The Vertices of Lower Degree in Contraction-Critical κ Connected Graphs *

Yuan Xudong Li Ting-ting Su Jianji
Department of Mathematics
Guangxi Normal University, 541004, Guilin, P.R.China

Abstract

Let G be a contraction-critical κ connected graph. It is known (see Graphs and Combinatorics, 7 (1991) 15-21) that the minimum degree of G is at most $\lfloor \frac{5\kappa}{4} \rfloor - 1$. In this paper we show that if G has at most one vertex of degree κ , then either G has a pair of adjacent vertices such that each of them has degree at most $\lfloor \frac{5\kappa}{4} \rfloor - 1$, or there is a vertex of degree κ whose neighborhood has a vertex of degree at most $\lfloor \frac{4\kappa}{3} \rfloor - 1$. Moreover, if the minimum degree of G equals to $\frac{5\kappa}{4} - 1$ (and thus $\kappa = 0 \mod 4$), Su showed that G has κ vertices of degree $\frac{5\kappa}{4} - 1$, guessed that G has $\frac{3\kappa}{2}$ such vertices (see Combinatorics Graph Theory Algorithms and Application (Yousef Alavi et. al Eds.), World Scientific, 1993, 329-337). Here we verify that this is true.

Keywords Contraction-Critical Graph; Fragment; N(B)-fragment.

1 Introduction

We consider only finite and simple graphs. Let G = (V, E) be a graph with vertex set V and edge set E. For a vertex $x \in V$, we denote the neighborhood of x by $N_G(x)$, which is the set of vertices adjacent to x. $d_G(x) = |N_G(x)|$ denotes the degree of x. Let $\delta(G)$ denote the minimum degree of G. For $F \subseteq V$, let $N_G(F) = (\bigcup_{x \in F} N_G(x)) - F$ and $\overline{F} = V - (F \cup N_G(F))$. The set F or the subgraph induced by F is called a fragment of G if $\overline{F} \neq \emptyset$ and $|N_G(F)| = \kappa(G)$, where $\kappa(G)$ denotes the

 $^{^*}$ This work is supported by Guangxi Natural Science Foundation of China (Grant No. 0640063)

connectivity number of G. A fragment with minimum cardinality is called an atom of G, its cardinality is denoted by a(G). An end of G is a fragment of G that contains no other fragment as a proper subset. We often omit the subscript G if it is clear from the context.

Let G be a κ connected non-complete graph, $\kappa \geq 2$. An edge of G is called κ -contractible if its contraction results still in a κ connected graph. The graph G is said to be contraction-critical if G has no κ -contractible edge. A set T of n vertices of G is called a n-vertex-cut if G-T is disconnected. It is easy to see that a κ connected graph G is contraction-critical if and only if for each edge e=xy of G, G has a κ -vertex-cut containing $\{x,y\}$. A κ connected graph G is called almost critical if for each fragment F of G, there is a κ -vertex-cut T such that $F \cap T \neq \emptyset$.

Let G be a contraction-critical κ connected graph. Egawa ([2]) proved that $a(G) \leq \lfloor \frac{\kappa}{4} \rfloor$, and hence $\delta(G) \leq \lfloor \frac{5\kappa}{4} \rfloor - 1$. Su [6]) generalized this result to that G has two disjoin fragments F_1, F_2 of G such that $|F_1| + |F_2| \leq \frac{\kappa}{2}$. We may ask the following question: how many vertices of degree at most $\lfloor \frac{5\kappa}{4} \rfloor - 1$ are there in a contraction-critical κ connected graph G?

Let A be an atom of G. Then $|A| \leq \lfloor \frac{\kappa}{4} \rfloor$. Clearly, if $|A| \geq 2$, as the subgraph induced by A is connected and every vertex in A has degree at most $\lfloor \frac{5\kappa}{4} \rfloor - 1$, then G has a pair of adjacent vertices of degree at most $\lfloor \frac{5\kappa}{4} \rfloor - 1$. If |A| = 1 (and thus $\delta(G) = \kappa$), the above result is not known. Recently, Kriesell ([3]) proved that a contraction-critical κ connected graph G has two vertices x, y of distance one or two such that $d(x) + d(y) \leq 2\lfloor \frac{5\kappa}{4} \rfloor - 2$. It was improved to ([7]) that a contraction-critical κ connected graph G has two adjacent vertices x, y such that $d(x) + d(y) \leq 2\lfloor \frac{5\kappa}{4} \rfloor - 2$. So we may expect that G has a pair of adjacent vertices x, y such that both of x, y has lower degree. In this direction, we show in this paper the following result.

Theorem 1 Let G be a contraction-critical κ connected graph. Then, G has two vertices of degree κ , or G has two adjacent vertices x, y such that $\max\{d(x), d(y)\} \leq \lfloor \frac{5k}{4} \rfloor - 1$ or such that $d(x) = \kappa$ and $d(y) \leq \lfloor \frac{4k}{3} \rfloor - 1$.

For the extremal case of the minimum degree, Su obtained the following result.

Theorem 2 ([6], Theorem 2 and Corollary 2) Let G be a contraction-

critical κ connected graph. If $\delta(G) = \frac{5\kappa}{4} - 1$ (and thus $\kappa = 0 \mod 4$), then G has four disjoint atoms of size $\frac{\kappa}{4}$. Hence G has at least κ vertices of degree $\frac{5\kappa}{4} - 1$.

Su guessed that the number 'four' in Theorem 2 can be replaced by 'six'. If so, the result is best possible as shown in [6]. We prove that this is true.

Theorem 3 Let G be a contraction-critical κ connected graph. If $\delta(G) = \frac{5\kappa}{4} - 1$, then G has six disjoint atoms of size $\frac{\kappa}{4}$, and hence G has at least $\frac{3\kappa}{2}$ vertices of degree $\frac{5\kappa}{4} - 1$.

We will give the proof of Theorem 1 and Theorem 3 in section 3.

2 Some Properties of Fragments

We have the following known properties of fragments.

Lemma 1 ([4]) Let F and F' be two fragments of G, T = N(F), T' = N(F').

- (1) If $F \cap F' \neq \emptyset$, then $|F \cap T'| \geq |\overline{F'} \cap T|$, $|F' \cap T| \geq |\overline{F} \cap T'|$.
- (2) If $F \cap F' \neq \emptyset$ and $|N(F \cap F')| > \kappa(G)$, then $|F \cap T'| > |\overline{F'} \cap T|$, $|F' \cap T| > |\overline{F} \cap T'|$.
- (3) If $F \cap F' \neq \emptyset \neq \overline{F} \cap \overline{F'}$, then both $F \cap F'$ and $\overline{F} \cap \overline{F'}$ are fragments of G, and $N(F \cup F') = (T \cap T') \cup (T \cap \overline{F'}) \cup (\overline{F} \cap T') = N(\overline{F} \cap \overline{F'})$.

Lemma 2 ([4]) Let A be an atom of G and T be a $\kappa(G)$ -vertex-cut of G. If $A \cap T \neq \emptyset$, then $A \subseteq T$.

Lemma 3 ([3]) Let G be a contraction-critical κ connected graph and A be an atom of G. Then G-A is almost critical graph and $\kappa(G-A)=\kappa-|A|$.

Lemma 4 ([5]) Let G be an almost critical κ connected graph and A be an atom of G. Then $|A| \leq \frac{\kappa}{2}$.

Lemma 5 ([6]) Let B be an end and F a fragment of G. If $N(F) \cap B \neq \emptyset$, then $|F \cap N(B)| \geq a(G)$.

Lemma 6 ([6]) Let B be an end and F a fragment of G. If $N(F) \cap B \neq \emptyset$, the one of following statements holds:

(1)
$$F \subseteq N(B)$$
 (2) $\overline{F} \subseteq N(B)$, $|F \cap N(B)| \ge |\overline{F}|$, $|\overline{F}| < |B|$.

(3)
$$|\overline{B}| < |F \cap N(B)|$$
. (4) $|B| \le |F \cap N(B)|$.

In order to study the contraction-critical graphs, Su introduced in [6] the N(B)-fragments. Let B be an end of G. A fragment of G is called an N(B)-fragment of G if $N(F) \cap B \neq \emptyset$. If F is an N(B)-fragment of G, as $N(\overline{F}) = N(F)$, then \overline{F} is also an N(B)-fragment of G.

Lemma 7 ([6], Theorem 3) Let G be a contraction-critical κ connected graph and let B be an end of G. Then G has four N(B)-fragments F_1, F_2, F_3 and F_4 such that F_1, F_2, F_3 and $F_4 \cap N(B)$ are pairwise disjoint.

From Lemma 7 we can deduce the following result.

Corollary 1 Let G be a contraction-critical κ connected graph. Let B be an end of G such that $|B| > \frac{\kappa}{4}$ and $|\overline{B}| > \frac{\kappa}{4}$. Then N(B) contains a fragment F of G such that $|F| \leq \frac{\kappa}{4}$.

Proof By Lemma 7, G has four N(B)-fragments F_1, F_2, F_3, F_4 such that F_1, F_2, F_3 and $F_4 \cap N(B)$ are pairwise disjoint. So, $F_1 \cap N(B), F_2 \cap N(B), F_3 \cap N(B), F_4 \cap N(B)$ are pairwise disjoint. Suppose that $|F_1 \cap N(B)| \leq |F_2 \cap N(B)| \leq |F_3 \cap N(B)| \leq |F_4 \cap N(B)|$. By $\sum_{i=1}^4 |F_i \cap N(B)| \leq |N(B)| = \kappa$, we have $|F_1 \cap N(B)| \leq \frac{\kappa}{4}$. By Lemma 6, we have that, either $F_1 \subseteq N(B)$ and $|F_1| = |F_1 \cap N(B)| \leq \frac{\kappa}{4}$, or $\overline{F_1} \subseteq N(B)$ and $|\overline{F_1}| \leq |F_1 \cap N(B)| \leq \frac{\kappa}{4}$.

3 Proofs

Proof of Theorem 1 Let G be a contraction-critical κ connected graph. As we described in section 1, we may assume that a(G) = 1, and thus $\delta(G) = \kappa$. For the purpose, assuming that G has only one vertex a such that $d(a) = \kappa$, and G has no a pair of adjacent vertices x, y such that $\max\{d(x), d(y)\} \leq \lfloor \frac{5k}{4} \rfloor - 1$, we deduce that a is adjacent to a vertex y such that $d(y) \leq \lfloor \frac{4\kappa}{3} \rfloor - 1$.

Let $W=\{v\in V|\ d(v)\leq \lfloor\frac{5\kappa}{4}\rfloor-1\}$. Clearly, if G contains a fragment F such that $a\not\in F$ and $|F|\leq \lfloor\frac{\kappa}{4}\rfloor$, by the assumption, F has at least one

edge, and thus has two adjacent vertices of W. Also, if G has a fragment F such that $a \in F$ and $2 \le |F| \le \lfloor \frac{\kappa}{4} \rfloor$, then F contains two adjacent vertices of W. Otherwise, F has no edges, and then F contains two vertices of degree κ . So we may assume that for each fragment F of G, if $|F| \ge 2$, then $|F| > \lfloor \frac{\kappa}{4} \rfloor$.

Let $D = V - (N(a) \cup \{a\})$. Now we deduce that D is an end of G. Clearly, D is a fragment of G. If D is not an end of G, then there is an end B of G such that $B \subseteq D$ and $B \neq D$. As $B \cup N(B) \subseteq D \cup N(a)$, $a \in \overline{B}$. Moreover, $|\overline{B}| \geq 2$, and hence $|\overline{B}| > \lfloor \frac{\kappa}{4} \rfloor$ by the assumption. As $a \notin B$, we also have $|B| > \lfloor \frac{\kappa}{4} \rfloor$. Then, by Corollary 1, N(B) contains a fragment F of G such that $|F| \leq \lfloor \frac{\kappa}{4} \rfloor$. As $a \in \overline{B}$, $a \notin |F|$, a contradiction.

In the follow, let D be an end of G. We claim that for any κ -vertex-cut T of G, if $T \cap D \neq \emptyset$, then $a \in T$. For otherwise, let T be a κ -vertex-cut T of G such that $T \cap D \neq \emptyset$ and $a \notin T$. Let F be a fragment of G such that N(F) = T and $a \in F$. As $a \in F$, $N(a) \cap \overline{F} = \emptyset$, and hence $\overline{F} \subseteq D$. Note that $T \cap D \neq \emptyset$, $\overline{F} \neq D$, a contradiction.

Let $G'=G-\{a\}$. Then G' is $\kappa-1$ connected. For convenience, we denote $N_{G'}(F)$ by N'(F) for any fragment F of G'. Clearly, F is a fragment of G' if and only if F is a fragment of G such that $a\in N(F)$, so $N(F)=N'(F)\cup\{a\}$. Hence $N(a)\cap F\neq\emptyset$ for any fragment F of G'. So $|N'(F)\cap N(a)|\leq \kappa-2$ for any fragment F of G' as $N(a)\cap F\neq\emptyset\neq N(a)\cap \overline{F}$, and thus $N'(F)\cap D\neq\emptyset$. Let A be an atom of G'. Let $x\in N'(A)\cap D$ and $y\in N(x)\cap A$. Since G is contraction-critical, G has a κ -vertex-cut T such that $\{x,y\}\subseteq T$. Then $a\in T$ as $x\in T\cap D$. Let F be a fragment of G' such that $N'(F)=T-\{a\}$. Note that $y\in N'(F)\cap A$, we have $A\subseteq N'(F)$ by Lemma 2. Now we consider the fragments F of G' such that $N'(F)\supseteq A$. We distinguish two cases to deduce that $|A|\leq \frac{\kappa}{3}$.

Case 1 $A \cap D \neq \emptyset$. Let $x \in A \cap D$ and let $y \in N'(x) \cap F$ for any fragment F of G' with $N'(F) \supseteq A$, we choose a κ -vertex-cut S of G such that $S \supseteq \{x,y\}$. By our choice, $S \cap D \neq \emptyset$, so we have $a \in S$ and $A \subseteq S - \{a\}$. Hence, $S_1 := S - (A \cup \{a\})$ is a vertex-cut of $\kappa - |A| - 1$ in G' - A. By regarding F as a fragment of G' - A, we have that G' - A has a vertex-cut S_1 of $\kappa - |A| - 1$ such that $y \in S_1 \cap F$, $S_1 \cap F \neq \emptyset$. Note that G' - A is $\kappa - |A| - 1$ connected and each fragment F of G' - A is a fragment of G' such that $N'(F) \supseteq A$. So G' - A is almost critical. Let G' - A is almost critical.

be an atom of G'-A. Then $|C| \leq \frac{\kappa - |A|-1}{2}$ by Lemma 4. As $|A| \leq |C|$, we obtain $|A| \leq \frac{\kappa}{3}$.

Case 2 $A \cap D = \emptyset$. Then $A \subseteq N(a)$.

If any end B of G'-A satisfies that $N'(A)\cap (B\cap D)=\emptyset$, then $N'(A)\cap B\subseteq N(a)$. If $B\cap D=\emptyset$, then $N(a)\cap B=B$. As B is a fragment of G', $|B|\geq |A|$, and thus $|N(a)\cap B|=|B|\geq |A|$. If $B\cap D\neq \emptyset$, as B is a fragment of G', then $(N(a)\cap B)\cup (N'(B)\cap D)\cup (N(a)\cap N'(B)-A)$ is a vertex-cut of G', and thus $|(N(a)\cap B)|+|(N'(B)\cap D)|+|N(a)\cap N'(B)|-|A|\geq N'(B)$. Hence, $|N(a)\cap B|\geq |A|$. Now we choose an end B of G'-A and an end B' of G'-A contained in \overline{B} . Then, by the assumption, we have $|N(a)\cap B|\geq |A|$ and $|N(a)\cap B'|\geq |A|$. So, $3|A|\leq |N(a)\cap B|+|A|+|N(a)\cap B'|\leq |N(a)|=\kappa$, and thus $|A|\leq \frac{\kappa}{3}$.

If there is an end B of G'-A such that $N'(A)\cap (B\cap D)\neq \emptyset$, then we choose a vertex $z\in N'(A)\cap (B\cap D)$ and a vertex $t\in N'(z)\cap A$ and a κ -vertex-cut R of G such that $R\supseteq \{z,t\}$. Let U be a fragment of G such that N(U)=R. Note that $R\cap D\neq \emptyset$ and $R\cap A\neq \emptyset$, $R_1:=R-(A\cup \{a\})$ is a $\kappa-|A|-1$ -vertex-cut of G'-A. So, U is a fragment of G'-A such that $N_{G'-A}(U)=R_1$. Since $z\in R_1\cap B$, $R_1\cap B\neq \emptyset$. By using Lemma 5 and Lemma 6, we can deduce that one of $B,\overline{B},U,\overline{U}$ has at most $\frac{\kappa-|A|-1}{2}$ vertices. Clearly, each of them is a fragment of G'. So we have $|A|\leq \frac{\kappa-|A|-1}{2}$, and then $|A|\leq \frac{\kappa}{3}$.

As each vertex of A has degree at most $\lfloor \frac{\kappa}{3} \rfloor - 1$ and $N(a) \cap A \neq \emptyset$, there is a vertex $y \in N(a) \cap A$ such that $d(y) \leq \lfloor \frac{4\kappa}{3} \rfloor - 1$.

The proof of Theorem 3 By contradiction. Since $\frac{5\kappa}{4} - 1 = \delta(G) \le a(G) + \kappa - 1 \le \frac{5\kappa}{4} - 1$, we have $a(G) = \frac{\kappa}{4}$. It follows that the subgraph of G induced by an atom is a complete graph. Suppose that G has at most five disjoint atoms of cardinality $\frac{\kappa}{4}$, we deduce a contradiction.

(3.1) Every end of G is an atom of G.

Proof Suppose that (3.1) is not true. Let B is an end of G such that $|B| > a(G) = \frac{\kappa}{4}$. By Lemma 7, G has four N(B)-fragments F_1, F_2, F_3, F_4 such that F_1, F_2, F_3 and $F_4 \cap N(B)$ are pairwise disjoint. Since F_i is N(B)-fragment for i = 1, 2, 3, 4, we have $N(F_i) \cap B \neq \emptyset$, by Lemma 5, $|F_i \cap N(B)| \geq a(G)$. So we have $\kappa = 4a(G) \leq \sum_{i=1}^4 |F_i \cap N(B)| \leq |N(B)| = \kappa$,

implying that $|F_i \cap N(B)| = a(G) = \frac{\kappa}{4}$, and hence $|B| > |F_i \cap N(B)|$ for i = 1, 2, 3, 4. For the end B and the fragment F_i for each $i \in \{1, 2, 3, 4\}$, by noting that $|F_i \cap N(B)| = a(G) < |B|$ and $|\overline{B}| \ge a(G)$ and $|\overline{F_i}| \ge a(G) = |F_i \cap N(B)|$, Lemma 6 implies that either $F_i \subseteq N(B)$, or $\overline{F_i} \subseteq N(B)$ and $|F_i \cap N(B)| \ge |\overline{F_i}|$ and $|\overline{F_i}| < |B|$. We claim that $F_i \subseteq N(B)$.

For otherwise, either $F_i \cap B \neq \emptyset$ or $F_i \cap \overline{B} \neq \emptyset$. Moreover, $\overline{F_i} \subseteq N(B)$ and $|F_i \cap N(B)| \geq |\overline{F_i}|$ and $|\overline{F_i}| < |B|$. Then $|F_i \cap N(B)| = |\overline{F_i}| = |\overline{F_i} \cap N(B)| = \frac{\kappa}{4}$. This follows that $|N(B) \cap N(F_i)| = \frac{\kappa}{2}$. If $F_i \cap B \neq \emptyset$, as B is an end of G, then $|N(F_i) \cap B| > |\overline{F_i} \cap N(B)| = \frac{\kappa}{4}$, and thus $|N(F_i) \cap \overline{B}| < \frac{\kappa}{4} = |\overline{F_i} \cap N(B)|$, implying $F_i \cap \overline{B} = \emptyset$ and $|\overline{B}| = |N(F_i) \cap \overline{B}| < \frac{\kappa}{4}$, a contradiction. Hence, $F_i \cap B = \emptyset$ and $F_i \cap \overline{B} \neq \emptyset$. Thus $F_i \cap B = \mathbb{N}$. As $|F_i| = \mathbb{N}$, we still have $|F_i| \cap \mathbb{N} = \mathbb{N}$. Then, by using the same argument as above, we have $F_i \cap \overline{B} = \emptyset$, also a contradiction.

Hence, $F_i \subseteq N(B)$ and thus $|F_i| = |F_i \cap N(B)| = \frac{\kappa}{4}$ for $i \in \{1, 2, 3, 4\}$. This follows that F_i for $i \in \{1, 2, 3, 4\}$ is an atom of G. So N(B) contains four disjoint atoms F_1, F_2, F_3, F_4 .

In the below, we assume that the four atoms contained in N(B) are A_1, A_2, A_3, A_4 , so $N(B) = \bigcup_{i=1}^4 A_i$. Let T be a κ -vertex-cut T of G and F a fragment of G with N(F) = T. By Lemma 2, if $A_i \cap T \neq \emptyset$, then $A_i \subseteq T$ for each $i \in \{1, 2, 3, 4\}$, and if $A_i \cap F \neq \emptyset$ (or $A_i \cap \overline{F} \neq \emptyset$), then $A_i \subseteq F$ ($A_i \subseteq \overline{F}$, respectively) for each $i \in \{1, 2, 3, 4\}$.

Note that if an atom A of G contains a vertex x which is adjacent to a vertex x' of an atom A' of G, then $N(A) \cap A' \neq \emptyset$ and $N(A') \cap A \neq \emptyset$, by Lemma 2, $A' \subseteq N(A)$ and $A \subseteq N(A')$. We define that two atoms A, A' of G are adjacent, if $A' \subseteq N(A)$ and $A \subseteq N(A')$.

Pick any vertex $x \in N(A_1) \cap B$, $y \in N(x) \cap A_1$. Since G is contraction-critical, there is a κ -vertex-cut T of G such that $T \supseteq \{x,y\}$. Let F be a fragment of G with N(F) = T. So $A_1 \subseteq T$.

For the moment we assume that $N(B) \cap F = \emptyset$. As $x \in B \cap T$, then $F \cap \overline{B} = \emptyset$, hence $F \cap B$ is a fragment, contradicting that B is an end. Thus $N(B) \cap F \neq \emptyset$. Similarly we have $N(B) \cap \overline{F} \neq \emptyset$. Then, as we state above, we may assume $A_2 \subseteq N(B) \cap F$, $A_3 \subseteq N(B) \cap \overline{F}$. We consider A_4 .

If $A_4 \subseteq N(B) \cap T$, then $|N(B) \cap T| = |A_1 \cup A_4| = \frac{\kappa}{2}$. If $|B \cap T| = |\overline{B} \cap T| = \frac{\kappa}{4}$, then $|(B \cap T) \cup (N(B) - \overline{F})| = \kappa$. As B is an end, $F \cap B = \emptyset$. Similarly we can deduce that $\overline{F} \cap B = \emptyset$, and thus $B = B \cap T$, implying

that |B| = a(G), a contradiction. If $|B \cap T| > |\overline{B} \cap T|$, then $|B \cap T| > \frac{\kappa}{4}$, $|\overline{B} \cap T| < \frac{\kappa}{4}$. Then $|(N(B) \cap F) \cup (T - B)| < \kappa$, and thus $\overline{B} \cap F = \emptyset$. By the same argument, we have $\overline{B} \cap \overline{F} = \emptyset$. Hence, $|\overline{B}| = |\overline{B} \cap T| < \frac{\kappa}{4}$, a contradiction. By symmetry, $|B \cap T| < |\overline{B} \cap T|$ is also impossible, implying that $A_4 \not\subseteq N(B) \cap T$. So $A_4 \subseteq F \cap N(B)$ or $A_4 \subseteq \overline{F} \cap N(B)$.

By symmetry, we may assume that $A_4 \subseteq N(B) \cap \overline{F}$. Now $N(B) \cap T = A_1$, $N(B) \cap F = A_2$, $N(B) \cap \overline{F} = A_3 \cup A_4$. If $B \cap F \neq \emptyset$, as B is an end, $|B \cap T| \geq \frac{\kappa}{2} + 1$, $|\overline{B} \cap T| \leq \frac{\kappa}{4} - 1$, and thus $|(A_3 \cup A_4 \cup A_1) \cup (\overline{B} \cap T)| \leq \kappa - 1$, and $|(A_1 \cup A_2) \cup (\overline{B} \cap T)| < \kappa - 1$, implying that $\overline{B} \cap F = \emptyset$ and $\overline{B} \cap \overline{F} = \emptyset$, and thus $|\overline{B}| = |\overline{B} \cap T| \leq \frac{\kappa}{4} - 1$, contradict $a(G) = \frac{\kappa}{4}$. Hence, $B \cap F = \emptyset$. On the other hand, if $\overline{B} \cap F \neq \emptyset$, then $|B \cap T| \leq |F \cap N(B)| = \frac{\kappa}{4}$, and so $B \cap \overline{F} \neq \emptyset$. From that we have $B \cap \overline{F}$ is a fragment of G. But G is an end, and $G \cap F \subseteq G$ and $G \cap F \subseteq G$. So, $G \cap F \subseteq G$ and $G \cap F \subseteq G$ and $G \cap F \subseteq G$. So, $G \cap F \subseteq G$ and $G \cap F \subseteq G$ and $G \cap F \subseteq G$. So, $G \cap F \subseteq G$ and $G \cap F \subseteq G$ and $G \cap F \subseteq G$. Note that $G \cap F \subseteq G$ and $G \cap F \subseteq G$ are adjacent and $G \cap F \subseteq G$. Note that $G \cap F \subseteq G$ and $G \cap F \subseteq G$ are adjacent to $G \cap F \subseteq G$. Note that $G \cap F \subseteq G$ are adjacent to $G \cap F \subseteq G$ and $G \cap F \subseteq G$ are adjacent to $G \cap F \subseteq G$. Note that $G \cap F \subseteq G$ are adjacent to $G \cap F \subseteq G$ are adjacent to $G \cap F \subseteq G$. Note that $G \cap F \subseteq G$ is not adjacent to $G \cap F \subseteq G$.

Let $u \in B \cap T = B \cap N(A_2)$, $v \in N(u) \cap A_2$. Since G is contraction-critical and $uv \in E(G)$, there is a κ -vertex-cut T_1 of G such that $T_1 \supseteq \{u,v\}$. Then $A_2 \subseteq N(B) \cap T_1$ by Lemma 2. Moreover, we have $N(B) \cap T_1 = A_2$ by using the same argument as above. Let F_1 be a fragment of G such that $N(F_1) = T_1$ and $F_1 \supseteq A_1$. As A_2 is not adjacent to A_3, A_4 , in view of the above proof we have $F_1 = N(B) \cap F_1 = A_1$ and $N(B) \cap \overline{F_1} = A_3 \cup A_4$. Hence $N(A_1) = T_1$, and thus $u \in T_1 \cap B = N(A_1) \cap B$. It follows that $N(A_2) \cap B \subseteq N(A_1) \cap B$. Combining the fact $N(A_1) \cap B \subseteq N(A_2) \cap B$, we have $N(A_1) \cap B = N(A_2) \cap B$. Note that $F_1 = A_1$ and $A_3 \cup A_4 \subseteq \overline{F_1}$, A_1 is not adjacent to A_3, A_4 .

Pick any vertex $x \in N(A_3) \cap B$ and $y \in N(x) \cap A_3$. By noting that both of A_1, A_2 are not adjacent to A_3, A_4 , we can similarly deduce that $N(A_3) \cap B = N(A_4) \cap B$ and A_3, A_4 are adjacent.

Summarizing above results, we have that A_1 , A_2 are adjacent, A_3 , A_4 are adjacent, and both of A_1 , A_2 are adjacent to neither of A_3 , A_4 . Moreover, $N(A_1) \cap B = N(A_2) \cap B$ and $N(A_3) \cap B = N(A_4) \cap B$.

Claim 1 $B \subseteq N(A_1), B \subseteq N(A_3)$. For otherwise, we may assume that $B-N(A_1) \neq \emptyset$, so $N(A_2) \cap (B-N(A_1)) = \emptyset$. Then, $(N(A_1) \cap B) \cup (A_3 \cup A_4)$ is a vertex-cut of G. It follows that $|N(A_1) \cap B| \geq \frac{\kappa}{2}$, and thus $|N(A_1) \cap \overline{B}| \leq \frac{\kappa}{2}$.

 $\frac{\kappa}{4}$. Clearly, $|N(A_1) \cap \overline{B}| \ge |A_1| = \frac{\kappa}{4}$ (for otherwise, $\overline{B} - N(A_1) \ne \emptyset$, and thus $(N(A_1) \cup \overline{B}) \cup A_2 \cup A_3 \cup A_4$ is a vertex-cut of G with less than κ vertices, a contradiction). So $|N(A_1) \cap \overline{B}| = \frac{\kappa}{4}$, and thus $|N(A_1) \cap B| = \frac{\kappa}{2}$. It follows that $(N(A_1) \cap B) \cup (A_3 \cup A_4)$ is a vertex-cut of G with κ vertices, and thus $B - N(A_1)$ is a fragment of G, contradict that B is an end of G.

By Claim 1, $\overline{A_1} \cap B = \emptyset$. As $A_2 \subseteq N(A_1)$ and that A_1 is not adjacent to $A_3, A_4, N(A_2) \cap \overline{A_1} \subseteq \overline{A_1} \cap \overline{B}$, and thus $N(A_2) \cap (\overline{A_1} \cap \overline{B}) \neq \emptyset$, implying that $N(A_2) \cap \overline{B} \not\subseteq N(A_1) \cap \overline{B}$. We can similarly deduce that $N(A_1) \cap \overline{B} \not\subseteq N(A_2) \cap \overline{B}$, $N(A_3) \cap \overline{B} \not\subseteq N(A_4) \cap \overline{B}$, $N(A_4) \cap \overline{B} \not\subseteq N(A_3) \cap \overline{B}$.

Pick a vertex $x \in N(A_1) \cap \overline{B} - A_2$, $y \in N(x) \cap A_1$, and let T be a κ -vertex-cut of G such that $T \supseteq \{x,y\}$. By Lemma 2, $A_1 \subseteq T$.

Claim 2 $T \cap B = \emptyset$. For otherwise, $T \cap B \neq \emptyset$. Let F be a fragment of G such that N(F) = T.

- (i) If $F \cap B \neq \emptyset \neq \overline{F} \cap B$, as B is an end of G, then $\overline{F} \cap \overline{B} = \emptyset = F \cap \overline{B}$, and $|F \cap N(B)| > |T \cap \overline{B}| \ge \frac{\kappa}{4}$ and $|\overline{F} \cap N(B)| > |T \cap \overline{B}| \ge \frac{\kappa}{4}$. Note that $A_1 \subseteq T$, it implies that $F \cap N(B)$ contains at least two of A_2, A_3, A_4 and $\overline{F} \cap N(B)$ contains at least two of A_2, A_3, A_4 , a contradiction.
- (ii) If $F \cap B \neq \emptyset$ and $\overline{F} \cap B = \emptyset$, then $\overline{F} \cap \overline{B} = \emptyset$, and thus $\overline{F} = \overline{F} \cap N(B)$. If \overline{F} contains at least two of A_2, A_3, A_4 , then $|B \cap T| > |\overline{F}| \geq \frac{\kappa}{2}$, implying that $|\overline{B} \cap T| < \frac{\kappa}{4} < |\overline{F}|$, and thus $F \cap \overline{B} = \emptyset$, and hence $|\overline{B}| = |\overline{B} \cap T| < \frac{\kappa}{4}$, a contradiction. So \overline{F} contains exact one of A_2, A_3, A_4 . If $\overline{F} = A_2$, then $x \in T \cap \overline{B} = N(A_2) \cap \overline{B}$, contradict the choice of x. Hence, $\overline{F} = A_3$ or A_4 . We may assume $\overline{F} = A_3$, then $T = N(A_3) \supseteq A_1$, contradict the fact that A_1 is not adjacent to A_3 . We can similarly deduce a contradiction if $F \cap B = \emptyset$ and $\overline{F} \cap B \neq \emptyset$.

By (i) and (ii), we have $B\subseteq T$, and thus $|B\cap T|=|B|>\frac{\kappa}{4}$. Then we can similarly deduce that $|\overline{B}|<\frac{\kappa}{4}$ if we assume $T\cap N(B)$ contains two of A_1,A_2,A_3,A_4 . So $T\cap N(B)=A_1$. We may assume that $A_2\subseteq F\cap N(B)$. Now if $\overline{F}\cap N(B)=A_3$ or A_4 , then $|\overline{F}\cap N(B)|<|T\cap B|=|B|$, implying that $\overline{F}=\overline{F}\cap N(B)=A_3$ or A_4 , and thus that A_1 is adjacent to A_3 or A_4 , a contradiction. If $\overline{F}\cap N(B)=A_3\cup A_4$, then $F\cap N(B)=A_2$, similarly we can deduce that $F=F\cap N(B)=A_2$, and thus $x\in T\cap \overline{B}=N(A_2)\cap \overline{B}$, contradict the choice of x. This proves Claim 2.

By Claim 2, $T \cap B = \emptyset$. As B is an end of G, $B \subseteq F$ or $B \subseteq \overline{F}$. We

may suppose $B \subseteq \overline{F}$, then $F = F \cap \overline{B}$. Let $B' \subseteq F \cap \overline{B}$ be an end of G. Note that $x \in T \cap \overline{B}$, we have that $\overline{F} \cap N(B) \neq \emptyset$. It follows that $\overline{F} \cap N(B)$ contains at least one of A_2, A_3, A_4 .

Claim 3 B' is an atom of G. For otherwise, $|B'| > \frac{\kappa}{4}$. We use the same argument by substituting B by B', we obtain that N(B') contains four disjoint atoms of G. By the assumption that G has at most five disjoint atoms, we may suppose that $N(B') = A_1 \cup A_2 \cup A_3 \cup A_5$ and $A_5 \subseteq \overline{B}$. Since A_1, A_2 are adjacent, A_3, A_5 are adjacent. Clearly, Claim 1 holds also for B', i.e. $B' \subseteq N(A_3)$. Hence, $|N(A_3)| \ge |B| + |A_4| + |A_5| + |B'| > \kappa$, a contradiction.

By Claim 3, B' is an atom of G, we denote $B' = A_5$. By Lemma 3, $G - A_5$ is almost critical graph. By Lemma 4, $G - A_5$ has a fragment F such that $|F| \leq \frac{\kappa - |A|}{2} = \frac{3\kappa}{8}$. Since F is also a fragment of G such that $N(F) = N_{G-A}(F) \cup A$, there is an end B_1 of G such that $B_1 \subseteq F$. As $|B_1| \geq \frac{\kappa}{4}$, then $|F - B_1| \leq \frac{3\kappa}{8} - \frac{\kappa}{4} = \frac{\kappa}{8}$. If $N(B_1) \cap A_5 = \emptyset$, then $N(B_1) \subseteq (F - B_1) \cup (N(F) - A_5)$, and thus $|N(B_1) \leq \frac{\kappa}{8} + (\kappa - \frac{\kappa}{4}) < \kappa$, a contradiction. Hence, $N(B_1) \cap A_5 \neq \emptyset$, and thus $A_5 \subseteq N(B_1)$. If B_1 is an atom of G, then, by the assumption, B_1 is one of A_1, A_2, A_3, A_4 , and hence A_5 is adjacent to one of A_1, A_2, A_3, A_4 . If $|B_1| > \frac{\kappa}{4}$, then we use the same argument by substituting B by B_1 , we obtain that $N(B_1)$ contains four disjoint atoms of G, and that $A_5 \subseteq B_1$ is adjacent to another atom contained in B_1 . It follows that A_5 is also adjacent to one of A_1, A_2, A_3, A_4 . We may assume that A_5 is adjacent to A_1 .

Claim $A_5 \subseteq N(A_2)$. Since we assume that A_1, A_5 are adjacent, we have a κ -vertex-cut T of G such that $T \supseteq A_1 \cup A_5$. Then, $T \cap B \neq \emptyset$ (for otherwise, we can deduce, as in the proof of Claim 3, that one fragment F of G with N(F) = T satisfies that $F \subseteq \overline{B}$, and thus \overline{B} has an atom which is disjoint with A_5 , contradict our assumption). If $|T \cap N(B)| = \frac{\kappa}{2}$, then $|T \cap B| = |F \cap N(B)| = |\overline{F} \cap N(B)| = \frac{\kappa}{4}$, by assuming $F \cap B \neq \emptyset$, then we have that $F \cap B$ is a fragment of G, a contradiction. So $|T \cap N(B)| < \frac{\kappa}{4}$, and thus $|T \cap N(B)| = A_1$. We may assume that $|F \cap N(B)| = \frac{\kappa}{4}$ and $|\overline{F} \cap N(B)| = \frac{\kappa}{2}$. Then, $|F \cap B| = \emptyset$ as $|F \cap N(B)| = |A_5| \le |T \cap \overline{B}| = \emptyset$; if $|B \cap \overline{F}| = \emptyset$, then $|B \cap T| = |B| > \frac{\kappa}{4} = |F \cap N(B)|$, and thus $|F \cap B| = \emptyset$; if $|B \cap \overline{F}| = \emptyset$, then $|B \cap T| = |B| > \frac{\kappa}{4} = |F \cap N(B)|$, and thus $|F \cap B| = \emptyset$.

So $F \cap B = \emptyset = F \cap \overline{B}$, it follows that $F \subseteq N(B)$. As A_1 is not adjacent to A_3, A_4 and $A_1 \subseteq T$, $F \cap N(B) = A_2$, implying that $A_5 \subseteq N(A_2)$. This proves Claim 4.

By Claim 4 we have that $A_1 \cup A_2 \subseteq N(A_5)$. Pick a vertex $x_3 \in N(A_3) \cap \overline{B} - N(A_4)$ and a vertex $y_3 \in N(x_3) \cap A_3$. Then there is a κ -vertex-cut T_3 of G such that $T_3 \supseteq \{x_3, y_3\}$. As Claim 2 shows, $T_3 \cap B = \emptyset$. We suppose $B \subseteq \overline{F_3}$ for a fragment F_3 of G with $N(F_3) = T_3$. Then, $A_5 \subseteq F_3$, $A_3 \subseteq T_3$ and $\overline{F_3} \cap N(B) \neq \emptyset$ by Claim 2 and Claim 3. Similarly, we pick a vertex $x_4 \in N(A_4) \cap \overline{B} - N(A_3)$ and a vertex $y_4 \in N(x_4) \cap A_4$. Then there is a κ -vertex-cut T_4 of G such that $T_4 \supseteq \{x_4, y_4\}$. Then $T_4 \cap B = \emptyset$ by Claim 2. By supposing $B \subseteq \overline{F_4}$ for a fragment F_4 of G with $N(F_4) = T_4$. Then, $A_5 \subseteq F_4$, $A_4 \subseteq T_4$ and $\overline{F_4} \cap N(B) \neq \emptyset$. We consider the fragments F_3, F_4 .

Since $A_5 \subseteq F_3 \subseteq \overline{B}$ and $A_1 \cup A_2 \subseteq N(A_5)$, we have $T_3 \supseteq A_1 \cup A_2 \cup A_3$, and thus $\overline{F_3} \cap N(B) = A_4$. Similarly, we have that $T_4 \supseteq A_1 \cup A_2 \cup A_4$ and $\overline{F_4} \cap N(B) = A_3$. As $x_3 \in N(A_3)$ and $A_3 \subseteq \overline{F_4}$, $x_3 \in T_3 - F_4$. Similarly, $x_4 \in T_4 - F_3$.

Note that $F_3 \cap F_4 \subseteq A_5 \neq \emptyset$ and $\overline{F_3} \cap \overline{F_4} \supseteq B \neq \emptyset$. So, $\overline{F_3} \cap \overline{F_4}$ is a fragment of G and $N(\overline{F_3} \cap \overline{F_4}) = (T_3 - F_4) \cup (T_4 - F_3)$. Let $T^* = (T_3 - F_4) \cup (T_4 - F_3)$ and $F^* = F_3 \cup F_4$. Then $N(F^*) = T^*$ and $\overline{F^*} = \overline{F_3} \cap \overline{F_4}$. Clearly, $A_5 \subseteq F^*$ and $B \subseteq \overline{F^*}$. Moreover, $(\bigcup_{i=1}^4 A_i) \cup \{x_3, x_4\} \subseteq T^*$. So $\overline{F^*} \cap N(B) = \overline{F^*} \cap (\bigcup_{i=1}^4 A_i) = \emptyset$. On the other hand, as $B \cap \overline{F^*} = B$, $|\overline{F^*} \cap N(B)| \geq |T^* \cap \overline{B}| \geq |\{x_3, x_4\}|$, a contradiction. This proves (3.1).

(3.2) Every atom of G is adjacent to another atom of G.

Proof Let A be an atom of G, then G-A is almost critical graph by Lemma 3. By Lemma 4, G-A has a fragment F such that $|F| \leq \frac{\kappa - |A|}{2} = \frac{3\kappa}{8}$. Since F is also a fragment of G such that $N(F) = N_{G-A}(F) \cup A$, by (3.1), there is an atom A' of G such that $A' \subseteq F$. If A' is not adjacent to A, then $N(A') \cap A = \emptyset$, and thus $N(A') \subseteq (N(F) - A) \cup (F - A')$, hence $|N(A')| \leq (\kappa - \frac{\kappa}{4}) + (\frac{3\kappa}{8} - \frac{\kappa}{4}) = \frac{7\kappa}{8} < \kappa$, which contradicts $|N(A')| = \kappa$. Hence, $N(A') \cap A \neq \emptyset$, implying that A is adjacent to A'.

For the moment, we assume that G has only four disjoint atoms A_1, A_2, A_3, A_4 . By (3.2), A_1, A_2, A_3 and A_4 satisfy one of the following properties:

- (a) There is an atom which is adjacent to all other three atoms.
- (b) There are two pairs of atoms such that every pair of atoms are

adjacent.

In the case of (a), we may assume that A_1 is adjacent to A_2, A_3, A_4 . We obtain $N(A_1) \supseteq A_2 \cup A_3 \cup A_4$, then $\overline{A_1}$ contains an end which is also an atom by (3.1), a contradiction.

In the case of (b), we may assume that A_1 is adjacent to A_2 , A_3 is adjacent to A_4 . We consider an edge $xy \in E(G)$ such that $x \in A_1$ and $y \in A_2$. Since G is contraction-critical, G has an κ -vertex-cut $T \supseteq \{x, y\}$, then $T \supseteq A_1 \cup A_2$ by Lemma 2. Since A_3 is adjacent to A_4 , there is a fragment F of G such that N(F) = T and $F \cap (A_3 \cup A_4) = \emptyset$. Then F contains an atom of G by (3.1), a contradiction.

So G has at least five disjoint atoms. By our assumption, we suppose that A_1, A_2, A_3, A_4, A_5 are all atoms of G. By using the reason of (a), each atom of G is adjacent to at most three of the other atoms of G.

Claim 5 Each atom of G is adjacent to at most two of the other atoms of G.

For otherwise, we may assume that A_1 is adjacent to A_2, A_3, A_4 , and $A_5 \subseteq \overline{A_1}$ is adjacent to A_4 . By Lemma 7, G has four $N(A_1)$ -fragments F_1, F_2, F_3, F_4 such that $F_1 \cap N(A_1), F_2 \cap N(A_1), F_3 \cap N(A_1), F_4 \cap N(A_1)$ are pairwise disjoint. As in the proof of first paragraph of (3.1), we can deduce that $|F_i \cap N(A_1)| = \frac{\kappa}{4}$ for each $i \in \{1, 2, 3, 4\}$. Clearly, there is a $i \in \{1, 2, 3, 4\}$ that $F_i \cap N(A_1)$ does not contains any of A_2, A_3, A_4 . We may suppose that $(F_1 \cap N(A_1)) \cap (A_2 \cup A_3 \cup A_4) = \emptyset$. Then, $F_1 \cap \overline{A_1} \neq \emptyset$ (for otherwise, $F_1 = F_1 \cap N(A_1)$ is an atom of G which is different to A_2, A_3, A_4 , a contradiction). It follows that $F_1 \cap \overline{A_1}$ is a fragment of G. As this fragment contains one end of G, by (3.1) and our assumption, $A_5 \subseteq F_1 \cap \overline{A_1}$. As we assume that A_5 is adjacent to $A_4, A_4 \subseteq N(F_1) \cap N(A_1)$.

Note that $N(A_1)-F_1=A_2\cup A_3\cup A_4$. If $N(F_1)\cap N(A_1)=A_3\cup A_4$, then $\overline{F_1}\cap N(A_1)=A_2$. Thus $\overline{F_1}\cap \overline{A_1}=\emptyset$ (for otherwise, by the same reasoning as in last paragraph, we can deduce that $A_5\subseteq \overline{F_1}\cap \overline{A_1}$, a contradiction). So, $\overline{F_1}=\overline{F_1}\cap N(A_1)=A_2$. It follows that A_2 is adjacent to A_3,A_4 . Now we pick a κ -vertex-cut T' such that $T'\supseteq A_4\cup A_5$. Note that A_1,A_2,A_3 are pairwise adjacent, there is a fragment F' of G such that N(F')=T' and $F'\cap (A_1\cup A_2\cup A_3)=\emptyset$, and thus F' contains an atom of G by (3.1), a contradiction. If $N(F_1)\cap N(A_1)=A_2\cup A_4$, then we similarly deduce a contradiction.

Hence $N(F_1) \cap N(A_1) = A_4$. It follows that $\overline{F_1} \cap N(A_1) = A_2 \cup A_3$ and A_5 is not adjacent to A_2 , A_3 . Denote $F_1 \cap N(A_1) = D$.

We still pick a κ -vertex-cut T' of G such that $T' \supseteq A_4 \cup A_5$. We claim that $A_1 \subseteq T'$. For otherwise, we may assume that A_1 is contained in a fragment F' of G with N(F') = T'. Then we can deduce that $\overline{F'} \cap \overline{A_1}$ is a fragment of G, which contains an atom of G by (3.1). This contradict $A_5 \subseteq T'$. Let F' be a fragment of G with N(F') = T', then $F' \cap N(A_1) \neq \emptyset$ as $A_1 \subseteq T'$. We claim that $\frac{\kappa}{4} < |F' \cap N(A_1)| < \frac{\kappa}{2}$. For otherwise, we have $|F' \cap N(A_1)| \leq \frac{\kappa}{4}$ or $|F' \cap N(A_1)| \geq \frac{\kappa}{2}$. If $|F' \cap N(A_1)| \geq \frac{\kappa}{2}$, as $N(F')\cap N(A_1)=A_4$, then $|\overline{F'}\cap N(A_1)|\leq \frac{\kappa}{4}$. So we always have that either $|F'\cap N(A_1)|\leq \frac{\kappa}{4}$ or $|\overline{F'}\cap N(A_1)|\leq \frac{\kappa}{4}$. Without loss of the generality, we assume that $|F' \cap N(A_1)| \leq \frac{\kappa}{4}$. Then $F' \cap \overline{A_1} = \emptyset$ (for otherwise, we can deduce that $F' \cap \overline{A_1}$ is a fragment of G, which contains an atom of G by (3.1), by noting that $A_5 \subseteq T'$, a contradiction). Hence, $|F'| = |F' \cap N(A_1)| \leq \frac{\kappa}{4}$, implying that $F' \subseteq N(A_1)$ is an atom of G. So $F' \cap N(A_1) = A_2$ or A_3 as $A_4 \subseteq T'$, it follows that A_2 or A_3 is adjacent to A_5 as $A_5 \subseteq T' = N(F')$, a contradiction. This shows that $\frac{\kappa}{4} < |F' \cap N(A_1)| < \frac{\kappa}{2}$. Clearly, for $\overline{F'}$ we also have that $\frac{\kappa}{4} < |\overline{F'} \cap N(A_1)| < \frac{\kappa}{2}$. From that we have that both of $F' \cap N(A_1)$, $\overline{F'} \cap N(A_1)$ can not contain $A_2 \cup A_3$, but contain at least one of A_2, A_3 .

We may assume that $A_2\subseteq F'\cap N(A_1),\ A_3\subseteq \overline{F'}\cap N(A_1)$. Let $D_1=F'\cap N(A_1)-A_2\subseteq D$ and $D_2=\overline{F'}\cap N(A_1)-A_3\subseteq D$. By above results we have $D_1\neq\emptyset\neq D_2$. Then, $D_2\subseteq F_1\cap \overline{F'}$ and $A_2\subseteq F'\cap \overline{F_1}$. Since $F_1\cap \overline{F'}\neq\emptyset\neq F'\cap \overline{F_1},\ F_1\cap \overline{F'}$ is a fragment of G. Let $F^*=F_1\cap \overline{F'}$, then $T^*:=N(F^*)=(T'-\overline{F_1})\cup (N(F_1)\cap \overline{F'})$. So $A_1\cup A_4\cup A_5\subseteq T^*$. Note that $D_1\subseteq F'\cap F_1,\ A_2\subseteq F'\cap \overline{F_1}$ and $A_3\subseteq \overline{F'}\cap \overline{F_1}$, we have that $D_1\cup A_2\cup A_3\subseteq F'\cup \overline{F_1}=\overline{F^*}$. By (3.1), F^* contains an atom of G and $F^*\cap (\bigcup_{i=1}^5 A_i)=\emptyset$, a contradiction. This proves Claim 5.

By (3.2) and Claim 5, we may assume that A_2 is adjacent to A_1, A_3 , but not adjacent to A_4, A_5 , and A_4, A_5 are adjacent.

Pick a κ -vertex-cut T_1 of G such that $T \supseteq A_4 \cup A_5$, let F_1 be a fragment of G with $N(F_1) = T_1$. By (3.1), $F_1 \cap (A_1 \cup A_2 \cup A_3) \neq \emptyset$ and $\overline{F_1} \cap (A_1 \cup A_2 \cup A_3) \neq \emptyset$. As A_2 is adjacent to both of A_1, A_3 , we have $A_2 \subseteq T_1$. We may assume that $A_1 \subseteq F_1$, $A_3 \subseteq \overline{F_1}$. Pick a κ -vertex-cut T_2 of G such that $T_2 \supseteq A_1 \cup A_2$. let F_2 be a fragment of G with $N(F_2) = T_2$. By (3.1), we

also have that $F_2 \cap (A_3 \cup A_4 \cup A_5) \neq \emptyset$ and $\overline{F_2} \cap (A_3 \cup A_4 \cup A_5) \neq \emptyset$. As A_4, A_5 are adjacent, either $F_2 \cap (A_4 \cup A_5) = \emptyset$ or $\overline{F_2} \cap (A_4 \cup A_5) = \emptyset$. We may suppose that $\overline{F_2} \cap (A_4 \cup A_5) = \emptyset$. Then, $A_3 \subseteq \overline{F_2}$ and at least one of A_4, A_5 is contained in F_2 . Suppose that $A_4 \subseteq F_2$. Then $A_5 \subseteq F_2 \cup T_2$. We distinguish two cases.

- (i) $A_5 \subseteq F_2$. Then $F_1 \cap T_2 \supseteq A_1$, $F_2 \cap T_1 \supseteq A_4 \cup A_5$ and $T_1 \cap T_2 \supseteq A_2$. Note that $A_3 \subseteq \overline{F_1} \cap \overline{F_2}$, we have $\overline{F_1} \cap \overline{F_2} \neq \emptyset$. So $F_1 \cap F_2 = \emptyset$ (for otherwise, $F_1 \cap F_2$ is a fragment of G which is disjoint to $\bigcup_{i=1}^5 A_i$, a contradiction). Moreover, $|T_2 \cap \overline{F_1}| \ge |F_2 \cap T_1| \ge \frac{\kappa}{2}$. Hence, $|F_1 \cap T_2| = |A_1| = \frac{\kappa}{4} = |A_2| = |T_1 \cap T_2|$ and $|T_2 \cap \overline{F_1}| = \frac{\kappa}{2}$. Then $|\overline{F_2} \cap T_1| = |T_1 (F_2 \cup T_2)| \le \frac{\kappa}{4} < |T_2 \cap \overline{F_1}|$, implying that $F_1 \cap \overline{F_2} = \emptyset$. Thus $F_1 = F_1 \cap T_2 = A_1$. It follows that A_1 is adjacent to A_2 , A_4 , A_5 as $N(A_1) = T_1 \supseteq (A_2 \cup A_4 \cup A_5)$, contradict Claim 5.
- (ii) $A_5\subseteq T_2$. Then we have $F_1\cap T_2\supseteq A_1$, $F_2\cap T_1\supseteq A_4$ and $T_1\cap T_2\supseteq A_2\cup A_5$. So $|\overline{F_1}\cap T_2|=|T_2-(F_1\cup T_1)|\leq \frac{\kappa}{4}$. As $A_3\subseteq \overline{F_1}\cap \overline{F_2}\neq \emptyset$, we have $F_1\cap F_2=\emptyset$. Moreover, $\frac{\kappa}{4}\geq |\overline{F_1}\cap T_2|\geq |F_2\cap T_1|\geq |A_4|$. It follows that $|\overline{F_1}\cap T_2|=\frac{\kappa}{4}$ and $F_2\cap T_1=A_4$. Hence $T_1\cap T_2=A_2\cup A_5$, and thus $|(T_1-\overline{F_2})\cup (T_2\cap \overline{F_1})|=\kappa$. If $\overline{F_1}\cap F_2\neq \emptyset$, then $\overline{F_1}\cap F_2$ is a fragment of G with $N(\overline{F_1}\cap F_2)=(T_1-\overline{F_2})\cup (T_2\cap \overline{F_1})$, and $\overline{F_1}\cap F_2$ is disjoint to $\bigcup_{i=1}^5 A_i$, a contradiction. So $\overline{F_1}\cap F_2=\emptyset$, and thus $F_2=F_2\cap T_1=A_4$, implying that A_4 is adjacent to A_1,A_2,A_5 as $N(A_4)=T_2\supseteq (A_1\cup A_2\cup A_5)$, contradicting Claim 5. This proves Theorem 3.

References

- J. A. Bondy and U. S. R. Murty, "Graph Theory with Application", Macmillan, New York, 1976.
- [2] Y. Egawa, Contractible edges in *n*-connected graphs with minimum degree greater than or equal to $\lfloor \frac{5n}{4} \rfloor$, *Graphs Combin.*, 1991, (7) No. 1: 15-21.
- [3] M. Kriesell, A degree sum condition for the existence of a contractible edge in a κ -connected graph, J. Combin. Theory, Ser. B, 2001, (82): 81-101.

- [4] W. Mader, Eine Eigenschaft der Atome endlicher graphs, Arch. Math., 1971, (22): 333-336.
- [5] W. Mader, Generalizations of critical connectivity of graphs, *Dsicrete Math.*, 1988, (72): 267-283.
- [6] Su Jianji, On some properties of contraction-critical graphs, in Combinatorics Graph Theory Algorithms and Application (Yousef Alavi, Don R.Lick, Jiuqiang Liu Eds.), World Scientific, 1993, 329-337.
- [7] Su jianji, Yuan Xudong, A new degree sum condition for the existence of a contractible edge in a κ -connected graph, J. Combin. Theory, Ser. B, to appear.