Combinatorial properties of codes with w-identifiable parents property*

Yu Xiong[†]

Institute of Applied Mathematics and Engineering Computations,

Hangzhou Dianzi University

Hangzhou 310018, P.R.China

Jun Ma[‡]

Department of Mathematics, Shanghai Jiaotong University, Shanghai, 200240, P.R. China

Abstract.In this paper, we study the combinatorial properties of w-IPP (identifiable parents property) codes and give necessary and sufficient conditions for a code to be a w-IPP code. Furthermore, let $R(C) = \frac{1}{n}log_q|\mathcal{C}|$ denote the rate of the q-ary code \mathcal{C} of length n, suppose $q \geq 3$ is a prime power, we prove that there exists a sequence of linear q-ary 2-IPP codes C_n of length n with $R(C_n) = \frac{1}{3}log_q \frac{q^3}{4q^2-6q+3}$.

MSC: 94A60, 05C65

Keywords: identifying parent property, fingerprinting, configuration.

1 Introduction

Motivated by an application in fingerprinting digital multimedia, the concept of a code with identifiable parent property was introduced by Hollmann et al. [2] and generalized by Staddon et al. [3].

Let \mathcal{Q} be an alphabet of size q and \mathcal{Q}^n denote the set of all n-tuples over \mathcal{Q} . Let $\mathcal{C} \subseteq \mathcal{Q}^n$, $N = |\mathcal{C}|$, then \mathcal{C} is called a code of length n and size N, denoted an (N, n, q)-code. If $c = (c_1, c_2, \dots, c_n) \in \mathcal{C}$, then c is called a codeword of \mathcal{C} .

^{*}Project supported by National Natural Science Foundation of China under Grant No. 10471093.

[†]xiongyu@hdu.edu.cn

[‡]majun@math.sinica.edu.tw

Let \mathcal{C} be an (N, n, q)-code. For $X \subseteq \mathcal{C}$, we define the set of descendants of X, denoted desc(X) by

$$desc(X) = \{d \in \mathcal{Q}^n : d_i \in \{x_i : x \in X\}, 1 \le i \le n\}.$$

A set $X \subseteq \mathcal{C}$ is said to be a parent set of a word $d \in \mathcal{Q}^n$ if $d \in desc(X)$. For $d \in \mathcal{Q}^n$, we write $\mathcal{H}_w(d,\mathcal{C})$ for the set of parent sets $X \subseteq \mathcal{C}$ of d such that $|X| \leq w$.

Definition 1.1 Let C be an (N,n,q)-code. If for each $d \in Q^n$, either $\mathcal{H}_w(d,C)=\emptyset$ or

$$\bigcap_{X\in\mathcal{H}_w(d,\mathcal{C})}X\neq\emptyset,$$

then C is called a w-IPP code.

In [3], Staddon et al. mentioned an open problem: Is there a "tight" characterization of w-IPP codes for $w \ge 3$? In this paper, we shall answer this question and give a necessary and sufficient condition for a code to be a w-IPP code.

As usual, let $R(C) = \frac{1}{n}log_q|\mathcal{C}|$ denote the rate of the q-ary code \mathcal{C} of length n, $F_w(n,q) = \max\{|\mathcal{C}| \mid \mathcal{C} \text{ is a } q - \text{ary } w - \text{IPP code of length } n\}$ and $R_q(w) = \lim_{n \to \infty} \inf \frac{1}{n} \log_q F_w(n,q)$. For any $q \geq 3$, Hollmann et al. [2] proved

 $R_q(2) \ge \log_q(q/(4q^2 - 6q + 3)^{\frac{1}{3}}).$ (1)

A.Barg et al. [1] strengthened this result by proving that there exists a sequence of linear 3-ary 2-IPP codes C_n of length n with $R(C_n) = \frac{1}{3}\log_3\frac{9}{7}$. In this paper, let $q \geq 3$ be a prime power, we show that the bound in (1) can be achieved by a sequence of linear q-ary 2-IPP codes.

2 Necessary and sufficient conditions for a code to be a w-IPP code

Definition 2.1 Suppose that C is a code, X_1, X_2, \dots, X_k are k distinct subcodes of C and $|X_i| = t$ for any $i = 1, 2, \dots, k$. Let $H = \{X_1, X_2, \dots, X_k\}$, if $\bigcap_{i=1}^k X_i = \emptyset$, then H is called (t, k)-configuration of C.

Furthermore, Let H be (t,k)-configuration of C, if $\bigcap_{i=1,i\neq j}^k X_i \neq \emptyset$ for any $j=1,2,\cdots,k$, then H is called minimal (t,k)-configuration of C.

The following lemma tell us that any (t, k)-configuration must contain some minimal (t, k^*) -configurations $(2 \le k^* \le k)$.

Lemma 2.1 Suppose C is a code, and $H = \{X_1, X_2, \dots, X_k\}$ is a (t, k)-configuration of C. Then there exist positive integer $2 \le k^* \le k$ and $H^* \subseteq H$ such that H^* is a minimal (t, k^*) -configuration of C.

Proof. Let $H_0 = H$, if H_0 satisfies $\bigcap_{i=1, i \neq j}^k X_i \neq \emptyset$ for any $j \in \{1, 2, \dots, k\}$, take $k^* = k$ and $H^* = H_0$, then H^* is a minimal (t, k^*) -configuration of \mathcal{C} . Otherwise, there exists a $j \in \{1, 2, \dots, k\}$ such that $\bigcap_{i=1, i \neq j}^k X_i = \emptyset$.

Without loss of generality, suppose j=k, then $\bigcap_{i=1}^{k-1} X_i=\emptyset$. Let $H_1=\{X_1,\cdots,X_{k-1}\}$, then H_1 is (t,k^*) -configuration of \mathcal{C} . Repeating the previous process, we obtain a sequence H_0,H_1,\cdots,H_r where $0\leq r\leq k-2$. Let $k^*=k-r$, $H^*=H_r$, then $|H^*|=k^*$ and H^* is a minimal (t,k^*) -configuration of \mathcal{C} .

To obtain the properties of minimal (t, k^*) -configurations of code C, we need the following definition.

Definition 2.2 Suppose C be a code, $H = \{X_1, X_2, \dots, X_k\}$ is a minimal (t, k^*) -configuration of C. For any $j \in \{1, 2, \dots, k\}$, let $b_j \in \bigcap_{i=1, i \neq j}^k X_i$, then the set $\{b_1, b_2, \dots, b_k\}$ is called a frame of H.

Lemma 2.2 Suppose C is a code, $H = \{X_1, X_2, \dots, X_k\}$ is a minimal (t, k^*) -configuration of C, $B = \{b_1, b_2, \dots, b_k\}$ is a frame of H. Then (1) For any $j \in \{1, 2, \dots, k\}$, $B \setminus \{b_j\} \subseteq X_j$.

$$(2) \left| \bigcup_{i=1}^k X_i \right| \leq \left\lfloor \left(\frac{1}{2}t + 1 \right)^2 \right\rfloor.$$

Proof. (1) Let $j \in \{1, 2, \dots, k\}$. For any $m \neq j$, since $b_m \in \bigcap_{i=1, i \neq m}^k X_i$, we have $b_m \in X_j$. So, $B \setminus \{b_i\} \subseteq X_j$.

(2) By (1), we have $2 \le k \le t+1$. For any $j \in \{1, 2, \dots, k\}$, let $A_j = X_j \setminus (B \setminus \{b_j\})$, then $\bigcup_{j=1}^k X_j = B \cup (\bigcup_{j=1}^k A_j)$. Observe that $B \cap (\bigcup_{j=1}^k A_j) = \emptyset$.

So,
$$|\bigcup_{j=1}^{k} X_j| = |B| + |\bigcup_{j=1}^{k} A_j|$$
.

Since $|B| + |(\bigcup_{j=1}^k A_j)| \le |B| + \sum_{j=1}^k |A_j| = tk - k(k-2) = -k^2 + (t+2)k \le (\frac{1}{2}t+1)^2$, we have $|\bigcup_{j=1}^k X_j| \le \lfloor (\frac{1}{2}t+1)^2 \rfloor$.

Now, suppose that \mathcal{C} is a (N, n, q)-code, $N \geq w, d \in \mathcal{Q}^n$ and $\mathcal{H}_w(d, \mathcal{C}) \neq \emptyset$. For any $X \in \mathcal{H}_w(d, \mathcal{C})$, if |X| < w, since N > w, then there exists a subcode X' of \mathcal{C} such that $X \subset X'$ and |X'| = w. So, let $\mathcal{H}_w^*(d, \mathcal{C}) = \{X' \mid X' \in \mathcal{H}_w(d, \mathcal{C}), |X'| = w\}$, then $\mathcal{H}_w^*(d, \mathcal{C}) \subseteq \mathcal{H}_w(d, \mathcal{C})$. Furthermore, we may obtain the following lemma.

Lemma 2.3 Suppose C is an (N, n, q)-code, $N \geq w$, $d \in Q^n$, $\mathcal{H}_w(d, C) \neq \emptyset$. Then

$$\bigcap_{X\in\mathcal{H}_w(d,\mathcal{C})}X=\bigcap_{X'\in\mathcal{H}_w^*(d,\mathcal{C})}X'.$$

Proof. For any $X \in \mathcal{H}_w(d,\mathcal{C})$, let $Y_X = \{X' \mid X \subseteq X' \subseteq \mathcal{C}\}$, then $\bigcap_{X' \in Y_X} X' = X$. So, $\bigcap_{X' \in \mathcal{H}_w(d,\mathcal{C})} X' = \bigcap_{X \in \mathcal{H}_w(d,\mathcal{C})} (\bigcap_{X' \in Y_X} X') = \bigcap_{X \in \mathcal{H}_w(d,\mathcal{C})} X$.

Now, we prove the main theorem in this section.

Theorem 2.1 Suppose $w \geq 2$, C is an (N, n, q)-code and $N \geq w$. The necessary and sufficient conditions for C to be a w-IPP code are for any $k \in \{2, 3, \dots, w+1\}$ and any minimal (w, k)-configuration $H = \{X_1, X_2, \dots, X_k\}$ of C, where $X_i = \{x_{i,1}, x_{i,2}, \dots, x_{i,w}\}$, $x_{i,j} = (x_{i,j}^1, x_{i,j}^2, \dots, x_{i,j}^n)$ for any $1 \leq i \leq k$ and $1 \leq j \leq w$, there exists a coordinate $l \in \{1, 2, \dots, n\}$ such that $\bigcap_{i=1}^k \{x_{i,1}^l, x_{i,2}^l, \dots, x_{i,w}^l\} = \emptyset$.

Proof. Suppose there exist $k \in \{2, 3, \dots, w+1\}$ and minimal (w, k)-configuration $H = \{X_1, X_2, \dots, X_k\}$ of \mathcal{C} such that $\bigcap_{i=1}^k \{x_{i,1}^l, x_{i,2}^l, \dots, x_{i,w}^l\} \neq \emptyset$ for any coordinate $l = 1, 2, \dots, n$.

For any $l \in \{1, 2, \dots, n\}$, let $d_l \in \bigcap_{i=1}^k \{x_{i,1}^l, x_{i,2}^l, \dots, x_{i,w}^l\}$ and $d = (d_1, d_2, \dots, d_n)$. Clearly, $d \in desc(X_j)$ for any $1 \leq j \leq k$. But $\bigcap_{j=1}^k X_j = \emptyset$, a contradiction.

Conversely, suppose C isn't a w-IPP code. Then there exists $d \in Q^n$ such that $\mathcal{H}_w(d,C) \neq \emptyset$ and $\bigcap_{X \in \mathcal{H}_w(d,C)} X = \emptyset$. Since $N \geq w$, by Lemma

2.3, we have $\mathcal{H}_w^*(d,\mathcal{C}) \neq \emptyset$ and $\bigcap_{X \in \mathcal{H}_w^*(d,\mathcal{C})} X = \emptyset$. Observe that $\mathcal{H}_w^*(d,\mathcal{C})$

is a $(w, |\mathcal{H}_w^*(d, \mathcal{C})|)$ -configuration of \mathcal{C} , by Lemmas 2.1 and 2.2, there exist $2 \leq k \leq w+1$ and $H \subseteq \mathcal{H}_w^*(d, \mathcal{C})$ such that H is a minimal (w, k)-configuration of \mathcal{C} .

Let $H = \{X_1, X_2, \dots, X_k\}$, $X_i = \{x_{i,1}, x_{i,2}, \dots, x_{i,w}\}$ and $x_{i,j} = (x_{i,j}^1, x_{i,j}^2, \dots, x_{i,j}^n)$ for any $1 \le i \le k$ and $1 \le j \le w$. Then $d \in desc(X_i)$ for

 $1 \leq i \leq k$. It follows that $\bigcap_{i=1}^{k} \{x_{i,1}^{l}, x_{i,2}^{l}, \cdots, x_{i,w}^{l}\} \neq \emptyset$ for any coordinate $l \in \{1, 2, \cdots, n\}$, a contradiction.

From Theorem 2.1 and Lemma 2.2, we may obtain the following corollary.

Corollary 2.1 [1] Suppose $C \subseteq Q^n$ is an (N, n, q)-code and $N \ge 2$. Then C is a 2-IPP code if and only if

IPP1: a, b, c distinct in $C \Rightarrow a_i$, b_i , c_i distinct in Q for some i, IPP2: $a, b, c, d \in C$ with $\{a, b\} \cap \{c, d\} = \emptyset \Rightarrow \{a_i, b_i\} \cap \{c_i, d_i\} = \emptyset$ for some i.

3 Linear 2-IPP codes.

For any $q \geq 3$, Hollmann et al. [2] proved

$$R_q(2) \ge \log_q(q/(4q^2 - 6q + 3)^{\frac{1}{3}}).$$

It follows that $R_3(2) \ge \frac{1}{3} \log_3 \frac{9}{7}$. A.Barg et al. [1] strengthened this result by proving that there exists a sequence of linear 3-ary 2-IPP codes C_n of length n with $R(C_n) = \frac{1}{3} \log_3 \frac{9}{7}$. In this section, let $q \ge 3$ is a prime power, we shall show that the bound can be achieved by a sequence of linear q-ary 2-IPP codes.

Theorem 3.1 Suppose $q \geq 3$ is a prime power. Then there exists a sequence of linear q-ary 2-IPP codes C_n of length n with

$$R(C_n) = \frac{1}{3}log_q \frac{q^3}{4q^2 - 6q + 3}.$$

Proof. Let \mathcal{C} be a linear subspace of F_q^n . Consider the condition (IPP2) in Corollary 2.1. Suppose that $\dim \mathcal{C} = k$ and let G be a generator matrix of \mathcal{C} , i.e., a $k \times n$ matrix whose rows form a basis of \mathcal{C} as an F_q -linear space. Let g_1, g_2, \dots, g_n be the columns of G. Any vector $c \in \mathcal{C}$ has the form aG for some $a \in F_q^k$. Let c_1, \dots, c_4 be some vectors in \mathcal{C} . Since the 2-IPP property is translation invariant, we may suppose that $c_4 = 0$. Suppose that $c_i = a_i G$ for i = 1, 2, 3.

Case (a). a_1 , a_2 , a_3 are linearly independent. Complement a_1 , a_2 , a_3 to a basis and take the dual basis f_1, \dots, f_k in F_a^k , so

$$a_i \bullet f_j = \left\{ egin{array}{ll} 0 & if & i
eq j \\ 1 & if & i = j. \end{array} \right.$$

for i=1,2,3 and $j=1,2,\cdots,k$. For any $m\in\{1,2,\cdots,n\}$, let $h_{m,1},h_{m,2},\cdots,h_{m,k}\in F_q$ satisfy $\sum\limits_{i=1}^k h_{m,i}f_i=g_m$. For any given $m=1,2,\cdots,n$, observe that $\{c_{1,m},c_{2,m}\}\cap\{c_{3,m},c_{4,m}\}=\emptyset$ if and only if $(h_{m,1},h_{m,2},h_{m,3})$ have one of the following forms:

$$(x, y, 0)$$
 where $x \neq 0, y \neq 0$;
 (x, y, z) where $z \neq 0, x \neq 0, y \neq 0, x \neq z, y \neq z$.

Hence the total number of favorable choices is $(q-1)^2 + (q-1)(q-2)^2$ out of q^3 . This implies that the probability for a matrix G to be bad for a given linearly independent triple is $(1 - \frac{(q-1)^2 + (q-1)(q-2)^2}{q^3})^n$. The number of triples is less than q^{3k} , so the probability that a given matrix spans a quadruple of vectors that violate the condition (IPP2) is bounded above by $q^{3k}(1 - \frac{(q-1)^2 + (q-1)(q-2)^2}{q^3})^n$. Hence if $R = \frac{1}{3}log_q \frac{q^3}{4q^2 - 6q + 3} - \varepsilon$ for any $\varepsilon > 0$, then there exists a favorable choice.

Case (b). Some of the vectors a_1 , a_2 , a_3 are linearly dependent. For instance, suppose that a_3 is spanned by a_1 , a_2 , and these two are not collinear. Let $a_3 = a_1 + a_2$. Choose a basis f_1, \dots, f_k in F_a^k such that

$$a_i \bullet f_j = \left\{ \begin{array}{ll} 0 & if & i \neq j \\ 1 & if & i = j. \end{array} \right.$$

for i=1,2 and $j=1,2,\cdots,k$. As above we count the number of unfavorable choices for g_m . Good choices for $(h_{m,1},h_{m,2})$ are (x,y), where $x\neq 0$ and $y\neq 0$. Hence the fraction of bad choices of G is at most $q^{2k}(1-\frac{(q-1)^2}{q^2})^n$, and this is less than $q^{3k}(1-\frac{(q-1)^2+(q-1)(q-2)^2}{q^3})^n$. Other cases of dependence are dealt with analogously; none accounts for a fraction of bad matrices larger than in Case (a).

Now consider the condition (IPP1) in Corollary 2.1. Let c_1 , c_2 , c_3 be some vectors in \mathcal{C} . Since the 2-IPP property is translation invariant we may assume that $c_3 = 0$. Suppose that $c_i = a_i G$ for i = 1, 2. There are the following two cases.

Case (a). a_1 and a_2 are linearly independent. Choose a basis f_1, \dots, f_k in F_a^k such that

$$a_i \bullet f_j = \left\{ \begin{array}{ll} 0 & if & i \neq j \\ 1 & if & i = j. \end{array} \right.$$

for i=1,2 and $j=1,2,\cdots,k$. For any $m\in\{1,2,\cdots,n\}$, let $h_{m,1},h_{m,2},\cdots,h_{m,k}\in F_q$ satisfy $\sum_{i=1}^k h_{m,i}f_i=g_m$. For any given $m=1,2,\cdots,n$, observe that $c_{1,m}\neq c_{2,m}, c_{1,m}\neq 0$ and $c_{2,m}\neq 0$ if and only if $(h_{m,1},h_{m,2})$ have one of the following forms:

$$(x,y)$$
 where $x \neq 0, y \neq 0, x \neq y$.

Hence the total number of favorable choices is (q-1)(q-2) out of q^2 . This implies that the probability for a matrix G to be bad for a given linearly independent pair is $(1-\frac{(q-1)(q-2)}{q^2})^n$. The number of pairs is less than q^{2k} , so the probability that a given matrix spans a triple of vectors such that a_1 and a_2 are linearly independent, and such that they violate the condition (IPP1, is bounded above by $q^{2k}(1-\frac{(q-1)(q-2)}{q^2})^n$. Hence if $R=\frac{1}{2}log_q\frac{q^2}{3q-2}-\varepsilon$ for any $\varepsilon>0$, there exists a favorable choice.

Case (b). a_1 and a_2 are collinear, i.e., $a_1 = \lambda a_2$. Choose a basis f_1, \dots, f_k in F_a^k so

$$a_1 \bullet f_j = \left\{ \begin{array}{ll} 1 & if & j = 1 \\ 0 & if & j > 1. \end{array} \right.$$

for $j=1,2,\dots,k$. As above, good choices for $h_{m,1}$ are x, where $x\neq 0$. Hence the number of bad choices of G is at most $q^{2k}(\frac{1}{q})^n$, and this is less than $q^{2k}(1-\frac{(q-1)(q-2)}{q^2})^n$.

Thus, $\frac{1}{3}log_q\frac{q^3}{4q^2-6q+3}$ is the minimum of the achievable rates for conditions IPP1 and IPP2. Then we proved the bound (1) can be achieved by a sequence of linear q-ary 2-IPP codes.

References

- [1] A. Barg, G. Cohen, S. Encheva, G. Kabatiansky, G. Zémor, A hypergraph approach to the identifying parent property: the case of multiple parents. SIAM J. Discrete Math. Vol. 14, No. 3(2001) pp. 423-431.
- [2] H.D.L. Hollmann, J.H. van Lint, J.-P. Linnartz, L.M.G.M. Tolhuizen, On codes with the identifiable parent property, J Combin. Theory Ser. A 82(1998) 121-133.
- [3] J.N. Staddon, D.R.Stinson, T. Wei, Combinatorial properties of frameproof and traceability code, *IEEE Trans. Inform. Theory* 47 (2001) 1024-1049.