspace of dimension at least 3. Let $\Phi=\langle e_1,e_2,e_3\rangle$ denote the 3-dimensional vector subspace spanned by e_1,e_2,e_3 . Thus $SL(d,2)_{\Phi}$ acts point-transitively on $V(d,2)\backslash\Phi$. Let $\Psi=\{0,e_1,e_2,e_3,e_1+e_2,e_1+e_2+e_3\}$. By definition of design, there exist exactly λ blocks B_1,\ldots,B_{λ} , such that $\Psi\subseteq B_1\cap\ldots\cap B_{\lambda}$. If B_1 contains a vector $\alpha\in V(d,2)\backslash\Phi$, then $V(d,2)\backslash\Phi\subseteq B_1\cup\ldots\cup B_{\lambda}$ as $SL(d,2)_{\Phi}$ acts point-transitively on $V(d,2)\backslash\Phi$. It follows that $2^d-8\leq \lambda(k-6)$ and so $v\leq \lambda(k-6)+8$. By Lemma 3.1, we get that

$$k^2 - (9 + \lambda^2)k + 6\lambda^2 - 3\lambda + 20 \le 0. \tag{1}$$

References

- [1] W. O. Alltop, 5-designs in affine spaces, Pac. J. Math. 39(1971), 547-551.
- [2] T. Beth, D. Jungnickel and H. Lenz, Design theory, Second edition, Cambridge University Press, Cambridge, 1999.
- [3] F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag transitive automorphism groups, Geom. Dedicata, 36(1990), 89-94.
- [4] P. J. Cameron, C. E. Praeger, Block-transitive t-designs, II: large t. In F. De Clerck, et al. (Eds), Finite geometry and combinatorics, deinze, 1992. London math. soc. lecture note series (Vol.191,pp. 103-119). Cambridge Univ.Press, 1993.
- [5] P. J. Cameron, VanList, J.H. Designs, Groups, codes and their Links, London Math. Soc. Student Texts 22, Cambridge Univ. Press, Cambridge, 1991.
- [6] P. Dembowski, Finite geometries, Berlin: Springer, 1968; Reprint: Springer, 1997.
- [7] M. Huber, A census of highly symmetric combinatorial designs, J. Alge. Comb. 26(2007), 453-476.