A note on path factors in claw-free graphs*

Heping Zhang, Shan Zhou

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000,

People's Republic of China e-mail addresses: zhanghp@lzu.edu.cn, zhous@lzu.edu.cn

Abstract

A graph G is called claw-free if G has no induced subgraph isomorphic to $K_{1,3}$. Ando et al. obtained the result: a claw-free graph G with minimum degree at least d has a path-factor such that the order of each path is at least d+1; in particular G has a $\{P_3, P_4, P_5\}$ -factor whenever $d \geq 2$. Kawarabayashi et al. proved that every 2-connected cubic graph has a $\{P_3, P_4\}$ -factor. In this article, we show that if G is a connected claw-free graph with at least 6 vertices and minimum degree at least 2, then G has a $\{P_3, P_4\}$ -factor. As an immediate consequence, it follows that every claw-free cubic graph (not necessarily connected) has a $\{P_3, P_4\}$ -factor.

Keywords: Graph; Claw-free; Path factor; {P₃, P₄}-factor.

AMS Subject Classification: 05C70

1 Introduction

In this paper we consider finite graphs without loops nor multiple edges. A graph G is called claw-free if G has no induced subgraph isomorphic to $K_{1,3}$. Let $\mathcal F$ be a set of connected graphs. A spanning subgraph F of a graph G is called an $\mathcal F$ -factor if every component of F is isomorphic to one member of $\mathcal F$. In particular, a path factor means an $\mathcal F$ -factor such that each member of $\mathcal F$ is a path. If let P_d denote the path of order d and $\mathcal P_{\geq k} = \{P_i \mid i \geq k\}$ for a positive integer k, a $\mathcal P_{\geq k}$ -factor of a graph G is a path factor in which each component has order at least k, and a $\{P_2\}$ -factor of G is just its 1-factor.

^{*}This work is supported by NSFC (10471058) and TRAPOYT.

There are a number of results concerning the path factor in graphs. Analogous to Tutte's 1-factor theorem, Akiyama et al. [1] obtained a necessary and sufficient condition for a graph that has a $\mathcal{P}_{\geq 2}$ -factor, and Kaneko [4] found a criterion for a graph to have a $\mathcal{P}_{\geq 3}$ -factor. Afterward, Kano et al. [6] gave a simple proof to Kaneko's theorem. In fact, a graph has a $\mathcal{P}_{\geq 3}$ -factor if and only if it has a $\{P_3, P_4, P_5\}$ -factor. As a corollary, Kaneko [4] showed that every cubic graph has a $\{P_3, P_4, P_5\}$ -factor. Along this line, the following results were obtained.

Theorem 1 (Kano et al. [5]) Every connected cubic bipartite graph of order at least 8 has a $\mathcal{P}_{\geq 8}$ -factor. Hence, it has a $\{P_3, P_4\}$ -factor.

Theorem 2 (Kawarabayashi et al. [7]) Every 2-connected cubic graph has a $\{P_3, P_4\}$ -factor.

Moreover, Akiyama and Kano [2] proved that every 3-connected cubic graph of order 4n has a $\{P_4\}$ -factor, and they posed the following conjecture, which is still open.

Conjecture 3 (Akiyama and Kano [2]) Every 3-connected cubic graph of order 3n has a $\{P_3\}$ -factor.

For claw-free graphs Ando et al. [3] obtained the following result concerning the path factor.

Theorem 4 (Ando et al. [3]) Let G be a claw-free graph with minimum degree $\delta(G) \geq d$ for a positive integer d. Then G has a $\mathcal{P}_{\geq d+1}$ -factor.

The theorem implies that a claw-free graph G has a $\{P_3, P_4, P_5\}$ -factor if $\delta(G) \geq 2$, and a $\{P_3, P_4\}$ -factor if $\delta(G) \geq 5$. Motivated by this observation, we wish to investigate whether a claw-free graph with $\delta(G) = 2$, 3, or 4 has a $\{P_3, P_4\}$ -factor or not. Our main result is the following.

Theorem 5 If G is a claw-free graph with $\delta(G) \geq 2$, then each component of order exactly 5 of G has a spanning path, and all other components have $\{P_3, P_4\}$ -factors.

The proof of the main Theorem is presented in next section. Finally as immediate consequences, we obtain that if G is a connected claw-free graph with at least 6 vertices and minimum degree at least 2, then G has a $\{P_3, P_4\}$ -factor; and every claw-free cubic graph (not necessarily connected) has a $\{P_3, P_4\}$ -factor.

2 Proof of Theorem 5

To prove the main theorem we need some further notations. Let G be a graph with edge-set E(G) and vertex-set V(G). For a vertex x of G, a neighbor of x means a vertex adjacent to x, and the degree of x is the number of neighbors of x. Let $\delta(G)$ be the minimum degree of G. Given a subset $S \subseteq V(G)$, the subgraph of G induced by G is denoted by G[S]. Let G be the path of order G. Sometimes we add some superscripts to G to distinguish different paths of order G, for example G, where G is a large G in this paper, the notation "G" always stands for the disjoint union of two graphs, and G denotes the disjoint union of G copies of G. For two graphs G and G denotes the union of G and G which allows G is a graph of G.

Proof of Theorem 5. By Theorem 4, G has a $\{P_3, P_4, P_5\}$ -factor. Choose a $\{P_3, P_4, P_5\}$ -factor \mathcal{P} such that the number of P_5 components is as minimum as possible. We shall show that the $\{P_3, P_4, P_5\}$ -factor \mathcal{P} is the required factor: If a component of \mathcal{P} is P_5 , then it spans a component of G. We first obtain the following claims.

Claim 1. Let P_5 be a component of \mathcal{P} . Then only the middle vertex of P_5 may be adjacent to an end-vertex of a P_4 component of \mathcal{P} .

Proof. Let $P_5 = v_1...v_5$ and $P_4 = v_1'...v_4'$ be components of \mathcal{P} . If v_1 and v_1' are adjacent in G, $P_5 + v_1v_1' + P_4$ forms a path of order 9 of G, which has a spanning subgraph $3P_3$ (see the bold lines in Fig. 1 (left)). Then $3P_3$ can replace the $P_5 \cup P_4$ in \mathcal{P} to obtain another $\{P_3, P_4, P_5\}$ -factor. Hence the number of P_5 components reduces by one, which contradicts the choice of \mathcal{P} . If v_2 is adjacent to v_1' , $P_5 + v_2v_1' + P_4$ also has a spanning subgraph $3P_3$, i.e. $v_1v_2v_1'$, $v_3v_4v_5$ and $v_2'v_3'v_4'$ (see Fig. 1 (right)). So a similar contradiction appears.

Figure 1. Illustration for the proof of Claim 1.

Claim 2. Suppose \mathcal{P} has a sequence of distinct components $P_5^0, P_4^1, P_4^2, ..., P_4^k (k \geq 1)$ such that for each $0 \leq i < k, v_1^i$ is adjacent to both vertices

 v_2^{i+1} and v_3^{i+1} , where $P_5^0=v_1^0...v_5^0$ and $P_4^i=v_1^i...v_4^i$. Then the following statements hold.

(i) Neither of the end-vertices of P_4^k is adjacent to an end-vertex of another P_4 component of \mathcal{P} ,

(ii) neither of the middle vertices of P_4^k is adjacent to an end-vertex of another P_4 component of P, and

(iii) neither of the end-vertices of P_5^0 and P_4^k is adjacent to a vertex of a P_3 component of \mathcal{P} .

Proof. (i) If v_1^k is adjacent to an end-vertex u_1 of a component P_4 of \mathcal{P} , where $P_4:=u_1u_2u_3u_4\neq P_4^i$ for all $i\leq k$, then $P_5^0\cup P_4^1\cup P_4^2\cup\cdots\cup P_4^k\cup P_4$ plus some edges $v_1^0v_2^1,\ v_1^1v_2^2,\ \cdots,\ v_1^{k-2}v_2^{k-1},\ v_1^{k-1}v_3^k,\ v_1^ku_1$ has a spanning subgraph $kP_4\cup 3P_3$, which is $\{v_2^0v_3^0v_4^0v_5^0,\ v_1^0v_2^1v_3^1v_4^1,\ \cdots,\ v_1^{k-2}v_2^{k-1}v_3^{k-1}v_4^{k-1},\ v_1^{k-1}v_3^kv_4^k,\ v_2^kv_1^ku_1,u_2u_3u_4\}$ (see the bold lines in Fig. 2 (left)). Then $P_5\cup (k+1)P_4$ in \mathcal{P} can be replaced with $kP_4\cup 3P_3$, giving another $\{P_3,P_4,P_5\}$ -factor with less number of P_5 components than \mathcal{P} , a contradiction.

(ii) If a middle vertex v_2^k or v_3^k of P_4^k (say v_2^k) is adjacent to an end-vertex u_1 of a component P_4 of \mathcal{P} , where $P_4 := u_1u_2u_3u_4 \neq P_4^i$ for all $i \leq k$, then $P_5^0 \cup P_4^1 \cup P_4^2 \cup \cdots \cup P_4^k \cup P_4$ can be replaced with $kP_4 \cup 3P_3$: $\{v_2^0v_3^0v_4^0v_5^0, v_1^0v_2^1v_3^1v_4^1, \ldots, v_1^{k-2}v_2^{k-1}v_3^{k-1}v_4^{k-1}, v_1^{k-1}v_3^kv_4^k, v_1^kv_2^ku_1, u_2u_3u_4\}$ (see Fig. 2 (middle)), giving another $\{P_3, P_4, P_5\}$ -factor which reduces the number of P_5 components by one, a contradiction.

(iii) If v_1^k is adjacent to an end-vertex (say u_1) of a component P_3 of \mathcal{P} , where $P_3 := u_1u_2u_3$, then $G[V(P_5^0 \cup P_4^1 \cup P_4^2 \cup \cdots \cup P_4^k \cup P_3)]$ has a spanning subgraph $(k+2)P_4$: $\{v_2^0v_3^0v_4^0v_5^0, v_1^0v_2^1v_3^1v_4^1, \ldots, v_1^{k-1}v_2^kv_3^kv_4^k, v_1^ku_1u_2u_3\}$ (see Fig. 2 (right)). A similar contradiction follows. If v_1^k is only adjacent to the middle vertex u_2 of P_3 , u_1 and u_3 are adjacent since P_3 is claw-free. Let $P_3' = u_2u_3u_1$. Then $P' := (\mathcal{P} \setminus \{P_3\}) \cup \{P_3'\}$ is another $\{P_3, P_4, P_5\}$ -factor of P_3 with the same number of P_3 components as P_3 . So v_1^k is adjacent to an end-vertex P_3 of a component P_3' of P'. So this case is reduced to the above case.

Figure 2. Illustration for the proof of Claim 2.

Figure 3.

Let P_5^0 be any component of \mathcal{P} (if exists). We now show that neither of the end-vertices of P_5^0 is adjacent to vertices outside $V(P_5^0)$. Otherwise, we would have the following claim, which contradicts the finiteness of graph G.

Claim 3. If an end-vertex of P_5^0 is adjacent to vertices outside $V(P_5^0)$, then \mathcal{P} has a sequence of distinct components $P_5^0, P_4^1, P_4^2, ..., P_4^n, ...$ such that (i) an end-vertex v^0 of P_5^0 must be adjacent to both middle vertices of P_4^1 , (ii) for each $n \geq 1$, an end-vertex v^n of P_4^n must be adjacent to both middle vertices of P_4^{n+1} , and

(iii) for all i < n, the end-vertex v^n of P_4^n has no neighbors in P_4^i or P_5^0 .

Proof. We shall show by induction the existence of such a sequence of components of \mathcal{P} as in the Claim. First, by the above converse supposition we have that P_5^0 exists and has an end-vertex v^0 that is adjacent to a vertex u of other components of \mathcal{P} . By Claim 2 (iii) u lies in no P_3 components of \mathcal{P} . We also show that u lies in no P_5 components of \mathcal{P} . Suppose that u belongs to a component P_5 of \mathcal{P} . If u is an end-vertex (Fig. 3 (a)), or the second or the fourth vertex (Fig. 3 (b)) of P_5 , $2P_3 \cup P_4$ can replace $P_5^0 \cup P_5$. This contradicts the choice of \mathcal{P} similarly. So u can be only the middle vertex of P_5 . As G is claw-free, the second and the fourth vertices of P_5 must be adjacent. Likewise $2P_3 \cup P_4$ can replace $P_5^0 \cup P_5$ (see Fig. 3 (c)), a contradiction. The remaining case is that u lies in a P_4 component of \mathcal{P} , denoted by $P_4^1 = u_1u_2u_3u_4$. By Claim 1 u must be either u_2 or u_3 . If v^0 is adjacent to exactly one of u_2 and u_3 (say u_2), u_1 must be adjacent to u_3 since G is claw-free. $3P_3$ can also replace $P_5^0 \cup P_4^1$ (see Fig. 3 (d)). This also produces a contradiction. Hence P_5^0 and P_4^1 exist and satisfy Property (i).

We now suppose that \mathcal{P} has a sequence of distinct components $P_5^0, P_4^1, P_4^2, ..., P_4^k (k \geq 1)$ which satisfies all Properties (i)-(iii) for each $0 \leq n < k$, where $P_5^0 =: v_1^0 v_2^0 v_3^0 v_4^0 v_5^0$ and $P_4^i =: v_1^i v_2^i v_3^i v_4^i$ for all $1 \leq i \leq k$. By Property (i) or (ii) an end-vertex v_1^{k-1} of P_4^{k-1} (P_5^0 if k=1) is adjacent to both

middle vertices of P_4^k . It is sufficient to prove that v_1^k is only adjacent to both middle vertices of other P_4 components of \mathcal{P} except for v_2^k . By Claim 2 (iii) v_1^k is not adjacent to any vertex of P_3 components of \mathcal{P} .

Figure 4.

If v_1^k is adjacent to a vertex of a component P_5 of \mathcal{P} , by Claim 1 v_1^k is only adjacent to the middle vertex of P_5 . Since G is claw-free, the second vertex of P_5 is adjacent to the fourth vertex. If $P_5 = P_5^0$, by the induction hypothesis $P_5^0 \cup P_4^1 \cup P_4^2 \cup \cdots \cup P_4^k$ can be replaced with $3P_3 \cup (k-1)P_4$: $\{v_2^0v_4^0v_5^0, v_3^0v_1^kv_2^k, v_1^{k-1}v_3^kv_4^k, v_1^0v_2^1v_3^1v_4^1, v_1^1v_2^2v_3^2v_4^2, \ldots, v_1^{k-2}v_2^{k-1}v_3^{k-1}v_4^{k-1}\}$ (see the bold lines in Fig. 4 (left)). Otherwise, let $P_5 =: u_1u_2 \cdots u_5$. Similarly $P_5^0 \cup P_4^1 \cup P_4^2 \cup \cdots \cup P_4^k \cup P_5$ can be replaced with $2P_3 \cup (k+1)P_4$: $\{u_3v_1^kv_2^k, v_1^{k-1}v_3^kv_4^k, u_1u_2u_4u_5, v_2^0v_3^0v_4^0v_5^0, v_1^0v_2^1v_3^1v_4^1, v_1^1v_2^2v_3^2v_4^2, \ldots, v_1^{k-2}v_2^{k-1}v_3^{k-1}v_4^{k-1}\}$ (see Fig. 4 (right)). Both contradict the choice of \mathcal{P} .

By Claim 2 (i) and (ii) none of the vertices of P_4^i is adjacent to v_1^k for i < k, considering a subsequence $P_5^0, P_4^1, P_4^2, \dots, P_4^i$. Hence Property (iii) holds for n = k. If v_1^k is adjacent to v_3^k or v_4^k (say v_3^k), v_1^{k-1} is adjacent to an end-vertex v_2^k of $P_4' := v_2^k v_1^k v_3^k v_4^k$. But it is impossible by applying Claim 2 (i) to $\mathcal{P}' := (\mathcal{P} \setminus \{P_4^k\}) \cup \{P_4'\}$ and a subsequence $P_5^0, P_4^1, P_4^2, \dots, P_4^{k-1}$ and P_4' . Since $\delta(G) \geq 2$, v_1^k is thus adjacent to a vertex of another P_4 component, denoted by $P_4^{k+1} := v_1^{k+1} v_2^{k+1} v_3^{k+1} v_4^{k+1}$, of \mathcal{P} that is different from any P_4^i for all $i \leq k$. By Claim 2 (i) v_1^k is not adjacent to end-vertices v_1^{k+1} and v_4^{k+1} . Similarly, since G is claw-free v_1^k must be adjacent to both middle vertices v_2^{k+1} and v_3^{k+1} of P_4^{k+1} , i.e. Property (ii) holds for n = k. Therefore, \mathcal{P} has a sequence of distinct components $P_5^0, P_4^1, P_4^2, \dots, P_4^k, P_4^{k+1}$ which satisfies all Properties (i)-(iii) for each $0 \leq n < k+1$. The induction shows that the claim follows.

Figure 5.

We have already shown that neither of the end-vertices of any component P_5 of $\mathcal P$ is adjacent to vertices outside P_5 . The remainder is to prove that any internal vertices of P_5 have no neighbors outside P_5 itself. Let $P_5 := v_1 v_2 v_3 v_4 v_5$ be a component of \mathcal{P} . Then all neighbors of v_1 and v_5 belong to $V(P_5)$. If the induced graph $G[V(P_5)]$ has a Hamiltonian cycle, each vertex v_i of P_5 can be an end-vertex of a path of order 5 in G, which can replace P_5 to obtain another $\{P_3, P_4, P_5\}$ -factor \mathcal{P}' . Since \mathcal{P}' has the same number of P_5 components as \mathcal{P} , the above proof already shows that all neighbors of v_i are in P_5 . Hence $V(P_5)$ induces a component of G. Suppose that $G[V(P_5)]$ has no Hamiltonian cycle. Since $\delta(G) \geq 2$, it follows that each of both v_1 and v_5 has exactly two neighbors and either $\{v_1v_4, v_2v_5\} \subset E(G)$ or $\{v_1v_3, v_5v_3\} \subset E(G)$. If $\{v_1v_4, v_2v_5\} \subset E(G)$, $G[\{v_1, v_2, v_3, v_5\}]$ is a claw of G, i.e. $K_{1,3}$ (see the bold lines in Fig. 5 (left)), a contradiction. If v_1 and v_5 are both adjacent to v_3 , each v_i for i=1,2,4,5 is an end-vertex of a path of order 5 in $G[V(P_5)]$ and their neighbors are all in P_5 . If v_3 has a neighbor $u \notin V(P_5)$, $G[\{v_1, v_3, v_5, u\}]$ is a claw of G (see Fig. 5 (right)), a contradiction. Hence all neighbors of v_3 are also in P_5 as v_1, v_2, v_4 and v_5 . So $G[V(P_5)]$ is a component of G. The entire proof is completed.

3 Conclusions

For connected claw-free graphs we can derive a simpler result from Theorem 5:

Corollary 6 If G is a connected claw-free graph with $\delta(G) \geq 2$ and at least 6 vertices, G has a $\{P_3, P_4\}$ -factor.

Proof. Since G is connected and has at least 6 vertices, G has no component with 5 vertices. Theorem 5 implies that G has a $\{P_3, P_4\}$ -factor. \square

We now remark that Theorem 5 and Corollary 6 are best possible. For

example, the claw-free graph with vertices of degree 1 illustrated in Fig. 6 has neither $\{P_3, P_4\}$ -factor nor component of order 5.

Figure 6. A claw-free graph without $\{P_3, P_4\}$ -factor.

Theorem 2 shows that every 2-connected cubic graph has a $\{P_3, P_4\}$ -factor. However, Kawarabayashi et al. [7] pointed out that the theorem fails when violating the connection condition by presenting a counter-example of a cubic graph with a cut-vertex. In fact this cubic graph contains many claws, i.e. induced subgraphs $K_{1,3}$. For a claw-free graph with cut-vertices illustrated in Fig. 7, however, it has a $\{P_3, P_4\}$ -factor. Applying Theorem 5 or Corollary 6, we have the following general result.

Figure 7. A claw-free cubic graph with cut-vertices and a $\{P_3, P_4\}$ -factor (in bold lines).

Corollary 7 Let G be a claw-free cubic graph. Then G has a $\{P_3, P_4\}$ -factor.

Proof. That G is a cubic graph implies that it has no component of order 5. So by Theorem 5 or Corollary 6 G has a $\{P_3, P_4\}$ -factor.

References

- [1] Akiyama, J., Avis, D., Era, H.: On a {1, 2}-factor of a graph. TRU Math. 16, 97-102 (1980)
- [2] Akiyama, J., Kano, M.: Path factors of a graph. In: F. Harary, J. S. Maybee: Graphs and Applications, Proc. 1st Colorado Symposium on Graph Theory 1982 (pp. 1-21) New York: Wiley 1985

- [3] Ando, K., Egawa, Y., Kaneko, A., Kawarabayashi, K., Matsuda, H.: Path factors in claw-free graphs. Discrete Math. 243, 195-200 (2002)
- [4] Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Combin. Theory, Ser. B 88, 195-218 (2003)
- [5] Kano, M., Lee, C., Suzuki, K.: Path factors and cycle factors of cubic bipartite graphs. Preprint.
- [6] Kano, M., Katona, G. Y., Király, Z.: Packing paths of length at least two. Discrete Math. 283, 129-135 (2004)
- [7] Kawarabayashi, K., Matsuda, H., Oda, Y., Ota, K.: Path factors in cubic graphs. J. Graph Theory 39, 188-193 (2002)