A Special Class of Antiautomorphisms of
Directed 'Triple Systems

Neil P. Carnes and Anne Dye
Department of Mathematics, Computer Science, and Statistics
McNeese State University
Lake Charles, LA 70609-2340

Abstract

A transitive triple, (a, b, ), is defined to be the set {(a, d), (b, ¢), (a, ¢)}
of ordered pairs. A directed triple system of order v, DTS(v), is a pair
(D, B), where D is a set of v points and S is a collection of transitive
triples of pairwise distinct points of D such that any ordered pair of
distinct points of D is contained in precisely one transitive triple of 8.
An antiautomorphism of a directed triple system, (D, 8), is a permu-
tation of D which maps 8 to 8!, where 87! = {(c,,4a)|(a, b, c) € 8}.
In this paper we give necessary and sufficient conditions for the ex-
istence of a directed triple system of order v admitting an antiau-
tomorphism consisting of two cycles of lengths M and 2M, and one
fixed point.
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1 Introduction

A Steiner triple system of order v, STS(v), is a pair (S,8), where S is a
set of v points and 3 is a collection of 3-element subsets of S, called blocks,
such that any pair of distinct points of S is contained in precisely one block
of 8. Kirkman [9] showed that there is an STS(v) if and only if v =1 or 3
(mod 6) or v = 0.

An automorphism of (S, §) is a permutation of S which maps 8 to itself.
An automorphism, «, of (S, 8) is called cyclic if the permutation defined
by o consists of a single cycle of length v. Peltesohn [12] proved that
an STS(v) having a cyclic automorphism exists if and only if v = 1 or 3
(mod 6) and v # 9. An automorphism, a, of (S,0) is called bicyclic if
the permutation defined by o consists of two cycles. Calahan-Zijlstra and
Gardner [1] have shown that there exists an STS(v) admitting a bicyclic
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automorphism having cycles of length M and N, with 1 < M < N, if and
only if M =1 or 3 (mod 6), M # 9, M|N,and M + N =1 or 3 (mod 6).

A transitive triple, (a, b, c), is defined to be the set {(e, b), (b, ¢), (a,¢)} of
ordered pairs. A directed triple system of order v, DTS(v), is a pair (D, ),
where D is a set of v points and 83 is a collection of transitive triples of
pairwise distinct points of D, called triples, such that any ordered pair of
distinet points of D is contained in precisely one element of 3. Hung and
Mendelsohn [7] have shown that necessary and sufficient conditions for the
existence of a DTS(v) are that v =0 or 1 (mod 3).

For a DTS(v), (D, B), we define 8! by 7! = {(¢,b,a)|(a,d,c) € B}.
Then (D, 87!) is a DTS(v) and is called the converse of (D, 8). A DTS(v)
which is isomorphic to its converse is said to be self-converse. Kang, Chang,
and Yang [8] have shown that a self-converse DTS(v) exists if and only if
v=0or 1 (mod 3) and v # 6. An automorphism of (D, B) is a permutation
of D which maps 8 to itself. A DTS(v) is called cyclic if there is an auto-
morphism consisting of a single cycle of order v. Colbourn and Colbourn
have shown that a cyclic DTS(v) exists if and only if v = 1, 4, or 7 (mod
12) [6). An antiautomorphism of (D, B) is a permutation of D which maps
B to B~1. Clearly, a DTS(v) is self-converse if and only if it admits an
antiautomorphism.

An automorphism, a, on a DTS(v) is called d-cyclic if the permutation
defined by a consists of a single cycle of length d and v — d fixed points.
Necessary and sufficient conditions for the existence of a DTS(v) admitting
a d-cyclic automorphism have been given by Micale and Pennisi [11]. An
automorphism, ¢, on a DTS(v) is called f-bicyclic if the permutation defined
by a consists of two cycles and f fixed points. Micale and Pennisi [10]
have given necessary and sufficient conditions for the existence of f-bicyclic
directed triple systems.

An antiautomorphism, a, on a DTS(v) is called d-cyclic if the permuta-
tion defined by a consists of a single cycle of length d and v —d fixed points.
Necessary and sufficient conditions for the existence of a DTS(v) admitting
a d-cyclic antiautomorphism have been given by Carnes, Dye, and Reed [2].
A bicyclic antiautomorphism of a DTS(v) is an antiautomorphism, &, which
consists of two cycles of length M and N respectively, where v = M + N.
Carnes, Dye, and Reed (3, 4, 5] have given necessary and sufficient con-
ditions for a DTS(v) to admit a bicyclic antiautomorphism with cycles of
length M and N, 1 < M < N. We call an antiautomorphism, «, on a
DTS(v) f-bicyclic if the permutation defined by o consists of two cycles
and f fixed points. In this paper we consider 1-bicyclic antiautomorphisms
with cycles of lengths M and 2M.
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2 Preliminaries

If K is the length of a cycle, K € {M,2M}, we let the cycles be (0;, 1;,2;,
ooy (K —1);), i € {0,1} and let oo be the fixed point. Let A = {0,1,2,...,
(K =1)}. We shall use all additions modulo K in the triples. For a;,b;,cx €
D — {0}, %, 4, k € {0,1}, (as,bj,ck) € B, let the orbit of (ai,b;,ck) be
{((a+1)s, (b+1);j, (c+t)i)|t € A, t even}U{((c+1)k, (b+1);, (a+t):)|t € At
odd}. For a;,b; € D — {oo}, 4, j € {0,1}, (ai, 00,b;) € B, let the orbit of
(ai,00,b;) be {((a+1);, 00, (b+t);)|t € A, t even}U{((b+1);, 00, (a+t):)|t €
A,t odd} Clearly the orbits of the elements of 3 yield a partition of 3.

We say that a collection of triples, 3, is a collection of base triples of
a DTS(v) under « if the orbits of the triples of B produce 8 and exactly
one triple of each orbit occurs in 8. Also, we say that the reverse of the
transitive triple (a, b, c) is the transitive triple (c, b, a).

3 Necessary Conditions

Lemma 3.1 Ifa DTS(v) admits a 1-bicyclic antiautomorphism with cycles
of length M and 2M, then M =2 (mod 6).

Proof: Assume M is odd. The ordered pair (c0,0p) must occur in a
triple. If the third vertex in the triple is from the cycle of length M, the
triple must be of the form (o0, 0p, ag), (00, ap,0p), or (ag, 00, Op).

We first consider the triple (oo, 0, ap). If a is even, then a®((oc0, 0, ag))
= (00, ag, 2ap), a contradiction, since the edge (00, ag) then occurs in two
distinct triples. If a is odd, then a™~2((c0,09,a0)) = (oo, (M — a)o,0p),
again leading to a contradiction.

Next we consider the triple (00,a9,00). For @ even, a®((co,aq,0p))
= (o0,2a0,a0), a contradiction. For a odd, a™~2((co,ap,0p)) =
(00,00, (M — a)p), a contradiction.

Finally we consider the triple (aq, o0, 0¢). For a even, a™~%((ay, oo, 0o))
= ((M — a)9,00,00), a contradiction. For a odd, a®((ag,00,00)) =
(a0, 00, (2a)0), a contradiction.

Hence the third vertex in the triple must be from the cycle of length
2M, so a triple of the form (o0, 09, b1), (00, b1,04), or (b, 00, 0g) must occur.
In each case, the orbit of the triple will include all of the ordered pairs
of the form (o0, ao) and (ap,0), for a € {0,1,...,(M — 1)}. However,
exactly half of the ordered pairs of the form (00,b;) and (b, 00) for b €
{0,1,...,(2M — 1)} will be included.

We must have a triple of the form (00, a4, 5,), (a1, 00, 1), or (a,b1,00).
In any of these cases, if the orbit of the triple is of length 2M, there are 4M
ordered pairs containing oo and b;, a contradiction, since there are only 2M
such ordered pairs left. Therefore, the orbit of the triple must have length
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M. The only way for this to happen is to have {a,b} = {0, M}. Hence, the
orbit of the triple will have length M. We note that all other triples will
have orbits of length 2M. So, there is exactly one orbit of length M. The
number of directed edges is (3M + 1)(3M), making the number of triples
(3M + 1)(M). Since M is odd, 3M + 1 is even, so there must be an even
number of orbits of length M, which is impossible. Therefore, M is even.
For M even, if the ordered pair (00, 0¢) is used in a triple which contains
a vertex from the cycle of length 2M, a contradiction is easily reached by
considering the image of the triple under ™. Hence the ordered pair
(00,00) must be used in a triple of the form (co,00,4a0), (c0,4a0,00), or
(ap,0,00). There are M(M — 1) directed edges in the cycle of length M.
Exactly M of them will be used in the triples containing co. Also, no edge
of the cycle of length M can be used in a triple containing a vertex from
the cycle of length 2M. There are then M2 — 2M edges left in the cycle of
length M. Each triple uses three edges and has orbit of length M, so there
will be M—Mz-}‘—" orbits within the cycle of length M. Therefore M—ﬁﬁ k
for some integer k. Hence, k = -3— - 5, so M = 3k + 2. Since M is even,
we have M = 6t + 2, or M = 2 (mod 6). 0O

4 Sufficient Conditions

Lemma 4.1 If M = 2 (mod 6), then there exists a directed triple system
of order v = 3M + 1 admitting o I-bicyclic antiautomorphism with cycles
of lengths M and 2M.

Proof. We consider the cases modulo 24. The collection of base triples
for each case will be denoted by 3.

Let M = 24t + 2.
We define the following sets.
= {(01, oo, (24t + 2)1)}
B2 = {(0g, 00, (12t + 1)p)} U {(0o, 51, (24t — s+ 1)1)]s =0,1,...,12t}.
Bs = {(0o, (6t + 1), (10t)o), (0o, (5¢)0, (5¢ + 1)o), (01, (12t + 2)1, (20¢)1),
(04, (10¢)1, (10¢ + 2)1)} U {(0o, (8t + 8)o, (12t — s)o)|s = 0,1,...,2t — 1} U
{(01, (16t + 2s)1, (24t — 2s)1)|s =0,1,...,2t — 1}.
Bs= {(001 (6t)01 (8t - 1)0)! (Oly (lzt)l, (lst - 2)1)} U
{(0o, (4t + s + 1)o, (8t — s — 2)0)|s =0,1,...,t — 2} U
{(01, (8t + 25 + 2)1, (16t — 25 — 4),)[s = 0,1,...,t — 2}.
Bs = {(00,(5t+s+2)0,(7t—s— 1)o)ls=0,1,...,t —3}U
{(01, (10t + 25 + 4);, (14t — 25 — 2)1)|]s =0,1,...,t - 3}.
Fort=0, 8= ﬂluﬁ2uﬂ2 .
Fort=1,8=0UBUBUB UL
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Fort=2,8=0UBUB UB UL UB UL
Fort>3,8=5UBUB'UGBULTIUB UL UL UL

Let M = 24t + 8.
We define the following sets.
ﬁl = {(00) 00, (12t + 4)0s )a (01’007 (24t + 8)1: )}
B2 = {(0o, (6t + 2)o, (10t + 3)o), (01, (12t + 4)1, (20t + 6)1)} U
{(0o,31,(24t — s+ 7);)|s=0,1,...,12t + 3}.
ﬂ3 = {(00’601 70)1 (00) %, 110): (001 12, 150)7 (00) 100) 140)1 (011 12]1 141)3
(04,184,22;), (01,244, 301), (04, 201,28:)}.
Ba = {(OOv (8t + 3)o, (10¢ + 2)o), (0o, (llt + 2)0a (11t + 3)0)»
(04, (16t + 6)1, (20t + 4)1), (04, (22t + 4)1, (22t + 6)1)} V)
{(0o, (4t + s+ 2)0, (8t — 3+ 2)p)|s =0,1,...,2t =1} U
{(00, (8 + s + 4)0,(12t ~ s + 3))|s =0,1,...,t -1} U
{(01, (8t +2s +4),,(16t — 25+ 4);)|]s =0,1,...,2t - 1} U
{(0y, (16t + 25 + 8),, (24t — 25 + 6)1)|s =0,1,...,t — 1}.
55 = {(00,(9t+s+4)0,(11t—s+1)0)|s=0,l,...,t—3}U
{(0y, (18t + 23 + 8),,(22t — 25 + 2)1)]s = 0,1,...,t - 3}.
Fort=0,8=8 Uﬁguﬁ.;l.
Fort=1,8=6UBUBTUBUB™
Fort=2,0=p4UBUB UBUSA"
Fort23,8=/UBUB UBsUB UBs LB

Let M = 24t 4 14.

We define the following sets.
,@1 = {(01, 00, (24t + 14)1)}
Bo = {(00, 00, (12t + 7)0, )} U {(00,31, (24t -s+ 13)1)l8 =0,1,...,12¢ +6}.
B3 = {(0o, 1o, 20), (0o, 60, 40), (0o, 110, 80), (0o, 50, 10p), (01,41, 2),
(01,24,,8,), (01,163,22,), (01,20,,10,)}.
Ba = {(0o, (12t + 5)0, (24t + 10)o), (00, 40, 20), (01, (24t + 18),, (24t + 10),),
(01181[,41)}‘
Bs = {(0o, 100, 110), (0o, 130, 160), (00, %0, 140), (0o, 129, 18p), (00, 80, 150),
(01’ 2017 221)) (011 261) 321)1 (017 181’ 281)) (Ola 241: 361)1 (01, 161, 301)}
Be = {(00, (10t + 5)0, (].Ot + 6)0), (00, (6t + 2)0, (6t + 5)0),
(00: (Gt + 4)0) (St + 5)0)) (001 (6t + 3)07 (10t + 3)0)) (00, (7t + 4)0s (llt + 5)0):
(0o, (8t + 4)0, (12t + 6)0), (0o, (6t + 1)o, (10 + 4)o),
(01, (20¢ + 10),, (20t + 12)y), (01, (12¢ + 4)1, (12¢ + 10),),
(01, (12t + 8)1, (16t + 10)1), (011 (12t + G)ia (20t + 6)1)a
(01, (14t + 8)1, (22t + 10)1), (01, (16¢ + 8);, (24¢ + 12),),
(01, (12t+2)1, (206+8)1) }U{(Oo, (4¢+5+4)o, (8t—s+3)o)}s = 0,1,...,t—2}U
{(0o, (8¢ + 5+ 6)o, (12t — s+ 4)o)[s =0,1,...,t =2} U
{(01, (8t + 25 + 8)1, (16t ~ 25 +6);)[s =0,1,...,t = 2} U
{(01, (16t + 23 + 12),, (24t — 25 + 8);)|s =0,1,...,¢ — 2}.
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ﬂ7={(00,(5t+3+3)0,(7t—8+3)0)IS=0,1,...,t—3}U
{(0, (9t + 5 + 5)o, (11t — 5 + 4)o)|s = 0,1,...,£ — 3} U
{(01, (10t + 25 + 6)y, (14t — 25 + 6)1)|s = 0, 1,.. t—3}U
{(01, (18 + 26+ 10)1, (22t — 25+ 8)y)la = 0,1, = 3}.
Fort=0,8= ﬂluﬁguﬁz U Bs.

Fort=1,8= ﬁlUﬁzuﬂz UBsUBsUBsE.
Fort=2,8= ﬁlUﬁzuﬂg UBUBs UGBt
Fort>3,8=0UBUB UBUBUB UB LB

Let M = 24t + 20.
We define the following sets.
= {(Oo, 00, (12t + 8)o), (01,00, (24t + 16)3), (0o, (6t + 5)0, (12t + 10)o),
(O, (6t + 4)o, (18¢ + 16)0), (01, (24¢ + 20)1, (12¢ + 10)1),
(01, (12t + 8)1, (36t + 32)1)}.
B2 = {(00,81, (24t — s +19))|s =0,1,...,12t + 9}.
B3 = {(009 1o, 20)’ (00a30160)y (00’ 7o, 140): (OOv 9, 180), (01:41a 21):
(01,124, 64), (01,28y, 14;), (01,364, 18;) }.
Ba= {(00, (6t + 3)0, (lOt + 4)o), (0o, (11t + 5)o, (11t + 6)0),
(0o, (10t + 5)0, (12t + 6)0), (0o, (12t + 7)o, (12t + 9)o),
(01, (12t + 6)1, (20¢ + 8)1), (01, (22¢ + 10);, (22 + 12)1),
(01, (20t -+ 10)1, (24t + 12)1), (04, (24t + 14)1, (24t + 18)1)} U
{(0o, (4t + 5 + 3)0, (8t — s + 5)g)[s =0, 1,...,2t — 1} U
{0y, (8t + 25 + 6)1, (16t — 25 + 10);)[s = 0,1,...,2¢ — 1}.
:35 = {(00,(8t+S+6)0,(12t—8+5)0)|8=0,1,...,t—2}u
{(00, 9t + s+ 5)0, (11t — s + 4)o)|s =0,1,...,t - 2} U
{(01,(16t+2s+12)1,(24t—2s+10)1)|s—0 1,...,t—-2}u
{(01,(18t+2s+10)1,(22t—2s+8) )s=0,1,...,t —2}.
Fort=0,8=/ UﬁzUﬁz U Bs.
Fort=1,8= ﬂ1Uﬁ2Uﬁ2 U,B4Uﬂ4
Fort>2 =8 UB UG UBsU B UfsU gl

‘5 Conclusion
By the lemmas in the previous sections, we have the following theorem.

Theorem 5.1 There is a DTS(v) which admits a 1-bicyclic antiautomor-
phism with cycles of length M and 2M if and only if M = 2 (mod 6).
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