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Abstract

A k-circuit is a directed cycle of length k. In this paper, we com-
pletely solve the problem of finding maximum packings and mini-
mum coverings of A-fold complete bipartite symmetric digraphs with
6-circuits.

1 Introduction and preliminaries

For an integer k > 2, 2/ k-circuit Ck is a directed cycle of length k. Let G
be a multldlgraph A C'k -subdigraph of G is a subdigraph of G which is iso-
morphic to C'k A C’k -decomposition of G is a collectlon of Ck-subdlgra.ph
of G’ which partition the arc set of G If G has a Ck-decomposmon, we
say Ck decomposes G, denoted by Ck | G. The existence problems for
Ck-decomposmon of the complete symmetric digraph and the complete
bipartite symmetric digraph were solved by Alspach et al. [1] and Sot-
teau [18], respectively. When a multidigraph G can not be decomposed
into k-circuits, two natural questions arise:

(1) What is the minimum number of arcs need to be removed from the
arc set of G so that the resulting multidigraph can be decomposed
into k-circuits, and what does the collection of removed arcs look like?
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(2) What is the minimum number of arcs need to be added into the arc
set of G so that the resulting multidigraph can be decomposed into
k-circuits, and what does the collection of added arcs look like?

These questions are respectively called the maximum packing and minimum
covering problem with k-circuits.

For a multigraph H, we use the symbol H* to denote the multidigraph
obtained from H by replacing each edge e by two opposite arcs connecting
the endvertices of e. Let r be a positive integer, 7H denotes the multigraph
obtained from H by replacing each edge e by 7 edges each of which has the
same endvertices as e. For a multidigraph G, rG is similarly defined. Let
A(G) be the arc set of G. For A C A(G), G — A (resp. G + A) denotes
the multidigraph obtained from G by removing (resp. adding) all arcs of
A from (resp. to) G. Throughout the paper, any arc set mentioned may
be a multiset.

Suppose that G is a multidigraph. A Ck -packing of G thh leave L is
a Ck-decomposmon of G — L where L C E(G), and a C’k-coverzng with

padding P is a Ck-decomposmon of G+ P where P C E(rG)). When there
is no confusion, we shall refer to a leave (resp. padding) of G as the digraph
induced by the arcs of the leave (resp. padding). A packing & is mazimum
if the cardinality | 2| is as large as possible, and the corresponding leave is
referred to as a minimum leave. A covering ¥ is minimum if the cardinality
|#| is as small as p0331b1e, and the corresponding padding is called a mini-
mum padding. Clearly, a Ck-decomposmon of Gi isa maximum Ck-packmg
with leave the empty set, and also a minimum C’k-covermg with padding
the empty set.

Maximum packings and minimum coverings of graphs with cycles or
circuits have been and continue to be popular topics of research. For
the complete graph K, the maximum Cj-packings have been found for
k € {3,4,5,6,8} (see [9, 11, 13, 15, 16, 17]), and the minimum C-coverings
have been found for k € {3, 4,6} (see (7, 12, 17]). For the complete bipar-
tite graph Kpm n, the maximum Cj-packing problem has been settled for
k € {4, 6} (see [3, 6]). For the balanced complete multipartite graph K, (),
the maximum Cj-packing problem was investigated for k € {3,5,6} (see
[5, 8, 10]), and the minimum Cg-covering can be found in [8]. The result on
maximum Cy-packing of A-fold complete multipartite graph can be found
in [3, 4]. For digraphs, the problem of finding maximum packings and min-
imum coverings of AK}; with 3- and 4-circuits was considered by Bennett
and Yin {2], and the problem of finding maximum packings and minimum
coverings of AK? , with 4-circuits was settled by Wu et al. [19].

In this paper, We completely solve the problem of finding maximum
packings and minimum coverings of AKy, , with 6-circuits, and give mini-
mum leaves and minimum paddings explicitly.
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2 Minimum possible leaves and paddings

In this section the minimum possible leaves and paddings are glven We
start with some notations. Let P, denote a pa.th on k vertices and Cz 0] 6'2

denote the union of two disjoint copies of Cz For a vertex v of a multidi-
graph G, the indegree dg(v), or simply d~(v), of v is the number of arcs
incident to v, and the outdegree d&(v), or simply d*(v), of v is the number
of arcs incident from v. Note that every vertex v in AK}, ., d~(v) = d*(v),

and so does the vertex of Cs in AKy, ,. Hence, we have the following.

Lemma 2.1. Suppose m and n are positive integers with mm{m, n} > 3.
Then for each vertex v in a leave L (resp. padding P) of C’s-packmg (resp.
Cs-covering) of MKh, n, dp (v) = d} (v) (resp. dp(v) = d}(v)).

If Amn = 0 (mod 3), then |E(AK}, )| = 2Amn = 0 (mod 6). Thus,
|E(Ce)| divides |E(AK7, )|, which implies the minimum possible leave and
minimum padding are both the empty set. If Amn = 1 (mod 3), then
|E(AK, »)| = 2dmn = 2 (mod 6). Thus, |E(Cs)| divides |[E(AK}, )| —
which implies the size of the minimum possible leave is 2, and |E(Cs)|
divides |E(AK}, ;)| + 4, which implies the size of the minimum possible
padding is 4. By Lemma 2.1, the candidate for the minimum possible
leave is only 5;, and the ca.nchdates for the minimum possible padding
are P3,C4,02H02 and 2C;. If Amn = 2 (mod 3), then |E(AK, )| =
2Amn = 4 (mod 6). Thus, IE(Cs)I divides |E(AK}, ,,)| — 4, which im-

plies the size of the minimum possible padding is 4, and IE(CG)I divides
|E(AK, )| + 2, which implies the size of the minimum possible padding is
2. Agmn by Lemma 2.1, the ca,ndldates for the minimum posmble leave are
P; ,C4,CgUCg if A=1and P3,04,6'2U02 together with 26'2 if A 2>2
and the candidate for the minimum possible padding is only Cz. We sum-
marize the results discussed above in Table 1.

Table 1: The minimum possible leaves and paddings of AK, ,,

n
(I?l?d 3 [ ° 1 2
Leave ) Cs Py, C4$ 02 &’02 ifa=1
PaaCa;,CzUCz,?Cz ifA>2
Padding [ 0 | P,Ci G286 Cp,20, Cs
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3 Decompositions into circuits

In this section a necessary and sufficient condition on C_'é-decomposition of
AK7, ., is given, which is useful for our discussions to follow. We begin with
a criterion for decomposing the complete bipartite symmetric digraph into
2r-circuits.

Proposition 3.1. (Sotteau [18]) K, ,, has a CTz:-deoomposz'tion if and only
if min{m,n} > r and mn =0 (mod r).

Let G be a multidigraph. If G can be decomposed into subdigraphs
G1,Ga,...,Gt, we write G= G ® G2 @ -+ - ® G;. The following is trivial.

Lemma 3.2. Suppose that G, Hy, Hl,Hg,._.’.,H,. are multid;iqmphs and
G=HyoH,oH:® - -®H,. IfHo_h’as a Ci-packing (resp. C-covering)
wiﬁleave L (resp. pﬁid-ing P) and C | H; fori=1,2,...,n, then G has
a Ci-packing (resp. Cy-covering) with leave L (resp. padding P).

Since a E'Z-decomposition is a E';-packing with leave the empty set,
next lemma follows immediately.

Lemma 3.3. Suppose that G,Ho,il,Hz,...,H,, are mulg'(_{igmphs. If
G=Hy®oH ®H, &+ ® Hy, and Cy | H; for each i, then Cy | G.

We need more terms and notations for our discussions. Suppose that
G is a multigraph. Let z and y be distinct vertices of G. We use degg(z)
to denote the number of edges incident with z, called the degree of z, and
ec(z,y) to denote the number of edges joining  and y. A ster with r edges,
denoted by S, is a complete bipartite graph K, ;. The vertex of degree r in
S, is called the center of S, and any vertex of degree 1 is called an endvertez
of S,. A multistar is a star with multiple edges allowed. Before plunging
into the circuit decomposition of the complete bipartite multidigraph, we
will need a proposition due to Lin et al.

Proposition 3.4. ([14, Proposition 1.3]) Suppose that H is a multistar.
Then H has an Sy-decomposition if and only if there ezists a nonnegative
integer k such that |[E(H)| = rk and ey (w,z) < k where w is the center of
H and z is any endvertex.

Now we present a sufficient condition on decomposing a complete bi-
partite multidigraph into isomorphic circuits.

Theorem 3.5. Suppose that A,m ﬂzd n are positive integers with
min{m,n} > r. Then AKj,, has a Car-decomposition if one of the fol-
lowing conditions holds: (1) mn =0 (mod 7), (2) An =0 (mod ), or (3)
Am =0 (mod ).
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Proof. The result for the condition mn = 0 (mod r) follows from Propo-
sition 3.1 and Lemma 3.3. Since AK7, ,, is isomorphic to AK}; .., we need
only to show the result holds for the condition An = 0 (mod r)

Suppose that ged(A,7) = d where ged(A, ) denotaa the grea.test com-
mon divisor of A and r. Let A = ds. Since trivially dK7, ,, | dsK, and by

Proposition 3.1 02,- | K3 - it is sufficient to show that K7, . | d n DY
Lemma 3.3. We first show the connection between S -decomposmon of ds,

and K, r-decomposition of dK,, ». Consider a multistar dS,, with center
e and endvertices bo, by,...,b,—;. Replacing each edge ab; in dS, by S,
with center b; and endvertices ag, a1, ..., @p—-1, we obtain dK,, », and any
substar S, of dS, become a subgraph K, » of dK,, . Thus, corresponding
an Sy-decomposition of dS,, there exists a K, .~decomposition of dKpm n.
Let » = dt. Then t and s are coprime since A = ds and ged(\,r) = d.
This implies ¢ | n by the condition A» =0 (mod 7). Let n = tk. We have
d < k from the assumption r < n and the fact d = r/t and k£ = n/t. Note
that |E(dSy,)| = dn = dtk = rk and ey4s,(w,z) = d < k where w is the
center of H and z is any endvertex. By Proposition 3.4, dS, has an S,-
decomposition. Hence, dK, », has a K, ,-decomposition. Replacing each
edge in dK,, , by two arcs with opposite directions, we obtain dK7, .., and
any subgraph K, of dKy,,, becomes a subdigraph K, . of dK}, .. Thus,
we obtain a K7, .-decomposition of dKy, ,. This completes the proof O

Corollary 3. 6. For positive integers A,m and n with min{m,n} > 3,
MK, o has a Ca-decomposztzon if and only if Amn =0 (mod 3).

Proof. The necessity follows immediately from applying counting argu-
ments on arcs. For the sufficiency, Amn = 0 (mod 3) implies mn = 0
(mod 3) or A =0 (mod 3). Thus, the result follows from Theorem 3.5. O

4 Small cases of packings and coverings

In this section, we give some necessary small cases of maximum packings
and minimum coverings for the general construction to follow. Before that,
we need more terms and notations. Let % be a set of subdigraphs of
G and k a positive integer. Then k% denotes a multiset in which each
element in % appears k times. For k > 2, we use (v1,v2,...,U) to
denote the k-circuit consisting of distinct vertices vy,vs,...,v; and arcs
V13, U203, . ,m, vxv1. In particular, (vy,vs) denotes the 2-circuit
with arcs 9102 and v,v;. Throughout the section, (A, B) denotes the bipar-
tition of AKy, ,, where A = {ag,a1,...,am-1} and B = {bg, by,...,bp_1}.

Lemma 4.1. Suppose that & is a C_';:-packing of a multigraph G with
leave L. If there exist Q1,Q2,...,Qs € &P and P C A(rG) such that
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Q1UQ2U...UQ;ULUP can be decomposed into k-cz'rcmts Ry, Rs,..., Ry,

then® — {Q1,Q2,...,Qs} U {R1,Rz,...,R:} s a Ck -covering of G with
padding P.

Lemma 4.2. Suppose that t € {1,2}.
(a) There exists a Ce-packing of tKj 4 with leave L where
p—
L=C; o ift=1,
Le{P;,CiCW020)  ift=2.
(b) There ezists a @-coven’ng of tK} 4 with padding P where
Pe{P;,CLGY0, 200}  ift=1,
P=0C; ift=2.

Proof. The proof is divided into two parts according to the value of ¢.
Casel. t=1.

Let 21 = {(a0, b1, a1,b2,a2,b3),(a0, b2, 01, b3, a3, b1), (a0, b3, a2, bo, a3, ba),
(bo, a1, b1, a2,b2,83), (bo, a2,b1,03,b3,a1)}. Then & is a Ci-packing of
K3 4 with leave Cy : (@0, bo).

Now we use .9’1 to construct a Cs-covenng of K§, with padding P

for each P € {P3, C4,CgUCz}. By Lemma 4.1, it is easy to check that
91—{(0'0) b2, ai, b3, as, bl)} U{(aﬂy b2)al$ b3s az, bO)) (a'Oa bO) az, b31 as, bl)} is
a covering with padding Py : (a2, bo) U(a2, b3), 21 —{(a0, b2, a1, bs, as, b_Q}
U{(ao, b2, @1, b3, a2, bo), (a0, bo, a1, b3, a3, b1) } is a covering with padding Cy :
(ala b37a'2’b0)1 and 91 - {(00)b3’a'2rb01 a3, bZl})Uﬁa(h b39a31b2’a2’b0)1
(ao, bo, a3, b3, a2, b2)} is a covering with padding CoWCs : (a2, b2) U(as, bs).
Moreover, {(00’ b01 ax, bl) a2, b2) (GO) bOa a2, b31 as, bl)s (001 bOa as, b2yaly b3)7
(bo, @0, b1, a1, b2, a2), | (bo, ao, b2, a3, bs, a1), (bo, ao, b3, a2, b1,a3)} is a cover-
ing with padding 2C; : (ao, bo) U(ao, bo)-

Case 2. t =2.

First, we use &; to construct the required packings of 2K ,. Rename
the vertices bg,b; of the circuits in &, to by, bo, respectively. Then we
obtain a packing ] of K}, with leave (ao,b1). Thus 2 = &, Uais
a packing of 2K} , with leave P3 : (a0, b0) U(ao, b1). Similarly, rename the
vertices ag, al,bo, b; in &, to ai,ao, b1, bo, respectively. Then we obtain a
packing P} of K44 thh leave (a;,b;). Thus, £, |J 2 is a packing of
2K} 4 with leave 6'2 W Cz (a0, b0) U(a1, b1). Moreover, rearrange the arcs
of the circuit (b1, a2, bo, a3, bs, a1) and the leave of 2?3, we obtain a packing
'93 = 92 - {(blya2yb0’ a3’b3’al)}U{(a0’bOa as,b3’al) bl)} of 2K44 with
leave Cy : (ag, by, a2, bo). Finally, 22, is trivially a packing of 2K} ; with

leave 2C; : (@0, b0) U(ao, bo).
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Now we construct the required covering of 2K3 4,4- Note that (ao, bo, a1,
ba, az, b3) € P3. By Lemma 4.1, it is easy to check that 93-{((10, bo, a1, ba,
az,bs)} U{(ao, bo, a1, b1, a2, bs), (ao,bl, a1,b2,a2,bo)} is a covering of 2K ,

with padding Cg (a1, b1). (]

Lemma 4.3. Suppose that t € {1,2}.
(a) There ezists a Cs-packmg of tK§ g with leave L where

LE{._Pi3,C4,CgUCg} zft=1,
L=C, ift=
Moreover, there exists a Cs—paclcmg of 4K} 5 with leave L where L €

{P,Cs,C; ¥ Cs, 202}
(b) There ezists a Cs-covemng of tK} 5 with padding P where

P=C ft=1,
—_— = == -
Pe{P};,Ci,CoWC5,2C5}  ift=2.

Proof. We distinguish three cases.
Case 1. t=1.

Note that K35 = K3, ® K;,. We will use the packing &, of K},
to construct the reqmred pa;ckmg of Ki5. Reconstruct 6-circuits from
(bO’a'l,bha2’b2’a3)1 (bO)a2)blya3ab3sal)a (a1’b4)1 (G21b4) and (a31b4)-
Then £4 = £ — {(bo, a1,b1, az, b2, a3), (bo, az, by, a3, b3, a1)} U{(bo, a1, bs,
a2, by, a3), (bo, a2, b1, a3, bs, @1), (a1, b1, G2, bs, a3, b3)} is a packing of K3
with leave P : (ao,bo) J(ao,bs). Similarly, reconstruct 6-circuits from
(a'O) bl)alabZ) az, b3) (aﬂ’b% a'lab3sa3abl) (aosb4) (ah b4) and (a21 b4), then
P — {(ao,b1,01,b2,0z,b3), (00,52,01,53,03,51)}U{(ao b1, a1, b, a2, by),
(ao,b4,a1,b3,a3,b1) (a0, b2, a1,bq,a2,b3)} is a packing of K75 with leave
Cz W Cg : (ao,bo) U(as,bs). Moreover, rearrange the arcs of the circuit
(bo, @1, bs,a2,b2,03) and the leave of 4, we obtain a packing 95 =

P4—{(bo, a1, b4, a2, b2, 03)} U{ (a0, b, a2, ba, a3, bo) } of K 5 with leave C :
(Go, bﬂ: a, b4)

Now we use £, to construct the required covering of K} ;. Note that
(a1,b1,a2,b4,03,b3) € P4 By Lemma 4.1, it is easy to check ¥; =
Pa—{(a1,b1,02,b4, a3, b3)} U{(a0, bo, a1, b1, a2, ba), (a0, b4, as, b3, a1, bo) } is
a covering of K] ; with padding Cg (a1, bo).

Case 2. t = 2.

First, we use &5, the packing of K§ 5 with leave (aq, bo, a1, bs), to con-
struct the required packing of 2K7 5. Rename the vertices ay, a2, by, b1, by of
the circuits in &5 to ag,a;, b1, by, bo, respectively. Then we obtain a pack-
lng 95 of K4 5 with leave (a'O: bl: a2, bO) Since (GO, bO: ai, b4) U(aO’ bls az, bO)
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= (a0, b1, a2, b0, a1, b4) U(a0, o), F6 = Fs U 25 U{(a0, b1, a3, bo, a1, bs)}
is a packing of 2K7} 5 with leave Cj : (ao, bo).

Now we use Pg to construct the required coverings of 2K ;. Note that
(a0)bla al’b21a2)b3) (a01b11a2’b03al,b4) € 96 By Lemma 4 1 it is easy
to check that '?6 - {(a()s bl: ay, b2) az, b3)} U{(a'Oa b11 ai, b2, asg, bO)’ (aO) bO’
as, b, a2,b3)} is a covering of 2K} 5 with padding P : (as, bo) U(as, b2),
96 {(aﬂy bla a, b2’ az, b3)} U{(GO, bl) a, b2v as, bO) (O'O) bO, ay, b?, az, b3)} 18
a covering with padding C4 (a1, b2, a3, bo), and 96-{(%, b1, az, bo,a1,b4)}
U{(aO, blval)b47a2’ bO) (a0) bOy ap, b11a2’b4)} is a covermg with paddlng
6'2 U] Cg (a1,b1) U(ag, bs). Finally, 2¢ is clearly a covering of 2Kj g
with padding - 25; : (a1, b0) U(a1, bo)-

Case 3. t =

Since 4K4 5 = 2K4 s@2K; s and Pgisa Ce-packrmg of 2K} 5 with leave
(a0, b0), 2P is a Ce-packmg of 4K 5 with leave 2C, : (a0, bo) J(ao, bo). On
the other hand, 4K = Kj; ® 3K; 4,5, the result follows from Lemma 3.2,
Corollary 3.6 and the case 1 of this lemma. ]

Lemma 4.4. Supp_o;ee that t € {1,2}.
(a) There exists a Cg-packing of tK3 5 with leave L where

L=0Cs ft=1,
{Le{P;,a’,@’wE;,zéz} ift=2.
(b) There ezists a Ce-covering of tK;3 5 with padding P where
{Pe{_zgg,a,ézua,ﬁé} ift=1,
P=C, ift=2.

Proof. The proof is divided into two parts according to the value of ¢.
Case 1. t =1.

Let &7 = {(ao, b1,a1, b2, a2,bs), (a0, bs,a1,b3,a3,b1), (ao,bs, a4,bq, a3,
b2)1 (b(h ay, blaa2) b2,0.4) (bO’ 4, bla a31b3)a1): (aOyb2’a'ls b4,0.2,b3), (bO) a2,
bl,a4, bz, a3), (bo, a3, bs,as,b3,a2)}. Then FP7isa Ce-packmg of K3 g with
leave Cz : (@0, bo).

Now we use &7 to construct required coverings of K3 ;. By Lemma 4.1,
it is easy to check that &, — {(ao, b3, a4, ba, as, b2)} U{(ao, b3, a4, bs, az, bo),
(ao, bo, a2, b4, a3, bz)} is a covering of K3 s with padding P5 : (a2, bo) (a2, b4),
97 {(0'01b3,a4a b4)a3, _)>} U{(ao’bS,aMbdna%bO) (a(h bo, a1, bs, a3,b2)} 1s
a covering with padding Cy : (a1, bs, a2, bo), and P7—{(ao, b3, a4, b4, as, b2),
(b0)03,64’a4,b3sa2)} U {(00,63,04,174,&1;1?0) (00,50,03,54,04,52) (a2)b4a
a3, ba, ag, ba)} is a covering with padding CoWC3 : (a2, bs) (aa, b2). Finally,
{(airb4+ual+l9b3+na'2+hb2+t) 1= 0 l 2 3 4}U{(a01blaa'lab4)a4ab2)s
(O'O)b21a3$ blaa2~p bO)) (ao, b21 az, b3s as, b4)1 (a'Ov b3$a4)b0’aly b2)}1 where the
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subscnpts of a; and b; are taken modulo 5, is a covering of K; 5 with

paddlng 202 (0'01 b2) U(aOs b2)
Case 2. t =2.

First, we use 27 to construct the required packings of 2K3 ;. Rename
the vertices bg, b; of the circuits in 7 to by, by, respectwely Then we
obtain a packing 2, of K34 with leave (ag,b;). Thus Ps = P;|J P
is a packing of 2K 5 with leave Pz : (ao0,b0) U(ao,b1). Similarly, rename
the vertices ag, a,, bo by of the circuits in P57 to a;,aq, by, by, respectively.
Then we obtain a packing 27 of K3 5 with leave (a;,b,). Thus £, |J) 2%
is a packing of 2K3 5 with leave 5; W 5; : (ao0,b0) J(a1,b1). Moreover,
rearrange the arcs of the circuit (b;, az, bo, a4, b2, a3) and the leave of Pg,
then 98 - {(blsa2rb0)a4) b2xa'3)} U{(aoabO: a4)b2ya37bl)} is a packmg of
2K3 5 with leave 04 (ao, b1,a2,bp). Finally, 2, is clearly a packing of
2K3 5 with leave 2C; : (@0, b0) U(ao, bo)-

Now we use Ps, the packing of 2K 5 with leave (ao, bo) (a0, d1), to
construct the required covering of 2K 5,5- Note that (by, a3, by, a4, b3,a2) €
98 By Lemma 4. 1 98 = {(blaa3’ b41 0,4,b3,0/2)} U{(ao)bl,a3ab4)a4,b0)7
(a0, bo, as, b3, az,b1)} is a covering of 2K3 5 with padding Cz (as,b0). O

5 Maximum packings and minimum cover-
ings

In this section maximum packings and minimum coverings will be con-
structed according to leaves and paddings, respectively. We begin with a
lemma which is useful for the discussions to follow.

Lemma 5.1. Suppose that p,q are nonnega,twe integers end s, t t are positive
integers with min{s,t} > 3. If AK;, has a Cs-paclcmg (resp. Cs-cove'rmg)

with leave L (resp. padding P), then AK] 3, .3, also has a Cs-packmg
(resp. C’a-co'uermg) with leave L (resp. padding P).

Proof. Note that

AK: t if p=¢=0,
AK* _ /\K'tEBAKspt if p>0,¢g=0,
sHipt+3e T ) AK;, @ AK} 4, if p=0,¢>0,
)\K;'t & /\KQP', @ )\K,‘,"'3q ®AK3,3, if p>0,¢>0.
For positive integers p and ¢, AK3, , q and AK3, ¢, have 6-circuit
decompositions by Corollary 3.6. Tﬁeu the result follows from Lemma 3.2.
O
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Lemma 5.2. Suppose that m and n are positive integers with
min{m,n} >3 and mn = s (mod 3) where s € {1,2}. Lett e {1,2}.
(a) There e:msts a Cs-packmg of tK;, , with leave L where
L= Cz ifs=t=1lors=t=2,
LG{P3,04,CQHCQ} ifs=2,t=1,
LG{P3,C4,02H'J02,202} ifs=1t=2.
Moreover zf s =2, there exists a a'_é-packing 4K, , with leave L where
Le {P3 ,04, Cz UC2,2C'2}
(b) There exists a Ce-covermg of tKy, , with padding P where
Pe{Pa,C4,02UCg,2Cz} ifs=t=lors=t=2,
P= 02 ifs=1t=20rs=2,t=1.

Proof. Let r € {1,2}. Then mn = s (mod 3) if and only if m =7 (mod 3)
and n = (—=1)*t1r (mod 3). Let m = a + 3p and n = b + 3q where
a=b=3+rfors=1anda=3+7b=6—r for s=2, and p and q are
nonnegative integers. Then the result follows from Lemmas 4.2-4.4, 5.1,
and the fact that tK; , is isomorphic to tKy ,. O

Now, we are ready for the main result.

Theorem 5.3. Suppose that A,m and n are positive integers with
min{m,n} > 3.

(a) There ezists a mazimum Cs—packmg of AK,, n, with leave L if and only
if

L=0 if smn =0 (mod 3),
L= Cg if smn =1 (mod 3),
Le{P;, C4,Cz UC’z} if mn=2 (mod 3) and A =1,

Le{P;, C4,C’2 UCg,2C’2} if smn =2 (mod 3) and A > 2.
(b) There exists a minimum Cs-covering of AK, ,, with padding P if and

only if
P=9 if smn =0 (mod 3),
Pe gg,a,ﬁéw@’,zb';} if Amn=1 (mod 3),
P=C; if Amn =2 (mod 3).

Proof. The necessity follows from the arguments about minimum possible
leaves and paddings in Section 2. It is sufficient to show that AK,‘,, » has
required packings and coverings. The result for Amn = 0 (mod 3) follows
from Corollary 3.6 immediately. So it remains to consider the following
cases: Amn =1 (mod 3) and Amn = 2 (mod 3).

Let 7 € {1,2}. Then Amn =1 (mod 3) if and only f A = mn =r
(mod 3), and Amn = 2 (mod 3) if and only if A = r (mod 3) and mn =3—
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7 (mod 3). Note that AKy, ,, = 7K}, .®(A-r)K, .. Since C’a decomposes
(A=r)K5 ,for A=r (mod 3) by Corollary 3. 6 the result follows from

Lemmas 3.2 and 5.2. (]

Acknowledgment
The author is grateful to the referee for the valuable comments.

References

[1] B. Alspach, H. Gavlas, M. Sajna, and H. Verrall, Cycle decomposi-
tions IV: complete directed graphs and fixed length directed cycles, J.
Combin. Theory, Ser. A 103 (2003), 165-208.

[2] F. E. Bennett and J. Yin, Packings and coverings of the complete
directed multigraph with 3- and 4-circuits, Discrete. Math. 162 (1996),

23-29.

(3] E. J. Billington, H.-L. Fu and C. A. Rodger, Packing complete multi-
partite graphs with 4-cycles, J. Combin. Des. 9 (2001), 107-127.

[4] E. J. Billington, H.-L. Fu and C. A. Rodger, Packing A-fold complete
. multipartite graphs with 4-cycles, Graphs Combin. 21 (2005), 169-185.

[5] E. J. Billington and C. C. Lindner, Maximum packings of uniform
group divisible triple systems, J. Combin. Des. 4 (1996), 397-404

(6] L. Brown, G. Coker, R. Gardner and J. Kennedy, Packing the complete
bipartite graph with hexagons, Congr. Num. 174 (2005), 97-106.

[7] M. K. Fort, Jr. and G. A. Hedlund, Minimal coverings of pairs by
triples, Pacific J. Math. 8 (1958), 709-719.

(8] H.-L. Fu and M.-H. Huang, Packing balanced complete multipartite
graphs with hexagons, Ars Combin. 71 (2004), 49-64.

[9] D. G. Hoffman and W. D. Wallis, Packing complete graphs with
squares, Bull. ICA 1 (1991), 89-92.

[10] M.-H. Huang, C.-M. Fu and H.-L. Fu, Packing 5-cycles into balanced
complete m-partite graphs for odd m, J. Comb. Optim. 14 (2007),
323-329.

.{11] J. A. Kennedy, Maximum packings of K, with hexagons, Australas.
J. Combin. 7 (1993), 101-110; Corrigendum: ibid 10 (1994), 293.

521



[12] J. A. Kennedy, Minimum coverings of K, with hexagons, Australas.
J. Combin. 16 (1997), 295-303.

[18] J.-J. Lin, Maximum packings of complete graphs with octagons, Ars
Combin., to appear.

[14] C. Lin, J.-J. Lin and T.-W. Shyu, Isomorphic star decompositions of
multicrowns and the power of cycles, Ars Combin. 53 (1999), 249-256.

[15] A. Rosa and S. Zném, Packing pentagons into complete graphs: how
clumsy can you get?, Discrete Math. 128 (1994), 305-316.

[16] J. Schénheim, On maximal systems of k-tuples, Studia. Sci. Math.
Hung. 1 (1966), 363-368.

[17) J. Schénheim and A. Bialostocki, Packing and covering of the complete
graph with 4-cycles, Canad. Math. Bull. 18 (1975), 703-708.

(18] D. Sotteau, Decomposition of Kmn (Kp, ) into cycles (circuits) of
length 2k, J. Combin. Theory, Ser. B 30 (1981), 75-81.

[19] W.-C. Wu, H.-C. Lee and J.-J. Lin, Packing and covering complete
bipartite multidigraphs with 4-circuits, Ling Tung J. 24 (2008), 223
231.

522



