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Abstract.In this paper, we study the combinatorial properties of w-
IPP (identifiable parents property) codes and give necessary and sufficient
conditions for a code to be a w-IPP code. Furthermore, let R(C) = Llog,|C]|
denote the rate of the g-ary code C of length n, suppose ¢ > 3 is a prime
power, we prove that there exists a sequence of linear g-ary 2-IPP codes

Cn of length n with R(Cn) = 3100 zreers.
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1 Introduction

Motivated by an application in fingerprinting digital multimedia, the
concept of a code with identifiable parent property was introduced by Holl-
mann et al. [2] and generalized by Staddon et al. [3].

Let Q be an alphabet of size g and Q™ denote the set of all n-tuples
over Q. Let C C @, N = |C|, then C is called a code of length n and size
N, denoted an (N,n, q)-code. If ¢ = (c1,¢2,-+,¢n) € C, then c is called a
codeword of C.
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Let C be an (N, n, g)-code. For X C C, we define the set of descendants
of X, denoted desc(X) by

desc(X)={de Q":d; € {zi:z€ X},1<i<n}

A set X C C is said to be a parent set of a word d € Q" if d € desc(X).
For d € Q*, we write H,,(d,C) for the set of parent sets X C C of d such
that | X| < w.

Definition 1.1 Let C be an (N,n,q)-code. If for each d € Q" , either
Hw(d,C) =0 or
[ X #9,

XeM(d,C)
then C is called a w-IPP code.

In [3], Staddon et al. mentioned an open problem: Is there a “tight”
characterization of w-IPP codes for w > 3? In this paper, we shall answer
this question and give a necessary and sufficient condition for a code to be
a w-IPP code.

As usual, let R(C) = Llog,|C| denote the rate of the g-ary code C of
length n, Fy(n,q) = max{|C| | C is a ¢ — ary w — IPP code of length n}
and Rg(w) = lim inf Llog, Fu(n,q). For any ¢ > 3, Hollmann et al. [2]
proved
Rq(2) 2 log,(a/(4¢” ~ 6g + 3)}). (1)
A.Barg et al. [1] strengthened this result by proving that there exists a
sequence of linear 3-ary 2-IPP codes C;, of length n with R(Cy) = 3 logg g-.
In this paper, let g > 3 be a prime power, we show that the bound in (1)
can be achieved by a sequence of linear g-ary 2-IPP codes.

2 Necessary and sufficient conditions for a
code to be a w-IPP code

Definition 2.1 Suppose thatC is a code, X1, X2, -+, Xk are k distinct sub-
codes of C and | X;| =1t for anyi=1,2,---,k. Let H={X;,X2,---, Xk},

k
if () X; =0, then H is called (2, k)-configuration of C.
=1

k
Purthermore, Let H be (t,k)-configuration of C, if [\ Xi # 0 for
i=1,ij
any j =1,2,---,k, then H is called minimal (¢, k)-configuration of C.

The following lemma tell us that any (¢, k)-configuration must contain
some minimal (¢, k*)-configurations (2 < k* < k).
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Lemma 2.1 Suppose C is a code, and H = {X1,Xo,--+, X} is a (¢, k)
configuration of C. Then there ezist positive integer 2 < k* < k and H*
H such that H* is a minimal (¢, k*)-configuration of C.

Proof. Let Hy = H, if Hp satisfies ﬂ X; # 0 for any j € {1,2,---,k},
i=1,i#;
take k* = k and H* = Hy, then H* is a minimal (¢, k*)-configuration of
k

C. Otherwise, there exists a j € {1,2,---,k} such that [} X; = 0.
i=1,i%]

k=1
Without loss of generality, suppose j = k, then (| X; = 0. Let H; =

=1
{X1,+++,Xk-1}, then H; is (¢, k")-configuration of C. Repeating the pre-
vious process, we obtain a sequence Hyp, Hy,---,H, where 0 < r < k — 2.
Let k* = k —r, H* = H,, then |H*| = k* and H* is a minimal (t, k*)-
configuration of C. m|

To obtain the properties of minimal (¢, k*)-configurations of code C, we
need the following definition.

Definition 2.2 Suppose C be a code, H = {X;,X,,- -+, X\} is a minimal
k
(t,k*)-configuration of C. For any j € {1,2,---,k}, letb; € [\ X;,
i=1,i#j
then the set {b1,ba,---,bi} is called a frame of H.

Lemma 2.2 Suppose C is a code, H = {Xy,Xa,---,X;} is a minimal
(t, k*)-configuration of C, B = {by,bs,---,bx} is a frame of H. Then
(1)For any j € {1,2,---,k}, B\{b;} C X;.

(2) Lg X,-’ < |(3t+1)%.

k
Proof. (1) Let j € {1,2,--,k}. For any m # j, sincebm € [ Xi, we

i=1,i¥m
have by, € X;. So, B\{b;} C X;.
(2)By(1),wehave2<k<t+1 For any j € {1,2,-- k},letA =

X;\(B\{b;}), then U X; =By( UIA ). Observe that Bn( U Aj) =
=
So, | .U X;| =|B|+ |(_U Aj)l-
J=1 j=1
k
Since |B|+I( 1) 4;)| < |B|+ 3 1451 = th=k(k=2) = ~K+ (-4 2)k <
=1 Jj=

k
(3t+1)%, we have | U X;| < [(3t+1)2]. m]
=1
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Now, suppose that C is a (N, n, q)-code, N > w,d € Q" and H,,(d,C) #
@. For any X € M., (d,C), if |X| < w, since N > w, then there exists a
subcode X' of C such that X € X’ and |X’| = w. So, let H}(d,C) = {X’ |
X' € Hy(d,C),|X'] = w}, then H(d,C) C Hw(d,C). Furthermore, we
may obtain the following lemma.

Lemma 2.3 Suppose C is an (N,n,q)-code, N > w, d € Q", Hy(d,C) #
0. Then
n x= 1 x.

XeHw(d,C) X'eHz,(d,C)

Proof. For any X € Hy(d,C), let Yx = {X' | X C X' C C}, then
N X'=X. So, n X= N (N XY= N X
é'el’x X'eHy(d,C) XeMHu(d,C) X'€YX XeHw(d,C)

Now, we prove the main theorem in this section.

Theorem 2.1 Suppose w > 2, C is an (N,n,q)-code and N > w. The
necessary and sufficient conditions for C to be a w-IPP code are for any k €
(2,3, - -, w+1} and any minimal (w, k)-configuration H = {X1, Xa,---, X&}
of C, where X; = {zi,lazi,2a° v 1mi,w}y Tij = (m},j)xg,ja' v :zl",j) for any
1<i<kandl <j<w, there ezists a coordinate l € {1,2,---,n} such

k
that (1 (a4, 2ho} =0
=

Proof. Suppose there exist k € {2,3,--,w + 1} and minimal (w, k)-
configuration H = {Xl,Xg, «++, Xk} of C such that ﬁ {zhy,2lo - y2hy} #
@ for any coordinate [ =1,2,---,n. =
For any | € {1,2,---,n}, let d; € 'ﬁl{zﬁ‘l,mﬁ,z,---,zﬁ,w} and d =
=

k
(d1,d2,---,dy). Clearly, d € dese(X;) forany 1 <j < k. But [} X; = 9,
j=1
a contradiction.
Conversely, suppose C isn’t a w-IPP code. Then there exists d € Q"
such that M, (d,C) # @ and | X =40. Since N > w, by Lemma
X€Huw(d,C)
2.3, we have H%,(d,C) #9and [ X = 0. Observe that H}(d,C)
XeH(d\C)
is a (w, |H%,(d,C)|)-configuration of C, by Lemmas 2.1 and 2.2, there exist
2<k<w+1and HC H,(d,C) such that H is a minimal (w,k)-
configuration of C.
Let H = {XI)X21 v 'st}1 -Xi = {xi,lax‘i,ﬁt ct ;wi,w} and Zi5 = (m‘}'ji

a};,--,zp;) forany 1 < i< kand 1< j < w. Then d € desc(X;) for
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k
1 <i < k. It follows that () {xﬁll,zﬁ'm--- Tt} # O for any coordinate
i=1

=
le{1,2,---,n}, a contradiction. m]

From Theorem 2.1 and Lemma 2.2, we may obtain the following corol-
lary.

Corollary 2.1 [1] Suppose C C Q" is an (N,n,q)-code and N > 2. Then
C is a 2-IPP code if and only if
IPP1: a, b, c distinct in C = a; , b; , ¢; distinct in Q for some i,
IPP2: a,b,c,d € C with {a,b} N {c,d} =0 = {a;,b;} N {ci,di} =D for
some 1.

3 Linear 2-IPP codes.

For any q > 3, Hollmann et al. [2] proved
Ry(2) > log,(q/(4¢* — 6g+ 3)}).

It follows that R3(2) > 1logs 2. A.Barg et al. [1] strengthened this result
by proving that there exists a sequence of linear 3-ary 2-IPP codes C, of
length n with R(C,) = 4 logs 2. In this section, let ¢ > 3 is a prime power,
we shall show that the bound can be achieved by a sequence of linear g-ary
2-IPP codes.

Theorem 3.1 Suppose q¢ > 3 is a prime power. Then there erists a se-
quence of linear g-ary 2-IPP codes Cy, of length n with

R(Ca) = 21 ¢
) = glonag—ervs

Proof. Let C be a linear subspace of F' . Consider the condition (IPP2)
in Corollary 2.1. Suppose that dim C = k and let G be a generator matrix
of C, i.e., a k X n matrix whose rows form a basis of C as an Fj,-linear space.
Let g1, g2, --- , gn be the columns of G. Any vector ¢ € C has the form
aG for some a € Fq"’. Let ¢1, -+, ¢4 be some vectors in C. Since the 2-IPP
property is translation invariant, we may suppose that ¢, = 0. Suppose
that ¢; = a;G fori=1,2,3.

Case (a). a;, az, a3 are linearly independent. Complement a;, ag, ag
to a basis and take the dual basis fi, -+, fi in F;‘ , SO

[0 if i#j
“"'ff“{1 if i=3.
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fori=1,2,3and j =1, 2 -yk. For any m € {1,2,---,n}, let hyn1,hm 2,
y» hmx € Fy satisfy Eh ifi = gm. For any given m = 1,2,-- W

observe that {¢; m,cg,m} 0{03 mrCam} = 0 if and only if (hm,1,hm 2, Am,3)
have one of the following forms:

(z,9,0) where z#0,y#0;
(z9,2) where z #0240,y £0,z#2y %%

Hence the total number of favorable choices is (g — 1)2 + (g — 1)(g — 2)?
out of g3. This implies that the probability for a matrix G to be bad for a

given linearly independent triple is (1 — (9= 1)2+(g'1)(q'2) )*. The number

of triples is less than ¢3*, so the probability that a given matrix spans a
quadruple of vectors that violate the condition (IPP2) is bounded above
2 2
by ¢*%(1 — W=z @=2"yn  Hence if R = -};logq-—;—_q-s— — ¢ for any
q ' 49%-6q+3

€ > 0, then there exists a favorable choice.

Case (b). Some of the vectors ay, az, a3 are linearly dependent. For
instance, suppose that as is spanned by ay, a2, and these two are not

collinear. Let az = a; + a2. Choose a basis fi, -+, fx in F’° such that
e _JO if i#]
m.ﬁ—{lifi=j
fori = 1,2 and j = 1,2,--+,k. As above we count the number of un-

favorable choices for g,,. Good choices for (hm,1, hm,2) are (z,y), where
z # 0 and y # 0. Hence the fraction of bad choices of G is at most

g?*(1 - 19;;,-)—) , and this is less than ¢3*(1 — (g=1)* +(g'1)(q'2) )*. Other
cases of dependence are dealt with analogously; none accounts for a fraction
of bad matrices larger than in Case (a).

Now consider the condition (IPP1) in Corollary 2.1. Let c;, cz, c3 be
some vectors in C. Since the 2-IPP property is translation invariant we
may assume that c3 = 0. Suppose that ¢; = a;G for ¢ = 1,2. There are the
following two cases.

Case (a). a; and ag are linearly independent. Choose a basis fi, - -+,

fx in F¥ such that
a,..f,.={° if i#J

1 if i=j.
fori=1,2and j =1,2,---,k. For any m € {1,2,---,n}, let by 1, hm,2,
k
oo yhm i € Fy satisfy Ehm,if,- = gm. For any given m = 1,2,.-,n,

i=1
observe that ¢1 m # C2,m, ¢1,m # 0 and cz,m # 0 if and only if (hm,1,Am,2)
have one of the following forms:

(z,y) where z#0,y#0,z#y.
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Hence the total number of favorable choices is (g — 1)(g — 2) out of ¢2.
This implies that the probability for a matrix G to be bad for a given
linearly independent pair is (1 — iﬂ'—quﬁl_—zz)". The number of pairs is less
then g%, so the probability that a given matrix spans a triple of vectors
such that a; and ay are linearly independent, and such that they violate
the condition (IPP1, is bounded above by ¢2*(1 — Q:%g-ﬂ)". Hence if
R= -él-logqs—qq_% — ¢ for any € > 0, there exists a favorable choice.

Case (b). a; and az are collinear, i.e., a; = Aaz. Choose a basis f, - - -,
fr in Ff so

_J1if =1
“l’fJ"{o if j>1.
for j = 1,2,-+-,k. As above, good choices for hn, ; are z, where z 3 0.

Hence the number of bad choices of G is at most ¢?*(1)", and this is less

than g2%(1 — gq;%gq_-_z))n.

Thus, %logﬁ?—f%m is the minimum of the achievable rates for condi-
tions IPP1 and IPP2. Then we proved the bound (1) can be achieved by
a sequence of linear g-ary 2-IPP codes. a
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