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Abstract

A graph G is called claw-free if G has no induced subgraph iso-
morphic to K1 3. Ando et al. obtained the result: a claw-free graph
G with minimum degree at least d has a path-factor such that the
order of each path is at least d+1; in particular G has a {Ps, Py, Ps}-
factor whenever d > 2. Kawarabayashi et al. proved that every
2-connected cubic graph has a {P3, Ps}-factor. In this article, we
show that if G is a connected claw-free graph with at least 6 vertices
and minimum degree at least 2, then G has a {Ps, P;}-factor. As an
immediate consequence, it follows that every claw-free cubic graph
(not necessarily connected) has a {Ps, Ps}-factor.
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1 Introduction

In this paper we consider finite graphs without loops nor multiple edges.
A graph G is called claw-free if G has no induced subgraph isomorphic
to Ky3. Let F be a set of connected graphs. A spanning subgraph F
of a graph G is called an F-factor if every component of F' is isomorphic
to one member of F. In particular, a path factor means an F-factor such
that each member of F is a path. If let P; denote the path of order d
and Pyr = {P; | i > k} for a positive integer k, a P>i-factor of a graph
G is a path factor in which each component has order at least k, and a
{P,}-factor of G is just its 1-factor.
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There are a number of results concerning the path factor in graphs.
Analogous to Tutte’s 1-factor theorem, Akiyama et al. [1] obtained a neces-
sary and sufficient condition for a graph that has a P»»-factor, and Kaneko
[4] found a criterion for a graph to have a P>s-factor. Afterward, Kano
et al. [6] gave a simple proof to Kaneko’s theorem. In fact, a graph has a
Psa-factor if and only if it has a {Ps, Py, Ps}-factor. As a corollary, Kaneko
[4] showed that every cubic graph has a { P3, Py, Ps}-factor. Along this line,
the following results were obtained.

Theorem 1 (Kano et al. [5]) Every connected cubic bipartite graph of
order at least 8 has a P>g-factor. Hence, it has a {Ps, Py}-factor.

Theorem 2 (Kawarabayashi et al. [7]) Every 2-connected cubic graph
has a {P3, Ps}-factor.

Moreover, Akiyama and Kano [2] proved that every 3-connected cubic
graph of order 4n has a {P;}-factor, and they posed the following conjec-
ture, which is still open.

Conjecture 3 (Akiyama and Kano [2]) Bvery 3-connected cubic graph
of order Sn has a {Ps}-factor.

For claw-free graphs Ando et al. [3] obtained the following result con-
cerning the path factor.

Theorem 4 (Ando et al. [3]) Let G be a claw-free graph with minimum
degree §(G) > d for a positive integer d. Then G has a Pxa+1-foctor.

The theorem implies that a claw-free graph G has a { Ps, P4, P; }-factor if
8(G) > 2, and a {P3, Py}-factor if §(G) > 5. Motivated by this observation,
we wish to investigate whether a claw-free graph with §(G) =2, 3, or 4 has
a {P3, P;}-factor or not. Our main result is the following.

Theorem 5 If G is a claw-free graph with 6(G) > 2, then each component
of order ezactly 5 of G has a spanning path, and all other components have
{Ps, Ps}-factors.

The proof of the main Theorem is presented in next section. Finally
as immediate consequences, we obtain that if G is a connected claw-free
graph with at least 6 vertices and minimum degree at least 2, then G has a
{P3, Py}-factor; and every claw-free cubic graph (not necessarily connected)
has a {Ps, P4}-factor.
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2 Proof of Theorem 5

To prove the main theorem we need some further notations. Let G be a
graph with edge-set E(G) and vertex-set V(G). For a vertex z of G, a
neighbor of z means a vertex adjacent to z, and the degree of z is the
number of neighbors of z. Let §(G) be the minimum degree of G. Given
a subset S C V(G), the subgraph of G induced by S is denoted by G[S).
Let Py be the path of order d. Sometimes we add some superscripts to Py
to distinguish different paths of order d, for example Pj, P, ---. In this
paper, the notation “U” always stands for the disjoint union of two graphs,
and kPy denotes the disjoint union of k copies of P;. For two graphs H
and G, H + G stands for the union of H and G which allows H NG # 0.

Proof of Theorem 5. By Theorem 4, G has a { P3, P, Ps}-factor. Choose
a {Ps, P4, Ps}-factor P such that the number of P; components is as min-
imum as possible. We shall show that the {Pj, Py, Ps}-factor P is the
required factor: If a component of P is Ps, then it spans a component of
G. We first obtain the following claims.

Claim 1. Let P; be a component of P. Then only the middle vertex of Ps
may be adjacent to an end-vertez of a Py component of P.

Proof. Let Ps = v;..vs and P; = v}...vj be components of P. If v; and
v} are adjacent in G, Ps + v1v] + P, forms a path of order 9 of G, which
has a spanning subgraph 3P; (see the bold lines in Fig. 1 (left)). Then 3P;
can replace the P5 U Py in P to obtain another {Ps, P;, P;}-factor. Hence
the number of P; components reduces by one, which contradicts the choice
of P. If v, is adjacent to v}, Ps + vov] + P4 also has a spanning subgraph
3P3, i.e. vivov], v3v4vs and vyvsvy (see Fig. 1 (right)). So a similar con-

tradiction appears. o
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Figure 1. Illustration for the proof of Claim 1.

Claim 2. Suppose P has a sequence of distinct components P2, P}, P},...,
Pf(k > 1) such that for each 0 < i < k, v} is adjacent to both vertices
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vit! and vit!, where P? = 1{..v] and P} = vi..vj. Then the following
statements hold.

(i) Neither of the end-vertices of P} is adjacent to an end-vertez of another
P; component of P,

(ii) neither of the middle vertices of Pf is adjacent to an end-vertez of
another Py component of P, and

(iii) neither of the end-vertices of P? and P} is adjacent to a vertez of a
P; component of P.

Proof. (i) If v¥ is adjacent to an end-vertex u; of a component P; of P,
where Py := ujugugug # P for all i < k, then PPUP}UPZU- .- UPFUPR,

plus some edges vv}, v}vZ, -+, vF~205~1, v§~1ok, vFu; has a spanning
subgraph kP; U3Ps, which is {vgv3u§v?, vdvviv}, ..., vf2of 1ok~ i1,

v 1ubvk, vEvbuy, usugua} (see the bold lines in Fig. 2 (left)). Then P5 U
(k+1)P; in P can be replaced with kP; U3P;, giving another {Ps, P4, Ps}-
factor with less number of Ps components than P, a contradiction.

(ii) If a middle vertex v§ or v§ of P (say v§) is adjacent to an end-vertex
uy of a component Py of P, where P4 := ujuguguq # Pj for all i < k, then
PPUP}UP?U-- U P} U P can be replaced with kP; U 3Ps: {v§v§vdvs,
Ovdplel . ok 2k 1k 1yk=1 k-lykyk  vFvkug, ugugus} (see Fig. 2

1V2V3%3, -5V Vg V3 » U1 TU3V4, VyvUaln, U2U3Uq
(middle)), giving another {Ps, Py, Ps}-factor which reduces the number of
P; components by one, a contradiction.

(iii) If v¥ is adjacent to an end-vertex (say u1) of a component Ps of P,
where Ps := uyugus, then G[V (PSUP}UPZU- - -UPfUPs)] has a spanning
subgraph (k +2)Ps: {v3v3vd0d, vQviviv}, ..., vf tvkvEvk, viuiugus} (see
Fig. 2 (right)). A similar contradiction follows. If v} is only adjacent to
the middle vertex us of Ps, uj and uj are adjacent since G is claw-free. Let
P} = ugugu;. Then P’ := (P \ {Ps}) U{P5} is another {Ps, Py, Ps}-factor
of G with the same number of Ps components as P. So v} is adjacent to
an end-vertex us of a component P§ of P’. So this case is reduced to the

above case. (m]
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Figure 2. Illustration for the proof of Claim 2.
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Figure 3.

Let P? be any component of P (if exists). We now show that neither of
the end-vertices of Py is adjacent to vertices outside V(P?). Otherwise, we
would have the following claim, which contradicts the finiteness of graph
G.

Claim 3. If an end-vertex of P is adjacent to vertices outside V(P?), then
P has a sequence of distinct components PP, P}, P?, ..., P}, ... such that
(i) an end-vertex v° of P must be adjacent to both middle vertices of P},
(ii) for each n > 1, an end-vertex v™ of P} must be adjacent to both middle
vertices of Pp+!, and

(i) for all i < n, the end-vertez v* of P} has no neighbors in P} or PY.

Proof. We shall show by induction the existence of such a sequence of
components of P as in the Claim. First, by the above converse supposition
we have that P? exists and has an end-vertex +° that is adjacent to a vertex
u of other components of P. By Claim 2 (iii) u lies in no P; components
of P. We also show that u lies in no P5; components of P. Suppose that
u belongs to a component Ps of P. If u is an end-vertex (Fig. 3 (a)), or
the second or the fourth vertex (Fig. 3 (b)) of Ps, 2P; U P; can replace
P2 U Ps. This contradicts the choice of P similarly. So u can be only the
middle vertex of Ps. As G is claw-free, the second and the fourth vertices
of P; must be adjacent. Likewise 2P3 U P; can replace PY U P; (see Fig. 3
(c)), & contradiction. The remaining case is that u lies in a P; component
of P, denoted by P} = ujususus. By Claim 1 u must be either us or us. If
0 is adjacent to exactly one of uz and ugz (say ug), u; must be adjacent to
- ug since G is claw-free. 3P; can also replace P U P} (see Fig. 3 (d)). This
also produces a contradiction. Hence P? and P} exist and satisfy Property
(i).

We now suppose that P has a sequence of distinct components P2, P},
P}, ..., Pf(k > 1) which satisfies all Properties (i)-(iii) for each 0 < n < k,
where P =: v)vJv8vv and P} =: viviviv} for all 1 < i < k. By Property
(i) or (ii) an end-vertex vf~! of PF~' (P? if k = 1) is adjacent to both
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middle vertices of PF. It is sufficient to prove that v¥ is only adjacent to
both middle vertices of other P; components of P except for v§. By Claim
2 (iii) v¥ is not adjacent to any vertex of P; components of P.

P4k

Figure 4.

If v¥ is adjacent to a vertex of a component P5 of P, by Claim 1 v} is
only adjacent to the middle vertex of Ps. Since G is claw-free, the second
vertex of Ps is adjacent to the fourth vertex. If Ps = P, by the induc-
tion hypothesis POU P} UPZU- - -UPf can be replaced with 3P3U(k—1)Fy:
{03090, vQukuk, vE~1vkvE, v]vdviu}, v]vduded, . .. L oF2pE 1571951} (see
the bold lines in Fig. 4 (left)). Otherwise, let Ps =: ujug---us. Simi-
larly PP U P} UP?U---U Pf U Ps can be replaced with 2P3 U (k + 1)Py:
{usvbok, vE~vkvk, uiuguqus, v3vguug,

Wolvdol, vivdudel, ..., ¥~ 2uE"tuE"1ug 1} (see Fig. 4 (right)). Both con-
tradict the choice of P.

By Claim 2 (i) and (ii) none of the vertices of P} is adjacent to v¥ for
i < k, considering a subsequence P?, P}, Pf,..., P{. Hence Property (iii)
holds for n = k. If v¥ is adjacent to v¥ or v§ (say v§), vF~! is adjacent to an
end-vertex v& of P := vkvfviv§. But it is impossible by applying Claim
2 (i) to P’ := (P \ {PF}) U {P;} and a subsequence P, P}, P}, ..., Py ™!
and P;. Since §(G) = 2, v¥ is thus adjacent to a vertex of another Py
component, denoted by PF*! := vf+lok+1pk+1yf+1, of P that is different
from any Pﬁi for all i < k. By Claim 2 (i) v} is not adjacent to end-vertices
v**+1 and v/+!. Similarly, since G is claw-free v} must be adjacent to both
middle vertices vA+! and v5*! of PF*!, i.e. Property (ii) holds for n = k.
Therefore, P has a sequence of distinct components P?, P}, PZ, ..., Pf, P+t
which satisfies all Properties (i)-(iii) for each 0 < n < k+ 1. The induction

shows that the claim follows. [m]
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Figure 5.

We have already shown that neither of the end-vertices of any compo-
nent P; of P is adjacent to vertices outside P;. The remainder is to prove
that any internal vertices of P; have no neighbors outside Ps itself. Let
Ps := v192v3v4v5 be a component of P. Then all neighbors of v; and vg
belong to V(Ps). If the induced graph G[V(P;)] has a Hamiltonian cy-
cle, each vertex v; of P5 can be an end-vertex of a path of order 5 in G,
which can replace P; to obtain another {Ps, Py, Ps}-factor P’. Since P’ has
the same number of P; components as P, the above proof already shows
that all neighbors of v; are in P;. Hence V(Ps) induces a component of
G. Suppose that G[V(Ps)] has no Hamiltonian cycle. Since §(G) > 2,
it follows that each of both v; and vs has exactly two neighbors and ei-
ther {v1v4,v2v5} C E(G) or {vivs,vsv3} C E(G). If {v1v4,v205} C E(G),
Gl[{v1,v2,v3,vs5}] is a claw of G, i.e. K13 (see the bold lines in Fig. 5
(left)), a contradiction. If v; and vs are both adjacent to v3, each v; for
i =1,2,4,5 is an end-vertex of a path of order 5 in G[V(P;)] and their
neighbors are all in ;. If v3 has a neighbor u ¢ V(P;), G[{v1,vs,vs,u}] is
a claw of G (see Fig. 5 (right)), a contradiction. Hence all neighbors of v;
are also in P5 as v, vs,v4 and vs. So G[V(Fs)] is a component of G. The
entire proof is completed. m]

3 Conclusions
For connected claw-free graphs we can derive a simpler result from Theorem
5:

Corollary 6 If G is a connected claw-free graph with 6(G) > 2 and at least
6 vertices, G has a {P3, Py}-factor.

Proof. Since G is connected and has at least 6 vertices, G has no compo-
nent with 5 vertices. Theorem 5 implies that G has a {P;, Py}-factor. O

We now remark that Theorem 5 and Corollary 6 are best possible. For
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example, the claw-free graph with vertices of degree 1 illustrated in Fig. 6
has neither {Ps, P,}-factor nor component of order 5.

Figure 6. A claw-free graph without {P3, Py}-factor.

Theorem 2 shows that every 2-connected cubic graph has a {Ps, Py}-
factor. However, Kawarabayashi et al. [7] pointed out that the theorem fails
when violating the connection condition by presenting a counter-example
of a cubic graph with a cut-vertex. In fact this cubic graph contains many
claws, i.e. induced subgraphs K 3. For a claw-free graph with cut-vertices
illustrated in Fig. 7, however, it has a {P3, P;}-factor. Applying Theorem
5 or Corollary 6, we have the following general result.

Figure 7. A claw-free cubic graph with cut-vertices and a {Fs, P4 }-factor
(in bold lines).

Corollary 7 Let G be a claw-free cubic graph. Then G has a {P3, Py}-
factor.

Proof. That G is a cubic graph implies that it has no component of order
5. So by Theorem 5 or Corollary 6 G has a {Ps, Py}-factor. o
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