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Abstract. In this paper, we introduce a hyperoperation associated to the set
of all arithmetic functions and analyze the properties of this new hyperopera-
tion. Several characterization theorems are obtained, especially in connection
with multiplicative functions.
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1. INTRODUCTION

Hyperstructures represent a natural extension of classical algebraic struc-
tures and they were introduced by the French mathematician F. Marty [7].
Algebraic hyperstructures are a suitable generalization of classical alge-
braic structures. In a classical algebraic structure, the composition of two
elements is an element, while in an algebraic hyperstructure, the composi-
tion of two elements is a set. Hundreds of papers and several books have
been written on this topic, see (3, 5, 6, 9]. A recent book on hyperstruc-
tures [5] points out on their applications in fuzzy and rough set theory,
cryptography, codes, automata, probability, geometry, lattices, binary re-
lations, graphs and hypergraphs. Another book [6] is devoted especially
to the study of hyperring theory. Several kinds of hyperrings are intro-
duced and analyzed. The volume ends with an outline of applications in
chemistry and physics, analyzing several special kinds of hyperstructures:
e-hyperstructures and transposition hypergroups. The theory of suitable
modified hyperstructures can serve as a mathematical background in the
field of quantum communication systems.

Given a nonempty set H, a fuzzy subset of H (or a fuzzy set in H) is, by
definition, an arbitrary mapping p : H — [0, 1] where [0,1] is the usual
closed interval of real numbers. This important concept of a fuzzy sets has
been introduced by Zadeh in [10]. Since then, many papers on fuzzy sets
appeared showing the importance of the concept and its applications (cf.,
for example, [2, 4, 5]).

The theory of numbers is one of the oldest branches of mathematics that
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many researchers have studied and developed it. Now, in this paper, we
introduce & hyperoperation associated to the set of all arithmetic functions
and analyze the properties of this new hyperoperation. Several characteri-
zation theorems are obtained, especially in connection with multiplicative
functions. Finally, we introduce a property of fuzzy sets with arithmetic
functions and hyperstructures.

2. PRELIMINARIES

Let H be a nonempty set and let p*(H) be the set of all nonempty
subsets of H. A hyperoperation on H is a map o : H x H — p*(H) and
the couple (H,o) is called a hypergroupoid.

If A and B are nonempty subsets of H, then we denote

AoB= U aob, zoA={z}oA and Aoz = Ao{z}.
a€A,beB

A hypergroupoid (H, o) is called a semihypergroup if for all z,y,z of H
we have (z 0y) o z = z o (y 0 z), which means that

U woz= | sov.

u€zroy vEyoz

We say that a semihypergroup (H, o) is a hypergroup if for all z € H, we
havezoH=Hoz=H.

An element e € H is called an identity or unit, if € zoeNeoz, for all
z€H.

A hypergroupoid (H, o) is called a quasihypergroup, if zoH = H = Hoz,
forallz € H.

An element ' € H is called an inverse of £ € H, if there exists an
identity e € H, such that e € oz’ Nz’ oz,

A hypergroup (H,o) is called canonical (8] if the following conditions
are satisfied:

(G) zoy=youz, foral z,y € H;

(ii) there exists e € H (unique) such that eoz =z =z oe, for all
Tz € H,

(iii) every element has a unique inverse;

(iv) it is reversible, that is, for all z,y,2 € H, z € zoyimplies z € zoy'
and y€zoa'.

For any a and b of H, we denote the set {z € H | a € z0b} by a/b.

A commutative hypergroup (H, o) is called a join space if the following
condition holds:

a/bNc/d#0=>aodNboc#0.
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A commutative hypergroup (H, o) is canonical if and only if it is a join
space with a scalar identity.

3. ARITHMETIC FUNCTIONS AND HYPERSTRUCTURES

Any function f : N* — R whose domain of definition is the set of
positive integers is said to be an arithmetic (or number-theoretic) function.
Let m and n be two positive integers. An arithmetic function f is said to

be multiplicative if
f(mn) = f(m)f(n)
whenever ged(m,n) = 1.
Example 3.1. [1} Some important arithmetic functions are

(1) The classical Mobius function y is an important multiplicative func-
tion in number theory and combinatorics. The definition is as fol-

lows:
#(1) =1 and for n > 1 we write n = p{*...p3*, in this case
_f (-1)* ifar=ar=...=ar=1
Kn) = { 0 otherwise.

(2) (Euler’s Phi-Function): If n > 1 then ¢(n) is the number of primes

less than or equal to n.
(3) 7(n), the number of positive divisors of n, including 1 and n. This

arithmetic function is multiplicative

Denote by M F(G) the set of all multiplicative functions of G.
Now, we define a hyperoperation on the collection of all arithmetic func-
tions. We will use a product notation to indicate this hyperoperation.

Definition 3.2. Let G be the set of all arithmetic functions, we can define
a hyperstructure on G, as follows:

0:Gx G — p*(G)

(v,f)—aof
such that n
(a0 B)n) = {a(@)B(3) : din}
=Ue@s3)
d|n

for all (@, 8) € G? and d runs through the positive divisor of n.

Example 3.3. We have
(6o7)(1) ={p(1)r(1)} = {1} =1,
(o7)(2) = {o(1)7(2),6(2)7(1)} = {1,2},
(o7)(3) = {6(1)r(3), 4(3)7(1)} = {2} = 2.
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If p be a prime number, we have

(#o7)(®) = {¢(1)7(p), d(p)T(1)} = {2,p - 1}.

The use of this hyperoperation leads to a convenient calculus of arith-
metic functions. We will establish several useful properties of multiplicative
function that will enable us to manipulate these functions with comparative
ease.

We will next prove that the arithmetic functions with above hyperoper-
ation are commutative and associative.

Proposition 3.4. Let G be the set of all arithmetic functions and (o, B) €
G?. Thenaofi=foa.

Proof. Let n be a positive integer. As d ranges over the divisors of n, so
does d|n. Let dy = 5. Then

(o B)(n) Ua(d)m

= (Boa)(n),

for each positive integer n, so the functions a0 8 and Boa are equal. O

Theorem 3.5. Let G be the set of all arithmetic functions. Then (G, o) is
a semihypergroup.

Proof. We must show that if n is a positive integer, then (a0 (807))(n) =
((eco B) 0 ¥)(n), for all a, B, € G. If we consider the first of these expres-

sions, we see that

(@o(Bom)n) =|Ja@)(Bo 7)(2)

din

=Je@(J ﬂ(m)'r( 7))

dln m|3

=UJ U e@pmr(:2)

dlnm|%

This double set indicates that we consider all positive integers mm and d
such that m|%; that is, such that md|n. Thus, we can replace the double
set by a single set and obtain

(o (Bom)m) = | (d)Bm)r()

md|n
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We will now consider the expression ((a o 8) o y)(n). We write
n
(@oB)yomn) =Jlaop@n(3)
d|n
d n
= U807
din s|d d
n
=UU a8 ().
d|n s|d
Since s|d, then exists a positive integer ¢ such that d = st. Thus, the above
set is equal to the single set
n
(o B) om)(n) = | a(s)B()r(2).
st|n
Then, c:o(F07) and (aoB)o~ have the same value for each positive integer
n, the two functions are equal. |

Instead of avo (B oy) or (a0 B) o+, we will write a0 Bo-.

Example 3.8. Let o(n) denote the sum of positive divisors of positive

integer n, i.e., o(n) = Z d. Then
din

(poaor)(8) = {4(1)o(8)7(1),4(1)o(4)7(2),$(2)a(4)7(1), $(1)o(2)7(4),
#(2)o(2)7(2), $(4)a(2)7(1), §(8)a(1)7(1), p(4)a(1)7(2),
#(2)o(1)7(4),4(1)a(1)7(8)}

= {15,14,12,7,6,4}.

If p is a prime number, we have
(¢oooT)(p) = {¢(p)o(1)7(1), (1) (p)7(1), $(1)o(1)7(p)} = {p—1,p+1,2}.

Definition 8.7, Let G be the set of all arithmetic functions. We can define
amap ‘e‘on G oG, as follows:

¢:(GoG) x(GoG) — p*(G)
((a1 0 A1), (az 0 B2)) — (@10 B1) @ (a2 © B2)
such that

((al oﬁl) i (a2 o ﬂ2))(m: n) = U aﬁ)
a€(aiof1)(m), S€(az0pz)(n)

where m,n € N*,

In view of the above definition, it is not difficult to prove the following
corollary.
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Corollary 3.8. Let G be the set of all arithmetic functions. Then

(i) ((c1 0 B1) @ (a2 0 B2))(m,n) = ((a2 © B2) ® (o1 0 fB1))(n,m), for all
ai, B1, 00,82 € G, and for all m,n € N*,

(it) (G o G, ) is associative.

Definition 3.9. Let o, 8 € G. Then aof is called a multiplicative function -
in G o G if the following condition holds:

(a0 B)(mn) = (a0 B)(m) ® (a0 B)(n),

whenever gcd(m,n) = 1.
Denote by M F(G o G) the set of all multiplicative functions in G o G.

Example 3.10. If m,n are two distinct positive primes, then by Example
3.3, we have

(por)(m)e(¢o7)(n) g,m —1}e{2,n-1}

= {4.2(n—1),2(m — 1), (m — 1)(n - 1)}.

On the other hand, we have

(po7)(mn) = {$(1)7(mn), $(n)7(m), d(m)7(n), p(mn)7(1)}
= {4,2(n - 1),2(m — 1),(m = 1)(n — 1)}.

Thus (¢o7)(mn) = (¢por)(m)e(¢oT)(n), which implies (po7) € MF(GoG).

Lemma 3.11. Let o, 8 € G be two arithmetic functions and m, n be two
positive integers. Then

U a@8(D)=Je@eJAD).

djm,Din dlm Din

Proof. Let dy,...,ds and Di,...,D; be the positive divisors of m and n,
respectively. Then

U a@sDy= U «d)BD))

djm,D|n 1<igs, 1<5<t
= {a(d1)B(D1), ..., a(d1)B(Ds), ..., (ds)B(D1), ya(ds)B(D:)}

= {a(d1), ...,C!(ds)} L4 {ﬂ(Dl)y "-’ﬂ(Dt)}
= Ja@)s | 5(D)

dim Din

Theorem 3.12. Let a,f € MF(G). Then a0 f € MF(G o G).
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Proof. Let m and n be relatively prime positive integers. We recall that
any divisor d of mn can be uniquely written as d = st, where s|m, t|n, and
ged(s,t) =1, hence we have (s,t) = (2, %) = 1. Thus,

(o p)(mn) = | (d)p(ZD)

dlmn

= U a(st)ﬂ(l’:-.g).

slm,t|n
Since a, 8 € MF(G), thus a(st) = a(s)a(t), B(Z.3) = B(2)B(%), and the
above set is equal to
U e@sSamac)
s|m,tin

which, in turn, by Lefnma 3.11, is equal to
Ue@sS) e Uaiad)

s|m tn
Therefore,
(@op)imn) = ] als)B(5.3)
slm,t|n
= U s@sEems®
s|m,tin
= U8 e Jats(3)
slm tin
= (@ B)(m) o (@0 H)(n)
Then o B € MF(GoG). =

The following theorem establishes a connection between certain sets in-
volving a o 8 and sets involving « and 3.

Theorem 3.13. Let a and 8 be arithmetic functions. Then

n n (5]
U (@eB)m) = | | a(d)B(k).
m=l d=1 k=1

Proof. By definition, we have

n

U @en)m)= U Uea@a.

m=1 m=1djm

Each integer d in the second set is in the range from 1 to =, and each integer
in that range occurs as such a d at least once. If we fix d, we will obtain a
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term o(d)B(%) for every multiple m of d, 1 <Sm < n; that is, a set

{a@sw.a@sZ.....a@p5},

where k = [3] and (5] is the integral part of §. If we take the set over all
such d, and, for fixed d, for every integer between 1 and k = [5], we obtain
the desired result.

4. INVERSE FUNCTIONS UNDER HYPERSTRUCTURES (G, o)

In this section, we denote by G the set of all arithmetic functions.

Notation. Let a, 8,7 € G, then we say o = 3 (respectively, a € fo7),
if a(n) = B(n) (respectively, a(n) € (80 7)(n)), for all positive integer n.

Proposition 4.1. For a positive integer n, we define ¢ by the rules:

1 ifn=1
‘(n)={ 0 if n>1

Thena € aot foralla € G.

Proof. For any positive integer n, we have
n
(@0 o)(n) = Ja(@uz) = {a(m)(1),0} = {a(n),0},
d|n
which implies that a(n) € (a0 ¢)(n). Therefore a € ao. O

The above proposition shows that ¢ is to the role played by the number
1 for hypergroupoid (G, o).

Definition 4.2. An element ¢ € G is called an identity or unit of (G, o),
such that
(@0:)(n) = {(n),0},
for any positive integer n.
We are thus led to the following definition:
Definition 4.3. An element o~! € G is called an inverse of a € G, if
t=aoa"l
Proposition 4.4. If o has an inverse, it is unigue.

Proof. Let 8 and v be two inverse for . For any positive integer n, we
have:

{B(n),0} = (Bov)(n) = [Bo(aoy)](n) = [(Boa)or](n) = (o7)(n) = {(n), 0},
which implies that 8(n) = y(n). Thus § =1. O
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Proposition 4.5. Let a € G and a(1) # 0, a(n) = 0 for all positive integer
n > 1. Then

1 .
= a(D) 'Lf n=1

Aln) { 0 if n>1
is the inverse of c.
Proof. For all positive integer n > 1, we have

n
(@o)(n)=|J a(d)B(3) = {a(1)8(n), 0} = 0 = «(n).

dln

On the other hand, (a0 8)(1) = a(1)8(1) =1 =(1). So B = a1 O
Remark. If o € G and a(1) = 0, then o hasn’t inverse. Since, if exists

B € G such that a0 8 =¢. Then

(@ef))=u(1)=1 (1)
In other works, we have

(@0 B)(1) =a(1)B(1) =0 (2)
So, we see that the relations (1) and (2) are contractions.
Theorem 4.6. Let a € MF(G), (1) # 0 and a~! be the inverse of a.
Then ™! € MF(G).
" Proof. Let ! ¢ MF(G). Then there exist m,n, where ged(m,n) = 1
such that
a~l(mn) # o~ (m)a"(n). (o)

Let mn be the least positive integer such that the relation (o) is holds, i.e.,
for all positive integer a and b, such that ged(a,b) = 1,ab < mn, we have
a~(ab) = a~}a)a"L(b). (%)

It is obvious that m # 1 and n # 1, so mn > 1. In other words, implying

that

{a~}(m)al(n), 0} = {a~}(m)a~}(n), ((mn)}
= {a"Y(m)a"1(n), (a0 a~1)(mn)}

= o {(m)a (m)u J a‘l(d)a(?).
dlmn
If a # 0 and o € MF(G), then a(1) = 1, we have
{a"(m)a"}(n), 0} =o 'm)a'm)u | a-l(d)a(?) Ua~(mn).

dlmn,d<mn
If d|mn, then exist positive integers s,t and d = st such that s|m, t|n and
ged(s,t) = 1. So
{a"t(m)a~(n), 0} = o~} (m)a"t(n)u U a’l(st)a(%r—l)Ua'l(mn).

8|m,tn,st<mn
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Since m # 1, n # 1 and (1) = 1, according to (), we can write:
{e"}(m)a~!(n), 0} =

=a7lmaamemu | e @a(Pla@a(F)vam
slm,tin,st<mn

= U a'l(s)a(%)a_l(t)a(%)Ua'l(mn).

s|m,tin

By Lemma 3.11, we have

(@ imaitm), 0} = [ Jea(s)a(D)e Ua-‘(t)a(%) Ua~(mn)
slm tin

= ((a~!oa)(m) e (a~! 0 @)(n)) Ua~!(mn)

= (¢(m) o L(n)) Ua~(mn)

= {a~3(mn), 0}.
Then, a~!(mn) = a~}(m)a~!(n), which contradicts the choice of m and
n. Thus, a~(ab) = a~1(a)a~!(b) for any pair of relatively prime positive
integers, a, b; that is, a~! € MF(G). O

5. A PROPERTY OF FUZZY SET WITH ARITHMETIC FUNCTIONS AND
HYPERSTRUCTURES

Let (H,o0) be a hypergroupoid. We can associate a membership function
ji: H — [0,1], as in [2], and we obtain a join space ' H as follows (also
see [4]):

V(z,y) € H?, zoyy={z€ H| j(z) Aji(y) < i) < i) A @(y)}-

Then, from (* H, o) we obtain, in the same way, a membership function
{1 and then the join space 2H and so on. A sequence of fuzzy sets and of
join spaces ("H, ji,) is determined. For any (z,y) € H? and any u € H,
we consider:

pzy(u) =0 iff ug¢zoy,

1 .
uz,y(u) = Fo—y' iff ue Toy,

Aw)= D ay(u), (w)
(z,y)EH?
Q(u) = {(a,d)|(a,d) € Hz,u € aob},
g(u) = IQEH;I,
3wy = A
M) = Ty

If Q(u) = 0, then we set fi(u) =0.
We denote jig = i, °H = H. If two consecutive hypergroups of the
obtained sequence are isomorphic, then the sequence stops.



For all positive integer n > 1, let ¢(n) denote Euler’s Phi-Function and
T(n) = Zl, o(n) = Zd, ox(n) = Zd",
din djn dln

where k > 2 and d runs through the positive divisor of n.
Let p be a prime positive integer, then we can write:

o) =p-1, 7(p) =2, 0(p) =p+1, ox(p) =p* + 1.
Let H = {¢,7,0,0+}, by definition hyperstructure “o”, we have

(a0 B)(p) = Ua(d)ﬁ( =) = {a(p), B(p)},

dlp
where (o, 8) € H2. Thus
(o] ¢ T g Ok
¢ |p—-112,p—1|p—-1,p+1[p-1p°+1
T 2 2,p+1 2,p"+1
o p+1 p+1,p°+1
ok P +1

Let H = {¢,7,0,04}, for all (o, B) € H?, we can define a hyperstructure
on H, as follows:

aocpfS = {v € H| min{a(p), B(p)} < ¥(p) < max{ea(p), B(p)}}. (*)

Now, we have the main result:

Theorem 5.1. Let H = {¢,7,0,0x} and p > 5. By definition (w), we
have:
A1(®) = fr(0) < fa (1) = fa (o).

Proof. By definition (%), we can obtain

1H|o| 7 o Ok
¢ ¢ ¢1T ¢,0’ H-T

T r [ H—oy H
o g g,0
Ok Ok

Therefore, by definition (w), one obtains:

2 2 2 2 2
0= 3 s = g ool el el el oo
2 2 2 2
=1+1+1+§+-3-+Z=F
similarly, A(0) = £ and A(7) = A(ox) = L. Also, one obtains:

B (9) = ia(0) = %{6 = 0/439 < ju(r) = fn(ox) = L8 = o 45758,
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The following result show that the sequence stops.

Theorem 5.2. Let H = {¢,7,0,0x} and p > 5. By definition (w), we
have:
fia(¢) = fia(0) = fa(7) = iz (%)

Proof. By definition (w), the join space 2H associated is

2H| ¢ T c | ok
¢ |do| H [0 H
T T,0r | H | 1,0k
o o,0| H
Ok T,0k

Again, one obtains that

fa(8) = nlo) = alr) = Jalow) = 3 = O/,

6. CONCLUSIONS AND FUTURE WORK

After the introduction of fuzzy sets by Zadeh [10], there have been a
number of generalizations of this fundamental concept. On the other hand,
the concept of hyperstructure first was introduced by F. Marty [7]. This
paper is intended to build up a connection between hyperstructure, fuzzy
sets and arithmetic functions. We have presented the definition of the
hyperoperation associated to the set of all arithmetic functions and have
studied the properties of this new hyperoperation.

Our future work on this definition will be focused on the properties of
hypergroups and canonical hypergroups.
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