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ABSTRACT

Let P(G, ) be the chromatic polynomial of a graph G. Two graphs
G and H are said to be chromatically equivalent, denoted G ~ H, if
P(G,\) = P(H,}). We write [G] = {H|H ~ G}. If [G] = {G}, then G is
said to be chromatically unique. In this paper, we first characterize certain
complete triparite graphs G according to the number of 4-independent par-
titions of G. Using these results, we investigate the chromaticity of G with
certain star or matching deleted. As a by-product, we obtain new fami-
lies of chromatically unique complete tripartite graphs with certain star or
matching deleted.
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1 Introduction

All graphs considered in this paper are finite and simple. For a graph G, we
denote by P(G; }) (or P(G)), the chromatic polynomial of G. Two graphs
G and H are said to be chromatically equivalent (simply x-equivalent),
denoted G ~ H if P(G) = P(H). A graph G is said to be chromatically
unigue (simply x-unique), if H ~ G implies that H = G. A family G of
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graphs is said to be chromatically-closed (simply x-closed) if for any graph
G € G, P(H) = P(G) implies that H € G. Many families of x-unique
graphs are known (see (3, 4]).

For a graph G, let &(G), v(G), t(G) and x(G) respectively be the number of
vertices, edges, triangles and chromatic number of G. Let Oy, be an edgeless
graph with n vertices. Also let Q(G) and K(G) be the number of induced
subgraphs C; and complete subgraphs K4 in G. Suppose S be a set of s(>
1) edges of G. Denote by G — S the graph obtained from G by deleting all
edges in S, and by (S) the graph induced by S. Fort > 2and1<p; <pz2 <
.+ < p, let K(p1,P2,---,pt) be a complete t-partite graph with partition
sets V; such that |Vi| = p; fori = 1,2,...,t. In [7], Zhao proved that certain
families of complete tripartite graphs with a matching or a star deleted are
x-unique. In this paper, we first characterize certain complete triparite
graphs G according to the number of 4-independent partitions of G. Using
these results, we investigate the chromaticity of G with certain star or
matching deleted. As a by-product, we obtain new families of chromatically
unique complete tripartite graphs with certain star or matching deleted.

2 Preliminary results and notations

Let K—*(p1,p2,...,pt) be the family {K(p1,p2,...,p) — S|S C
E(K(p1,p2,.--,pt)) and |S| = s}. For p1 > s+ 1, we denote by

Ki-:jK(l’s)(pl,pz,...,pg) (respectively, K{:J."K’(pl,pg,...,pt)) the graph in
K~=%(p1,p2,...,p:) where the s edges in S induced a K(1, s) with center in
V; and all the end-vertices in V;, (respectively, a matching with end-vertices
in V; and Vj).

For a graph G and a positive integer k, a partition {41, As,..., Ak} of
V(G) is called a k-independent partition in G if each A; is a non-empty
independent set of G. Let a(G, k) denote the number of k-independent
partitions in G. If G is of order n, then P(G,)\) = Y i, a(G,k)(\)k
where (A\)r = A(A—1) -+ (A—k+1) (see [5]). Therefore, (G, k) = a(H, k)
foreach k=1,2,...,if G~ H.

For a graph G with n vertices, the polynomial ¢(G,z) = Y_¢_, (G, k)zk
is called the o-polynomial of G (see [1]). Clearly, P(G,A) = P(H, A) implies
that o(G, z) = o(H, z) for any graphs G and H.

For disjoint graphs G and H, G + H denotes the disjoint union of G and
H; GV H denotes the graph whose vertex-set is V(G) U V(H) and whose
edge-set is {zy|z € V(G) and y € V(H)} U E(G) U E(H). Throughout this
paper, all the t-partite graphs G under consideration are 2-connected with
x(G) = t. For terms used but not defined here we refer to (6].
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Lemma 2.1. (Koh and Teo [3]) Let G and H be two graphs with H ~
G, then v(G) = v(H), e(G) = e(H), t(G) = t(H) and x(G) = x(H).
Moreover, a(G, k) = a(H, k) for each k=1,2,..., and

-Q(G) +2K(G) = —-Q(H) + 2K (H).
Note that if x(G) = 3, then G ~ H implies that Q(G) = Q(H).

Lemma 2.2. (Brenti [1]) Let G and H be two disjoint graphs. Then
o(GV H,z) =0(G,z)o(H, z).

In particular,

t
o(K(n1,n2,...,m),2) = [| ¢(On,, ).
i=1
Lemma 2.3 Let G be a connected t-partite graph. If H ~ G, then there
erists a complete t-partite graph F = K(z1,z,,. .., ;) such that H = F-§'
with |S'| = &' = e(F) — e(G).

Proof. Since V(G) has a t-independent partition, then V(H) also has
a t-independent partition with independent sets V;,V3,...,V; such that
|Vil = z;. Hence, H is a t-partite graph and there exists a graph complete
t-partite ' = K(z1,22,...,%;) such that H = F — §'. Since H ~ G, by
Lemma 2.1, we have s' = e(F) —e(G). [

Let H = K(z1,z2, 73, vooy, ) and H' = K(z1,22,...,2: + 1,. 7
1,...,z¢). Ifi < jand z; ~z; > 2, then H' is called an improvement of H.

Lemma 2.4 Suppose H' = K(z1,%2,...,%;+1,...,z;—1,...,2;) is an
improvement of H = K(z1,%2,23,...,,%t), then o(H,t+1) > o(H',t+1).
Proof. Note that a(H',t+1) = S5, 271 4 2%~1 _9%-2 and o(H, t +
1) = 5., 2% 1. Hence, a(H,t + 1) — a(H',t + 1) = 2%i=2 — 9z:—1 >
2%i-1 50,

Suppose G = K(p1,p2,...,pt) and H =G — S for a set S of s edges of G.
Define ax(H) = o(H, k) — a(G,k) for k > t + 1.

Lemma 2.5. (Zhao (7]) Let G = K(p1,p2,...,p:) and H = G - S. If
p1 2 8+1, then

s<opp(H)=a(H,t+1)—a(G,t+1) < 2° -1,

ac1(H) = s if and only if the subgraph induced by any r > 2 edges in S
is not a complete multipartite graph, and a,41(H) = 2° ~ 1 if and only if
(S) = K(1,s).
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Lemma 2.6. (Dong et al. [2]) Let p1,p2 and s be positive integers with
3 < p1 S P2, then

(i) K13 (py,p2) is x-unique for 1 < s <pa -2,
(it) Kz_:{((l's)(pl,pg) is x-unique for1 < s < p; — 2, and
(iii) K—*K3(p,,pp) is x-unique for 1< s<p1—1

For a graph G € K=%(p1, P2, . . ., Pt), we say an induced subgraph C4 of G
is of Type 1 (respectively Type 2, and Type 3) if the vertices of the induced
C, are in exactly two (respectively three, and four) partite sets of V(G).
An example of induced Cy of Type 1, 2 and 3 are shown in Figure 1.

Type 3
Vi Vs

Type 2

Type 1

...........

..........

Vs Va

Figure 1: Three types of induced C;

Suppose G is a graph in K~*(p1,p2,...,pt). Let Si; (1<i<t,1<5<t)
be a subset of S such that each edge in S;; has an end-vertex in V; and
another end-vertex in V; with |S;;| = s;; 2 0.

Lemma 2.7. Let F = K(p1,p2,p3) be a complete tripartite graph and

G=F-S8 forasetS of s>1 edges in F. If S induces a matching in F,
then

QG = Q- T -1 - s+ (5) -

1<i<j<3
Pk
812813 — 812823 — 813523 + Sij\ o |-
1<i<j<3

Moreover,

maz {Q(G)} = Q(F) — s(p1 — 1)(p2 — 1) + (2) + s(f;s)
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if and only if each edge in S joins vertices in the same two partite sets of
smallest size.

Proof. Note that G has only induced C4 of Type 1 or Type 2. Let
Q1(G) (respectively, Q2(G)) be the number of Type 1 (respectively, Type
2) induced Cy in G. Observe that S = U Si; with s;; > 0. Hence,

1<i<ist
@ = ¥ (3)(B)- X o-e-ss+
1<i<j<3 1<i<j<3
> (%)
1<i<j<3 2
s
= @N- ¥ - D - e+ (3) -
1<i<j<3
812813 — 812823 — S13823.
Hence,

s
Qi(G) < QF)- > (pi—1)pj—1)sij + (2)
1<i<j<3
with the equality holds if and only if s = s;; for 1 < i < j < 3. Now,
observe that (p; — 1)(p2 — 1)s < (pi — 1)(p; — 1)s;; for 1 < i< j <3 and
the equality holds if and only if each edge in S joins vertices in the same
two partite sets of smallest size.

We now find Q2(G). Since the number of 2-element subsets of Vi is (%),

we have
Z Pk
Sy ( 2 )

1<i<j<3
k & {i,5}

< s(”;),

with the equality holds if and only if each edge in S joins vertices in the
same two partite sets of smallest size. Hence, maz {Q(G)} = Q(F)—s(p; —
1)(pz = 1) + (3) + s(%) if and only if each edge in S joins vertices in the
same two partite sets of smallest size. g

Q2(G)

3 Characterization

In this section, we shall characterize certain complete tripartite graphs
G = K(p1,p2,p3) according to the number of 4-independent partitions of
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G where p3 —p1 £ 6.

Lemma 3.1. Let G = K(p1,p2,p3) be a complete tripartite graph such
that py + p2 + p3 = 3p and p3 — p1 < 6. Define 6(G) = (a(G,4) — 277! -
27 +3)/2P=2. Then :

(i) 6(G) = 0 if and only if G = K(p,p, p);
(i) 6(G) = 1 if and only if G = K(p — 1,p,p+1);
(iii) 6(G) =2} if and only if G=K(p—-2,p+1,p+ 1);
(iv) 6(G) =4 if and only if G=K(p—1,p— 1,p+2);
(v) 8(G) = 41 if and only if G = K(p—2,p,p+2);
(vi) 8(G) = 6} if and only if G = K(p—3,p+1,p+2);
(vii) 8(G) = 10} if and only if G = K(p—4,p+2,p+2);
(viii) 8(G) = 113 if and only if G = K(p—2,p—1,p+3);
(iz) 6(G) =12} if and only if G = K(p — 3,p,p+3);
(z) 6(G) = 27 if and only if G = K(p — 2,p— 2,p + 4).

Proof. In order to complete the proof of the theorem, we first give a table
about the @-value of various complete tripartite graphs with 3p vertices as
shown in Table 1.

By the definition of improvement, we have the followings.
(i) G, is the improvement of G2 with §(G2) = 1;

(ii) G2 is the improvement of G3, G4 and Gs with 8(G3) = 2%,0(04) =
41 and 8(Gs) = 4;

(i) Gs is the improvement of G4 and Gg with 8(G4) = 43 and 6(Gs) =
61;

(iv) G4 is the improvement of Gg, G7 and Gs with 8(Gs) = 6-}, 0(Gy) =
121 and 6(Gs) = 114;

(v) Gs is the improvement of G4 and Gg with 8(G4) = 43 and 6(Gs) =
114;

(vi) Gg is the improvement of G7, Gg and G with 8(G7) = 12%, 8(Gy) =
10-;— and 9(010) = 14%;
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Table 1: Some complete tripartite graphs with 3p vertices and their 6-values

G 9(G) [ G 8(G)
G1 = K(p,p,p) 0 |Gu=K({@-4,pp+4) 283
Gy=K(p-1,p,p+1) 1 | Gi=K(p-3,p-1,p+4) 27
Cs=K(p-2,p+1,p+1) 2} |Gus=K@p-2,p-2,p+4) 27
Gi=K(p-2,p,p+2) 4-;: G14=K(p-—5,p+2,p+3) 181_16
Gs=K(p-1,p-1,p+2) 4 |Gis=K(p-5p+1,p+4) 30%
Ge=K(p-3,p+1,p+2) 6} |Gie=K(p—-3,p-2,p+5) 582
Gr=K(p-3,p,p+3) 12; | Gir=K(p-6,p+3,p+3) 263
Gs=K(p-2,p-1,p+3) 113 | Gis=K(p-6,p+2,p+4) 343
Go=K(p-4,p+2,p+2) 105 |G=K(@p-T7p+3,p+4) 42%
Gu=K(p-4,p+1,p+3) 14}

(vii) G7 is the improvement of Gio, G11 and Gz with 8(Gy) = 14 % ,
8(G11) = 28} and 8(G12) = 273;

(viii) Gg is the improvement of G7, G12 and Gi3 with 8(G7) = 124,
0(G,2) = 2721 and 0(G13) = 27;

(ix) Gg is the improvement of Gio and G4 with §(Gyp) = 14} and
0(Gr4) = 185%;

(x) Gio is the improvement of G11, G4 and G5 with 8(Gy;) = 281,
8(G14) = 1875 and 6(G1s5) = 305%.

(xi) Gs is the improvement of G2 and Gy¢ with 8(G12) = 274 and
6(G1e) = 583;

(xii) Gi4 is the improvement of G15, G17 and Gig with 6(G1s) = 3055,

(xiii) Gy7 is the improvement of G1s and Gig with 8(Gyg) = 343 and
1
0(019) = 42&.

Hence, By Lemma 2.4 and the above arguments, we know Theorem 3.1 (i)
to (x) hold. The proof is thus complete. g

Similar to the proof of Lemma 3.1, we can obtain Lemmas 3.2 and 3.3.
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4 Chromatically closed tripartite graphs

We shall in this section obtain the x-closed families of graphs obtained from
the graphs in Lemma 3.1 to Lemma 3.3 with a set S of s edges deleted.

Lemma 4.1. The family of graphs K=°(p1, p2, ps) where p; +p2 +ps = 3p,
p3—p1 <6 and py > s+ 2 is x-closed.

Proof. By Lemma 3.1, there are 10 cases to consider. Denote each graph
in Lemma 3.1(i), (ii), ..., (x) by G1, G2,...,Gy, respectively. Suppose
H ~ G; — S. 1t suffices to show that H € {G; — S}. By Lemma 2.1,
we know there exists a complete tripartite graph F = K(z,, z) such that
H=F -8 with || =3¢ =e(F) —e(G) +s>0.

Case (i). Let G = G; with p > s+ 2. In thiscase, H ~ G -8 ¢
K~°(p,p,p). By Lemma 2.5,

(G - 5,4) = a(G,4) + a4(G - S) with s < (G - §) <2° -1,
a(F - 5',4) = a(F,4) + o4(F - §') with 0 < &' < ay(F - ).
Hence,
a(F - 5',4) — (G - 5,4) = a(F,4) — (G, 4) + a4(F - §') — a4(G - S).

By definition, a(F,4) -~ a(G,4) = 2P~2(9(F) — 6(G)). By Lemma 3.1,
6(F) > 0. Suppose (F) > 0, then

o(F—58,4)—a(G—-5,4) > 27724 q4(F - ') — as(G - 8)
> 24oy(F-8)-2"+1
2 1

contradicting a(F — §’,4) = a(G — S, 4). Hence, §(F) =0 andso F = G
and s = s'. Therefore, H € X~*(p, p, p).

Case (ii). Let G = G2 withp > s+ 2. Inthiscase, H ~ G- 8 €
K=*(p-1,p,p+1). By Lemma 2.5,

(G - 5,4) = a(G, 4) + a4(G — 5) With s < ag(G - S) <2° — 1,
a(F —5',4) = a(F,4) + a4(F - §') with0< 8’ < ay(F - §').
Hence,

a(F - §',4) - o(G — 5,4) = o(F, 4) - a(G, 4) + aa(F — §') — a4(G ~ S).
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By definition, a(F, 4)—a(G, 4) = 2P~2(8(F)—6(G)). Suppose §(F) # 6(G).
We consider two subcases.

Subcase (a). 8(F) < 8(G). By Lemma 3.1, F = G, andso H = G, -5 €
{G, - §'}. However, G— S ¢ {G1 — S'} since {G1 — S’} is x-closed, a
contradiction.

Subcase (b). 8(F) > 8(G). By Lemma 3.1, o(F,4) — oG, 4) 2 §(2772).
So,

o(F =5, 4)—a(G-54) > g(zﬂ) +aa(F — ') — ca(G - S)
> 2 payF-5)-2'+1
> 1,

contradicting a(F — §',4) = (G — S,4). Hence, 6(F) - §(G) =0 and so
F =G and s =s'. Therefore, He K~*(p—1,p,p+1).

Using Table 1, we can prove Cases (iii) to (x) in a similar way. This
completes the proof.

Similar to the proofs of Lemma 4.1, we can prove Lemmas 4.2 and 4.3.

Lemma 4.2. The family of graphs K~*(p1,p2,p3) where py + p2 + p3
3p+1, p3—p1 <6 and py > s+ 2 is x-closed.

Lemma 4.3. The family of graphs K~*(p1,p2,p3) where py + p2 + p3 =
3p+2, ps—p1 <6 and p1 > s+ 2 is x-closed.

5 Chromatically unique tripartite graphs

The following two Lemmas give several families of chromatically unique
complete tripartite graphs having 3p vertices with a set S of s edges deleted
where the deleted edges induce a star K(1, s) and a matching sK>, respec-
tively.

Lemma 5.1. The graphs K;J-K(l’s)(pl,pg,pa) where py; + p2 + ps = 3p,
p3—p1 <6 and py > s+ 2 are x-unique for 1 <iFj < 3.

Proof. By Lemma 3.1, there are 10 cases to consider. Denote each graph
in Lemma 3.1 (i), (ii), ..., (x) by G1, Ga,..., G0, respectively. The proof
for each graph obtained from G; (¢ = 1,2,..., 10) are similar, so we only
give the detail proof of the graphs obtained from Gj3 as follow. -
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By Lemma 2.5 and Lemma 4.1 Case (iii), we know that IC‘K(I’B) (r-2,p+

Lp+1) = (K -2,p+1,p+1)|G,5) € {(1,2), (2 1);(2,3)}} is
x-closed for p > s + 3. Note that

t(K;jK(l,a)(p —2,p+1,p+1) = (p-2)p+1)?2-p-1
for (3,5) € {(1,2),(2,1)},

t(K{,f“’”)(p -2,p+L,p+1) = (p-2)(p+1)2-p+2

By Lemmas 2.2 and 2.6, we conclude that a(Ki'K(l"")(p—2 p+1,p+1)) #

a(K_K(l”)(p 2,p+1,p+1)). Hence, by Lemma 2.1, K_K(1 ")(p——2,p+
1,p+ 1) where p > s+ 3 is x-unique for 1 <i#j < 3.

The proof is thus complete. [

Lemma 5.2. The graphs Kl‘,gK’(pl,pz,pa) where py + p2 + p3 = 3p, p3 —
P1 £ 6 and p1 2 8+ 2 are x-unique.

Proof. By Lemma 3.1, there are 10 cases to consider. Denote each graph
in Lemma 3.1 (i), (ii), .. ., (x) by G1, Ga, ..., G1o, respectively. For a graph
K(z,y,2), let S = {€,€2,...,¢,} be a set of s edges in E(K(z,y,z)) and
let ¢(e;) denote the number of triangles containing ¢; in K(z,y,2). The
proof for each graph obtained from G; (i = 1,2,...,10) are similar, so we
only give the proofs of the graphs obtained from G5 and G3 as follows.

Suppose H ~ G = Kl'ngz(p - 1,p,p+1) for p > s+ 2. By Lemma 4.1
and Lemma 2.1, H € K~%(p — 1,p,p+ 1) and a4(H) = a4(G) = s. Let
H =F - S where F = K(p—1,p,p+ 1). Clearly, t(¢;) < p+ 1 for each
€; € S. So,

tH) 2 HF)-s(p+1) 1)

with equality holds only if t(e;) =p+1 for all ¢; € S. Since t(H) = ¢(G) =
t(F) — s(p + 1), equality in (1) holds with ¢(¢;) = p+ 1 for all ¢; € S.
Therefore, each edge in S has an end-vertex in V; and another end-vertex
in V. Moreover, S must induce a matching in F. Otherwise, ay(H) > s.
Hence, (S) @ sK; and H & G.

Now, suppose H ~ G = K. §K2(p 2,p+1,p+1) forp > s+3. By
Lemma 4.1 and Lemma 2.1, H € K= -2,p+1,p+1) and ay(H) =
a4(G) =s. Let H=F — S where F = K(p — 2,p+1,p+1). Clearly,
t(e;) <p+1foreache¢ €S. So,

t(H) 2 tF)-s(p+1) 2)
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with equality holds only if t(e;) = p+ 1 for all &; € S. Since ¢{(H) =
t(G) = t(F) — s(p + 1), equality in (2) holds with #(e;) = p + 1 for all
¢; € S. Therefore, each edge in S has an end-vertex in V;, and another
end-vertex in V» or in Va. Moreover, S must induce a matching in F.
Otherwise, equality in (2) does not hold or as(H) > s. By Lemma 2.7,
Q(G) = Q(F) — sp(p — 3) + (5) + s(°%!) > Q(H) and the equality holds
if and only if each edge in S joins vertices in the same two partite sets of
smallest size. Therefore, (S) = sK, with H 2 G.

The proof is thus complete.
Similar to the proofs of Lemmas 5.1 and 5.2, we can prove Lemmas 5.3
to 5.6.

Lemma 5.3. The graphs K,.',J.K(l")(pl,pg,ps) where py +p2+p3 =3p+1,
ps —p1 <6 and p; > s+ 2 are x-unique for 1 <i# j < 3.

Lemma 5.4. The graphs K;;K’ (p1,p2,p3) where py +pa+p3 =3p+1,
p3 —py < 6 and p1 > s+ 2 are x-unique.

Lemma 5.5. The graphs K, f(l”)(mapzyps) where py +p2+p3 =3p+2,
p3—p1 < 6 and py > s+ 2 are x-unique for 1 <i#j < 3.

Lemma 5.6. The graphs K;;K’ (p1,p2,p3) where py +p2 +p3 =3p+2,
p3s —p1 <6 and p1 > s+ 2 are x-unique.

We thus have our main theorem as follow.

Theorem 5.1. For integers p3 — p1 < 6 and p1 > s + 2, the tripartite
graphs K K (py, py, p3) where 1 < i # j < 3 and K75 (p1, p2,ps) are
X-unique.

Remark. Our main theorem improves the condition of Theorems 6.4.2 to
6.4.4 in [7] significantly especially when s is “sufficiently” large. We also
obtained a similar result for 4-partite graphs which will appear in other
journal.
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