Chromaticity of Complete Tripartite Graphs With Certain Star or Matching Deleted

G.C. Lau, a,b,c,1 Y.H. Pengb,c and Kamel Ariffin Mohd. Atan^c

^aFaculty of Computer Science & Mathematics Universiti Teknologi MARA (Segamat Campus) Johor, Malaysia

> ^bDepartment of Mathematics, and ^cInstitute for Mathematical Research Universiti Putra Malaysia 43400 UPM Serdang, Malaysia

ABSTRACT

Let $P(G,\lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted $G\sim H$, if $P(G,\lambda)=P(H,\lambda)$. We write $[G]=\{H\,|\, H\sim G\}$. If $[G]=\{G\}$, then G is said to be chromatically unique. In this paper, we first characterize certain complete triparite graphs G according to the number of 4-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, we obtain new families of chromatically unique complete tripartite graphs with certain star or matching deleted.

AMS Mathematical Subject Classification (2000): 05C15;05C60

Keywords: Chromatic Polynomial; Chromatic Uniqueness; Tripartite Graphs

1 Introduction

All graphs considered in this paper are finite and simple. For a graph G, we denote by $P(G;\lambda)$ (or P(G)), the chromatic polynomial of G. Two graphs G and H are said to be *chromatically equivalent* (simply χ -equivalent), denoted $G \sim H$ if P(G) = P(H). A graph G is said to be *chromatically unique* (simply χ -unique), if $H \sim G$ implies that $H \cong G$. A family G of

¹Corresponding author. E-mail: geeclau@yahoo.com

graphs is said to be chromatically-closed (simply χ -closed) if for any graph $G \in \mathcal{G}$, P(H) = P(G) implies that $H \in \mathcal{G}$. Many families of χ -unique graphs are known (see [3, 4]).

For a graph G, let e(G), v(G), t(G) and $\chi(G)$ respectively be the number of vertices, edges, triangles and chromatic number of G. Let O_n be an edgeless graph with n vertices. Also let Q(G) and K(G) be the number of induced subgraphs C_4 and complete subgraphs K_4 in G. Suppose S be a set of $s(\geq 1)$ edges of G. Denote by G-S the graph obtained from G by deleting all edges in S, and by $\langle S \rangle$ the graph induced by S. For $t \geq 2$ and $1 \leq p_1 \leq p_2 \leq \cdots \leq p_t$, let $K(p_1, p_2, \ldots, p_t)$ be a complete t-partite graph with partition sets V_i such that $|V_i| = p_i$ for $i = 1, 2, \ldots, t$. In [7], Zhao proved that certain families of complete tripartite graphs with a matching or a star deleted are χ -unique. In this paper, we first characterize certain complete triparite graphs G according to the number of 4-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, we obtain new families of chromatically unique complete tripartite graphs with certain star or matching deleted.

2 Preliminary results and notations

Let $K^{-s}(p_1, p_2, \ldots, p_t)$ be the family $\{K(p_1, p_2, \ldots, p_t) - S \mid S \subset E(K(p_1, p_2, \ldots, p_t)) \text{ and } |S| = s\}$. For $p_1 \geq s+1$, we denote by $K_{i,j}^{-K(1,s)}(p_1, p_2, \ldots, p_t)$ (respectively, $K_{i,j}^{-sK_2}(p_1, p_2, \ldots, p_t)$) the graph in $K^{-s}(p_1, p_2, \ldots, p_t)$ where the s edges in S induced a K(1, s) with center in V_i and all the end-vertices in V_j , (respectively, a matching with end-vertices in V_i and V_j).

For a graph G and a positive integer k, a partition $\{A_1, A_2, \ldots, A_k\}$ of V(G) is called a k-independent partition in G if each A_i is a non-empty independent set of G. Let $\alpha(G, k)$ denote the number of k-independent partitions in G. If G is of order n, then $P(G, \lambda) = \sum_{k=1}^{n} \alpha(G, k)(\lambda)_k$ where $(\lambda)_k = \lambda(\lambda - 1) \cdots (\lambda - k + 1)$ (see [5]). Therefore, $\alpha(G, k) = \alpha(H, k)$ for each $k = 1, 2, \ldots$, if $G \sim H$.

For a graph G with n vertices, the polynomial $\sigma(G, x) = \sum_{k=1}^{n} \alpha(G, k) x^k$ is called the σ -polynomial of G (see [1]). Clearly, $P(G, \lambda) = P(H, \lambda)$ implies that $\sigma(G, x) = \sigma(H, x)$ for any graphs G and H.

For disjoint graphs G and H, G+H denotes the disjoint union of G and H; $G\vee H$ denotes the graph whose vertex-set is $V(G)\cup V(H)$ and whose edge-set is $\{xy|x\in V(G) \text{ and }y\in V(H)\}\cup E(G)\cup E(H)$. Throughout this paper, all the t-partite graphs G under consideration are 2-connected with $\chi(G)=t$. For terms used but not defined here we refer to [6].

Lemma 2.1. (Koh and Teo [3]) Let G and H be two graphs with $H \sim G$, then v(G) = v(H), e(G) = e(H), t(G) = t(H) and $\chi(G) = \chi(H)$. Moreover, $\alpha(G, k) = \alpha(H, k)$ for each $k = 1, 2, \ldots$ and

$$-Q(G) + 2K(G) = -Q(H) + 2K(H).$$

Note that if $\chi(G) = 3$, then $G \sim H$ implies that Q(G) = Q(H).

Lemma 2.2. (Brenti [1]) Let G and H be two disjoint graphs. Then $\sigma(G \vee H, x) = \sigma(G, x)\sigma(H, x)$.

In particular,

$$\sigma(K(n_1,n_2,\ldots,n_t),x)=\prod_{i=1}^t\sigma(O_{n_i},x).$$

Lemma 2.3 Let G be a connected t-partite graph. If $H \sim G$, then there exists a complete t-partite graph $F = K(x_1, x_2, \ldots, x_t)$ such that H = F - S' with |S'| = s' = e(F) - e(G).

Proof. Since V(G) has a t-independent partition, then V(H) also has a t-independent partition with independent sets V_1, V_2, \ldots, V_t such that $|V_i| = x_i$. Hence, H is a t-partite graph and there exists a graph complete t-partite $F = K(x_1, x_2, \ldots, x_t)$ such that H = F - S'. Since $H \sim G$, by Lemma 2.1, we have s' = e(F) - e(G).

Let $H = K(x_1, x_2, x_3, \ldots, x_t)$ and $H' = K(x_1, x_2, \ldots, x_i + 1, \ldots, x_j - 1, \ldots, x_t)$. If i < j and $x_j - x_i \ge 2$, then H' is called an *improvement* of H.

Lemma 2.4 Suppose $H' = K(x_1, x_2, \ldots, x_i + 1, \ldots, x_j - 1, \ldots, x_t)$ is an improvement of $H = K(x_1, x_2, x_3, \ldots, x_t)$, then $\alpha(H, t+1) > \alpha(H', t+1)$.

Proof. Note that $\alpha(H', t+1) = \sum_{k=1}^{t} 2^{x_k-1} + 2^{x_i-1} - 2^{x_j-2}$ and $\alpha(H, t+1) = \sum_{k=1}^{t} 2^{x_k-1}$. Hence, $\alpha(H, t+1) - \alpha(H', t+1) = 2^{x_j-2} - 2^{x_i-1} \ge 2^{x_i-1} > 0$.

Suppose $G = K(p_1, p_2, ..., p_t)$ and H = G - S for a set S of s edges of G. Define $\alpha_k(H) = \alpha(H, k) - \alpha(G, k)$ for $k \ge t + 1$.

Lemma 2.5. (Zhao [7]) Let $G = K(p_1, p_2, ..., p_t)$ and H = G - S. If $p_1 \ge s + 1$, then

$$s \le \alpha_{t+1}(H) = \alpha(H, t+1) - \alpha(G, t+1) \le 2^s - 1$$
,

 $\alpha_{t+1}(H) = s$ if and only if the subgraph induced by any $r \geq 2$ edges in S is not a complete multipartite graph, and $\alpha_{t+1}(H) = 2^s - 1$ if and only if $\langle S \rangle = K(1, s)$.

Lemma 2.6. (Dong et al. [2]) Let p_1, p_2 and s be positive integers with $3 \le p_1 \le p_2$, then

(i)
$$K_{1,2}^{-K(1,s)}(p_1, p_2)$$
 is χ -unique for $1 \leq s \leq p_2 - 2$,

(ii)
$$K_{2,1}^{-K(1,s)}(p_1, p_2)$$
 is χ -unique for $1 \leq s \leq p_1 - 2$, and

(iii)
$$K^{-sK_2}(p_1, p_2)$$
 is χ -unique for $1 \leq s \leq p_1 - 1$

For a graph $G \in \mathcal{K}^{-s}(p_1, p_2, \ldots, p_t)$, we say an induced subgraph C_4 of G is of Type 1 (respectively Type 2, and Type 3) if the vertices of the induced C_4 are in exactly two (respectively three, and four) partite sets of V(G). An example of induced C_4 of Type 1, 2 and 3 are shown in Figure 1.

Figure 1: Three types of induced C_4

Suppose G is a graph in $K^{-s}(p_1, p_2, \ldots, p_t)$. Let S_{ij} $(1 \le i \le t, 1 \le j \le t)$ be a subset of S such that each edge in S_{ij} has an end-vertex in V_i and another end-vertex in V_i with $|S_{ij}| = s_{ij} \ge 0$.

Lemma 2.7. Let $F = K(p_1, p_2, p_3)$ be a complete tripartite graph and G = F - S for a set S of $s \ge 1$ edges in F. If S induces a matching in F, then

$$Q(G) = Q(F) - \sum_{1 \le i < j \le 3} (p_i - 1)(p_j - 1)s_{ij} + \binom{s}{2} - s_{12}s_{13} - s_{12}s_{23} - s_{13}s_{23} + \sum_{\substack{1 \le i < j \le 3 \\ k \notin \{i, j\}}} s_{ij} \binom{p_k}{2}.$$

Moreover,

$$\max \left\{ Q(G) \right\} = Q(F) - s(p_1 - 1)(p_2 - 1) + \binom{s}{2} + s\binom{p_3}{2}$$

if and only if each edge in S joins vertices in the same two partite sets of smallest size.

Proof. Note that G has only induced C_4 of Type 1 or Type 2. Let $Q_1(G)$ (respectively, $Q_2(G)$) be the number of Type 1 (respectively, Type 2) induced C_4 in G. Observe that $S = \bigcup_{1 \le i < j \le t} S_{ij}$ with $s_{ij} \ge 0$. Hence,

$$Q_{1}(G) = \sum_{1 \leq i < j \leq 3} {p_{i} \choose 2} {p_{j} \choose 2} - \sum_{1 \leq i < j \leq 3} (p_{i} - 1)(p_{j} - 1)s_{ij} + \sum_{1 \leq i < j \leq 3} {s_{ij} \choose 2}$$

$$= Q(F) - \sum_{1 \leq i < j \leq 3} (p_{i} - 1)(p_{j} - 1)s_{ij} + {s \choose 2} - s_{12}s_{13} - s_{12}s_{23} - s_{13}s_{23}.$$

Hence,

$$Q_1(G) \leq Q(F) - \sum_{1 \leq i < j \leq 3} (p_i - 1)(p_j - 1)s_{ij} + {s \choose 2}$$

with the equality holds if and only if $s = s_{ij}$ for $1 \le i < j \le 3$. Now, observe that $(p_1 - 1)(p_2 - 1)s \le (p_i - 1)(p_j - 1)s_{ij}$ for $1 \le i < j \le 3$ and the equality holds if and only if each edge in S joins vertices in the same two partite sets of smallest size.

We now find $Q_2(G)$. Since the number of 2-element subsets of V_k is $\binom{p_k}{2}$, we have

$$\begin{array}{rcl} Q_2(G) & = & \displaystyle \sum_{\substack{1 \, \leq \, i \, < \, j \, \leq \, 3 \\ k \not \in \, \{i, \, j\}}} s_{ij} \binom{p_k}{2} \\ \\ & \leq & s \binom{p_3}{2}, \end{array}$$

with the equality holds if and only if each edge in S joins vertices in the same two partite sets of smallest size. Hence, $\max\{Q(G)\} = Q(F) - s(p_1 - 1)(p_2 - 1) + \binom{s}{2} + s\binom{p_3}{2}$ if and only if each edge in S joins vertices in the same two partite sets of smallest size.

3 Characterization

In this section, we shall characterize certain complete tripartite graphs $G = K(p_1, p_2, p_3)$ according to the number of 4-independent partitions of

G where $p_3 - p_1 \leq 6$.

Lemma 3.1. Let $G = K(p_1, p_2, p_3)$ be a complete tripartite graph such that $p_1 + p_2 + p_3 = 3p$ and $p_3 - p_1 \le 6$. Define $\theta(G) = (\alpha(G, 4) - 2^{p-1} - 2^p + 3)/2^{p-2}$. Then

(i)
$$\theta(G) = 0$$
 if and only if $G = K(p, p, p)$;

(ii)
$$\theta(G) = 1$$
 if and only if $G = K(p-1, p, p+1)$;

(iii)
$$\theta(G) = 2\frac{1}{2}$$
 if and only if $G = K(p-2, p+1, p+1)$;

(iv)
$$\theta(G) = 4$$
 if and only if $G = K(p-1, p-1, p+2)$;

(v)
$$\theta(G) = 4\frac{1}{2}$$
 if and only if $G = K(p-2, p, p+2)$;

(vi)
$$\theta(G) = 6\frac{1}{4}$$
 if and only if $G = K(p-3, p+1, p+2)$;

(vii)
$$\theta(G) = 10\frac{1}{8}$$
 if and only if $G = K(p-4, p+2, p+2)$;

(viii)
$$\theta(G) = 11\frac{1}{2}$$
 if and only if $G = K(p-2, p-1, p+3)$;

(ix)
$$\theta(G) = 12\frac{1}{4}$$
 if and only if $G = K(p-3, p, p+3)$;

(x)
$$\theta(G) = 27$$
 if and only if $G = K(p-2, p-2, p+4)$.

Proof. In order to complete the proof of the theorem, we first give a table about the θ -value of various complete tripartite graphs with 3p vertices as shown in Table 1.

By the definition of improvement, we have the followings.

- (i) G_1 is the improvement of G_2 with $\theta(G_2) = 1$;
- (ii) G_2 is the improvement of G_3 , G_4 and G_5 with $\theta(G_3) = 2\frac{1}{2}$, $\theta(G_4) = 4\frac{1}{2}$ and $\theta(G_5) = 4$;
- (iii) G_3 is the improvement of G_4 and G_6 with $\theta(G_4) = 4\frac{1}{2}$ and $\theta(G_6) = 6\frac{1}{4}$;
- (iv) G_4 is the improvement of G_6 , G_7 and G_8 with $\theta(G_6) = 6\frac{1}{4}$, $\theta(G_7) = 12\frac{1}{4}$ and $\theta(G_8) = 11\frac{1}{2}$;
- (v) G_5 is the improvement of G_4 and G_8 with $\theta(G_4) = 4\frac{1}{2}$ and $\theta(G_8) = 11\frac{1}{2}$;
- (vi) G_6 is the improvement of G_7 , G_9 and G_{10} with $\theta(G_7) = 12\frac{1}{4}$, $\theta(G_9) = 10\frac{1}{8}$ and $\theta(G_{10}) = 14\frac{1}{8}$;

Table 1: Some complete tripartite graphs with 3p vertices and their θ -values

G	$\theta(G)$	G	$\overline{ heta(G)}$
$G_1 = K(p, p, p)$	0	$G_{11} = K(p-4, p, p+4)$	$28\frac{1}{8}$
$G_2 = K(p-1, p, p+1)$	1	$G_{12} = K(p-3, p-1, p+4)$	$27\frac{1}{4}$
$G_3 = K(p-2, p+1, p+1)$	$2\frac{1}{2}$	$G_{13} = K(p-2, p-2, p+4)$	27
$G_4 = K(p-2, p, p+2)$	$4\frac{1}{2}$	$G_{14} = K(p-5, p+2, p+3)$	$18\frac{1}{16}$
$G_5 = K(p-1, p-1, p+2)$	4	$G_{15} = K(p-5, p+1, p+4)$	$30\frac{1}{16}$
$G_6 = K(p-3, p+1, p+2)$	$6\frac{1}{4}$	$G_{16} = K(p-3, p-2, p+5)$	$58\frac{3}{4}$
$G_7 = K(p-3, p, p+3)$	$12\frac{1}{4}$	$G_{17} = K(p-6, p+3, p+3)$	$26\frac{1}{32}$
$G_8 = K(p-2, p-1, p+3)$	$11\frac{1}{2}$	$G_{18} = K(p-6, p+2, p+4)$	$34\frac{1}{32}$
$G_9 = K(p-4, p+2, p+2)$	$10\frac{1}{8}$	$G_{19} = K(p-7, p+3, p+4)$	$42\frac{1}{64}$
$G_{10} = K(p-4, p+1, p+3)$	$14\frac{1}{8}$		

- (vii) G_7 is the improvement of G_{10} , G_{11} and G_{12} with $\theta(G_{10}) = 14\frac{1}{8}$, $\theta(G_{11}) = 28\frac{1}{8}$ and $\theta(G_{12}) = 27\frac{1}{4}$;
- (viii) G_8 is the improvement of G_7 , G_{12} and G_{13} with $\theta(G_7) = 12\frac{1}{4}$, $\theta(G_{12}) = 27\frac{1}{4}$ and $\theta(G_{13}) = 27$;
 - (ix) G_9 is the improvement of G_{10} and G_{14} with $\theta(G_{10}) = 14\frac{1}{8}$ and $\theta(G_{14}) = 18\frac{1}{16}$;
 - (x) G_{10} is the improvement of G_{11} , G_{14} and G_{15} with $\theta(G_{11})=28\frac{1}{8}$, $\theta(G_{14})=18\frac{1}{16}$ and $\theta(G_{15})=30\frac{1}{16}$.
- (xi) G_{13} is the improvement of G_{12} and G_{16} with $\theta(G_{12}) = 27\frac{1}{4}$ and $\theta(G_{16}) = 58\frac{3}{4}$;
- (xii) G_{14} is the improvement of G_{15} , G_{17} and G_{18} with $\theta(G_{15})=30\frac{1}{16}$, $\theta(G_{17})=26\frac{1}{32}$ and $\theta(G_{18})=34\frac{1}{32}$;
- (xiii) G_{17} is the improvement of G_{18} and G_{19} with $\theta(G_{18}) = 34\frac{1}{32}$ and $\theta(G_{19}) = 42\frac{1}{64}$.

Hence, By Lemma 2.4 and the above arguments, we know Theorem 3.1 (i) to (x) hold. The proof is thus complete. \Box

Similar to the proof of Lemma 3.1, we can obtain Lemmas 3.2 and 3.3.

 $3)/2^{p-2}$. Then $+ t^{p_1} + p_2 + p_3 = 3p + 1$ and $p_3 - p_1 \le 6$. Define $\theta(G) = (\alpha(G, 4) - 2^{p+1} + p_3) = 3p + 1$ Lemma 3.2. Let $G=K(p_1,p_2,p_3)$ be a complete tripartite graph such that

(i)
$$\theta(G) = 0$$
 if and only if $G = K(p, p, p + 1)$;

$$(ii) \ \theta(G) = 1 \text{ if and only if } G = K(p-1,p+1);$$

(iii)
$$\theta(G) = 3$$
 if and only if $G = K(p-1, p, p+2)$;

$$(C + q, I + q, C - q) X = O \text{ is in only if } G = (D) \theta \text{ (vi)}$$

(v)
$$\theta(G) = 8\frac{1}{4}$$
 if and only if $G = K(p-3, p+2, p+2)$;

$$(G + q, I - q, I - q) X = D \text{ is and only if } G = (D) \theta \text{ (iv)}$$

(iii)
$$\theta(G) = 10\frac{1}{2}$$
 if and only if $G = K(p-2,p,p+3)$;

(iii)
$$\theta(G) = 12\frac{1}{4}$$
 if and only if $G = K(p-3, p+1, p+3)$;

(ix)
$$\theta(G) = 25\frac{1}{2}$$
 if and only if $G = K(p-2, p-1, p+4)$;

Lemma 3.3. Let
$$G = K(p_1, p_2, p_3)$$
 be a complete tripartite g

 $\sum_{b+1} + 3 / \sum_{b-1} Then$ $p_1 + p_2 + p_3 = 3p + 1$ and $p_3 - p_1 \le 6$. Define $\theta(G) = (\alpha(G, 4) - 2^{p-1} - p_1) = 0$ Lemma 3.3. Let $G=K(p_1,p_2,p_3)$ be a complete trapartite graph such that

(i)
$$\theta(G) = 0$$
 if and only if $G = K(p, p + 1, p + 1)$;

(ii)
$$\theta(G) = 1$$
 if and only if $G = K(p, p, p + 2)$;

$$(C+q,I+q,I-q) H = \mathfrak{D} \text{ it is only if } G = (D)\theta \text{ (iii)}$$

(vi)
$$\theta(G) = 3\frac{1}{4}$$
 if and only if $G = K(p-2, p+2)$;

$$(a + d) = d + d = d$$

(v)
$$\theta(G) = 4\frac{1}{2}$$
 if and only if $G = K(p-1, p, p+3)$;

$$(\mathcal{E} + q, \mathcal{I} + q, \mathcal{I} - q) \mathcal{H} = \mathcal{O} \text{ if ond only if } \mathcal{G} = (\mathcal{O}) \theta \text{ (iv)}$$

(vii)
$$\theta(G) = 7\frac{1}{8}$$
 if and only if $G = K(p-3, p+2, p+3)$;

(iii)
$$\theta(G) = 12$$
 if and only if $G = K(p-1, p-1, p+4)$;

(i)
$$\theta(G) = 12\frac{1}{4}$$
 if and only if $G = K(p - 2, p, p + 4)$;

4 Chromatically closed tripartite graphs

We shall in this section obtain the χ -closed families of graphs obtained from the graphs in Lemma 3.1 to Lemma 3.3 with a set S of s edges deleted.

Lemma 4.1. The family of graphs $K^{-s}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ is χ -closed.

Proof. By Lemma 3.1, there are 10 cases to consider. Denote each graph in Lemma 3.1(i), (ii), ..., (x) by $G_1, G_2, ..., G_{10}$, respectively. Suppose $H \sim G_i - S$. It suffices to show that $H \in \{G_i - S\}$. By Lemma 2.1, we know there exists a complete tripartite graph F = K(x, y, z) such that H = F - S' with $|S'| = s' = e(F) - e(G) + s \ge 0$.

Case (i). Let $G=G_1$ with $p\geq s+2$. In this case, $H\sim G-S\in\mathcal{K}^{-s}(p,p,p)$. By Lemma 2.5,

$$\alpha(G - S, 4) = \alpha(G, 4) + \alpha_4(G - S)$$
 with $s \le \alpha_4(G - S) \le 2^s - 1$,

$$\alpha(F - S', 4) = \alpha(F, 4) + \alpha_4(F - S')$$
 with $0 \le s' \le \alpha_4(F - S')$.

Hence,

$$\alpha(F - S', 4) - \alpha(G - S, 4) = \alpha(F, 4) - \alpha(G, 4) + \alpha_4(F - S') - \alpha_4(G - S).$$

By definition, $\alpha(F,4)-\alpha(G,4)=2^{p-2}(\theta(F)-\theta(G))$. By Lemma 3.1, $\theta(F)\geq 0$. Suppose $\theta(F)>0$, then

$$\alpha(F - S', 4) - \alpha(G - S, 4) \geq 2^{p-2} + \alpha_4(F - S') - \alpha_4(G - S)$$

$$\geq 2^s + \alpha_4(F - S') - 2^s + 1$$

$$\geq 1,$$

contradicting $\alpha(F - S', 4) = \alpha(G - S, 4)$. Hence, $\theta(F) = 0$ and so $F \cong G$ and s = s'. Therefore, $H \in \mathcal{K}^{-s}(p, p, p)$.

Case (ii). Let $G = G_2$ with $p \ge s + 2$. In this case, $H \sim G - S \in \mathcal{K}^{-s}(p-1,p,p+1)$. By Lemma 2.5,

$$\alpha(G - S, 4) = \alpha(G, 4) + \alpha_4(G - S)$$
 with $s \le \alpha_4(G - S) \le 2^s - 1$,

$$\alpha(F - S', 4) = \alpha(F, 4) + \alpha_4(F - S')$$
 with $0 \le s' \le \alpha_4(F - S')$.

Hence,

$$\alpha(F - S', 4) - \alpha(G - S, 4) = \alpha(F, 4) - \alpha(G, 4) + \alpha_4(F - S') - \alpha_4(G - S).$$

By definition, $\alpha(F,4)-\alpha(G,4)=2^{p-2}(\theta(F)-\theta(G))$. Suppose $\theta(F)\neq\theta(G)$. We consider two subcases.

Subcase (a). $\theta(F) < \theta(G)$. By Lemma 3.1, $F = G_1$ and so $H = G_1 - S' \in \{G_1 - S'\}$. However, $G - S \notin \{G_1 - S'\}$ since $\{G_1 - S'\}$ is χ -closed, a contradiction.

Subcase (b). $\theta(F) > \theta(G)$. By Lemma 3.1, $\alpha(F,4) - \alpha(G,4) \ge \frac{3}{2}(2^{p-2})$. So.

$$\begin{array}{ll} \alpha(F-S',4) - \alpha(G-S,4) & \geq & \frac{3}{2}(2^{p-2}) + \alpha_4(F-S') - \alpha_4(G-S) \\ & \geq & 2^s + \alpha_4(F-S') - 2^s + 1 \\ & \geq & 1, \end{array}$$

contradicting $\alpha(F - S', 4) = \alpha(G - S, 4)$. Hence, $\theta(F) - \theta(G) = 0$ and so F = G and s = s'. Therefore, $H \in \mathcal{K}^{-s}(p-1, p, p+1)$.

Using Table 1, we can prove Cases (iii) to (x) in a similar way. This completes the proof. \Box

Similar to the proofs of Lemma 4.1, we can prove Lemmas 4.2 and 4.3.

Lemma 4.2. The family of graphs $K^{-s}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p + 1$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ is χ -closed.

Lemma 4.3. The family of graphs $K^{-s}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p + 2$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ is χ -closed.

5 Chromatically unique tripartite graphs

The following two Lemmas give several families of chromatically unique complete tripartite graphs having 3p vertices with a set S of s edges deleted where the deleted edges induce a star K(1, s) and a matching sK_2 , respectively.

Lemma 5.1. The graphs $K_{i,j}^{-K(1,s)}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ are χ -unique for $1 \le i \ne j \le 3$.

Proof. By Lemma 3.1, there are 10 cases to consider. Denote each graph in Lemma 3.1 (i), (ii), ..., (x) by $G_1, G_2, ..., G_{10}$, respectively. The proof for each graph obtained from G_i (i = 1, 2, ..., 10) are similar, so we only give the detail proof of the graphs obtained from G_3 as follow.

By Lemma 2.5 and Lemma 4.1 Case (iii), we know that $\mathcal{K}_{i,j}^{-K(1,s)}(p-2,p+1,p+1) = \{K_{i,j}^{-K(1,s)}(p-2,p+1,p+1) \mid (i,j) \in \{(1,2),(2,1),(2,3)\}\}$ is χ -closed for $p \geq s+3$. Note that

$$\begin{array}{lcl} t(K_{i,j}^{-K(1,s)}(p-2,p+1,p+1)) & = & (p-2)(p+1)^2-p-1 \\ & & \text{for } (i,j) \in \{(1,2),(2,1)\}, \\ t(K_{2,3}^{-K(1,s)}(p-2,p+1,p+1)) & = & (p-2)(p+1)^2-p+2. \end{array}$$

By Lemmas 2.2 and 2.6, we conclude that $\sigma(K_{1,2}^{-K(1,s)}(p-2,p+1,p+1)) \neq \sigma(K_{2,1}^{-K(1,s)}(p-2,p+1,p+1))$. Hence, by Lemma 2.1, $K_{i,j}^{-K(1,s)}(p-2,p+1,p+1)$ where $p \geq s+3$ is χ -unique for $1 \leq i \neq j \leq 3$.

The proof is thus complete.

Lemma 5.2. The graphs $K_{1,2}^{-sK_2}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ are χ -unique.

Proof. By Lemma 3.1, there are 10 cases to consider. Denote each graph in Lemma 3.1 (i), (ii), ..., (x) by $G_1, G_2, ..., G_{10}$, respectively. For a graph K(x, y, z), let $S = \{\epsilon_1, \epsilon_2, ..., \epsilon_s\}$ be a set of s edges in E(K(x, y, z)) and let $t(\epsilon_i)$ denote the number of triangles containing ϵ_i in K(x, y, z). The proof for each graph obtained from G_i (i = 1, 2, ..., 10) are similar, so we only give the proofs of the graphs obtained from G_2 and G_3 as follows.

Suppose $H \sim G = K_{1,2}^{-sK_2}(p-1,p,p+1)$ for $p \geq s+2$. By Lemma 4.1 and Lemma 2.1, $H \in \mathcal{K}^{-s}(p-1,p,p+1)$ and $\alpha_4(H) = \alpha_4(G) = s$. Let H = F - S where F = K(p-1,p,p+1). Clearly, $t(\epsilon_i) \leq p+1$ for each $\epsilon_i \in S$. So,

$$t(H) \geq t(F) - s(p+1) \tag{1}$$

with equality holds only if $t(\epsilon_i) = p+1$ for all $\epsilon_i \in S$. Since t(H) = t(G) = t(F) - s(p+1), equality in (1) holds with $t(\epsilon_i) = p+1$ for all $\epsilon_i \in S$. Therefore, each edge in S has an end-vertex in V_1 and another end-vertex in V_2 . Moreover, S must induce a matching in F. Otherwise, $\alpha_4(H) > s$. Hence, $\langle S \rangle \cong sK_2$ and $H \cong G$.

Now, suppose $H \sim G = K_{1,2}^{-sK_2}(p-2,p+1,p+1)$ for $p \geq s+3$. By Lemma 4.1 and Lemma 2.1, $H \in \mathcal{K}^{-s}(p-2,p+1,p+1)$ and $\alpha_4(H) = \alpha_4(G) = s$. Let H = F - S where F = K(p-2,p+1,p+1). Clearly, $t(\epsilon_i) \leq p+1$ for each $\epsilon_i \in S$. So,

$$t(H) \geq t(F) - s(p+1) \tag{2}$$

with equality holds only if $t(\epsilon_i) = p+1$ for all $\epsilon_i \in S$. Since t(H) = t(G) = t(F) - s(p+1), equality in (2) holds with $t(\epsilon_i) = p+1$ for all $\epsilon_i \in S$. Therefore, each edge in S has an end-vertex in V_1 , and another end-vertex in V_2 or in V_3 . Moreover, S must induce a matching in F. Otherwise, equality in (2) does not hold or $\alpha_4(H) > s$. By Lemma 2.7, $Q(G) = Q(F) - sp(p-3) + \binom{s}{2} + s\binom{p+1}{2} \ge Q(H)$ and the equality holds if and only if each edge in S joins vertices in the same two partite sets of smallest size. Therefore, $\langle S \rangle \cong sK_2$ with $H \cong G$.

The proof is thus complete.

Similar to the proofs of Lemmas 5.1 and 5.2, we can prove Lemmas 5.3 to 5.6.

Lemma 5.3. The graphs $K_{i,j}^{-K(1,s)}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p + 1$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ are χ -unique for $1 \le i \ne j \le 3$.

Lemma 5.4. The graphs $K_{1,2}^{-sK_2}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p + 1$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ are χ -unique.

Lemma 5.5. The graphs $K_{i,j}^{-K(1,s)}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p + 2$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ are χ -unique for $1 \le i \ne j \le 3$.

Lemma 5.6. The graphs $K_{1,2}^{-sK_2}(p_1, p_2, p_3)$ where $p_1 + p_2 + p_3 = 3p + 2$, $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$ are χ -unique.

We thus have our main theorem as follow.

Theorem 5.1. For integers $p_3 - p_1 \le 6$ and $p_1 \ge s + 2$, the tripartite graphs $K_{i,j}^{-K(1,s)}(p_1, p_2, p_3)$ where $1 \le i \ne j \le 3$ and $K_{1,2}^{-sK_2}(p_1, p_2, p_3)$ are γ -unique.

Remark. Our main theorem improves the condition of Theorems 6.4.2 to 6.4.4 in [7] significantly especially when s is "sufficiently" large. We also obtained a similar result for 4-partite graphs which will appear in other journal.

References

- F. Brenti, Expansions of chromatic polynomial and log-loncavity, Trans. Amer. Math. Soc. 332 (1992) 729-756.
- F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, and M.D. Hendy, Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphs, J. Graph Theory 37 (2001) 48-77.

- 3. K.M. Koh, and K.L. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285.
- K.M. Koh, and K.L. Teo, The search for chromatically unique graphs
 II, Discrete Math. 172 (1997) 59-78.
- R.C. Read, and W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory, Vol. 3, Academic Press, New York (1988) 15-42.
- 6. D.B. West, Introduction to Graph Theory, second ed., Prentice Hall (2001) New Jersey.
- 7. H.X. Zhao, Chromaticity and adjoint polynomials of graphs, Ph.D. *Thesis* (2005) University of Twente, Netherland.