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Abstract

Let G be a contraction-critical x connected graph. It is known
(see Graphs and Combinatorics, 7 (1991) 15-21) that the minimum
degree of G is at most | 2% | — 1. In this paper we show that if G has
at most one vertex of degree k, then either G has a pair of adjacent
vertices such that each of them has degree at most | 2 | — 1, or there
is a vertex of degree x whose neighborhood has a vertex of degree
at most | 4% ] — 1. Moreover, if the minimum degree of G equals to
55 —1 (and thus & = 0 mod 4), Su showed that G has & vertices of
degree 3£ —1, guessed that G has 3% such vertices (see Combinatorics
Graph Theory Algorithms and Application (Yousef Alavi et. al Eds.),
World Scientific, 1993, 329-337). Here we verify that this is true.

Keywords Contraction-Critical Graph; Fragment; N(B)-fragment.

1 Introduction

We consider only finite and simple graphs. Let G = (V, E) be a graph
with vertex set V and edge set E. For a vertex 2 € V, we denote the
neighborhood of = by Ng(z), which is the set of vertices adjacent to z.
dg(z) = |Ng(z)| denotes the degree of z. Let §(G) denote the minimum
degree of G. For F C V, let Ng(F) = (U,er No(z)) — F and F =
V = (FUNg(F)). The set F or the subgraph induced by F is called a
fragment of G if F # 0 and |[Ng(F)| = &(G), where x(G) denotes the
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connectivity number of G. A fragment with minimum cardinality is called
an atom of G, its cardinality is denoted by a(G). An end of G is a fragment
of G that contains no other fragment as a proper subset. We often omit
the subscript G if it is clear from the context.

Let G be a x connected non-complete graph, £ > 2. An edge of G is
called k-contractible if its contraction results still in a & connected graph.
The graph G is said to be contraction-critical if G has no k-contractible
edge. A set T of n vertices of G is called a n-vertex-cut if G — T is discon-
nected. It is easy to see that a x connected graph G is contraction-critical
if and only if for each edge e = zy of G, G has a k-vertex-cut containing
{z,y}. A & connected graph G is called almost critical if for each fragment
F of G, there is a x-vertex-cut T such that FNT # 0.

Let G be a contraction-critical x connected graph. Egawa ([2]) proved
that a(G) < | %], and hence 6(G) < | 3| —1. Su [6]) generalized this result
to that G has two disjoin fragments Fi, F> of G such that |Fi| + |F2| < §.
We may ask the following question: how many vertices of degree at most
[3£] — 1 are there in a contraction-critical x connected graph G?

Let A be an atom of G. Then |A| < |[4]. Clearly, if |A| > 2, as the
subgraph induced by A is connected and every vertex in A has degree at
most [57"J — 1, then G has a pair of adjacent vertices of degree at most
|%) - 1. If |A| = 1 (and thus §(G) = &), the above result is not known.
Recently, Kriesell ([3]) proved that a contraction-critical x connected graph
G has two vertices z,y of distance one or two such that d(z) + d(y) <
2|8 | — 2. It was improved to ([7]) that a contraction-critical k connected
graph G has two adjacent vertices z,y such that d(z) + d(y) < 2[3F| - 2.
So we may expect that G has a pair of adjacent vertices z,y such that
both of z,y has lower degree. In this direction, we show in this paper the
following result.

Theorem 1 Let G be a contraction-critical k connected graph. Then, G
has two vertices of degree &, or G has two adjacent vertices x,y such that
max{d(z),d(y)} < [3] - 1 or such that d(z) = & and d(y) < | %] - 1.

For the extremal case of the minimum degree, Su obtained the following
result.

Theorem 2 ([6], Theorem 2 and Corollary 2) Let G be a contraction-
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critical k connected graph. If 6(G) = 3£ — 1 (and thus £ = 0 mod 4), then
G has four disjoint atoms of size §. Hence G has at least k vertices of

Sr _
degree °F — 1.

Su guessed that the number ‘four’ in Theorem 2 can be replaced by
‘six’. If so, the result is best possible as shown in [6]. We prove that this is
true.

Theorem 3 Let G be a contraction-critical k connected graph. If 6(G) =
54—" — 1, then G has siz disjoint atoms of size 1, oand hence G has at least
3% vertices of degree 35 — 1.

We will give the proof of Theorem 1 and Theorem 3 in section 3.

2 Some Properties of Fragments
We have the following known properties of fragments.

Lemma 1 ({{]) Let F and F' be two fragments of G, T = N(F),T' =
N(F').

(DIFFNF #0, then |FNT'| > |F' NT|, |F'nT|>|[FNT.

Q) If FNF' # § and [IN(F N F')| > &(G), then |FNT'| > |F NT|,
|F'0T| > [FnT|.

(B)IfFFNF' #0#FNF, then both FONF' and FNF' are fragments
of G, and NFUF')=(TnT)UTNnFHYUFNT)=NFNF).

Lemma 2 (4]) Let A be an atom of G and T be a x(G)-vertez-cut of G.
IfANT #0, then ACT.

Lemma 3 (/3]) Let G be a contraction-critical k connected graph and A be
an atom of G. Then G — A is almost critical graph and k(G — A) = k—|A|.

Lemma 4 ([5]) Let G be an almost critical x connected graph and A be
an atom of G. Then |A| < §.

Lemma 5 ([6]) Let B be an end and F' a fragment of G. If N(F)NB # 0,
then |F N N(B)| > a(G).
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Lemma 6 ([6]) Let B be an end and F a fragment of G. If N(F)NB # 0,
the one of following statements holds:
(1) F C N(B) (2) F C N(B), |FON(B)| 2 |F|, {F| < |B|.
(3) IBI<|FNN(B)|. (4)|Bl <|FNN(B).

In order to study the contraction-critical graphs, Su introduced in [6]
the N(B)-fragments. Let B be an end of G. A fragment of G is called an
N(B)-fragment of G if N(F) N B # 0. If F is an N(B)-fragment of G, as
N(F) = N(F), then F is also an N(B)-fragment of G.

Lemma 7 ([6], Theorem 3) Let G be a contraction-critical £ connected
graph and let B be an end of G. Then G has four N(B)-fragments F1, F3, F3
and F, such that Fy, Fy, F3 and Fy N N(B) are pairwise disjoint.

From Lemma 7 we can deduce the following result.

Corollary 1 Let G be a contraction-critical £ connected graph. Let B be
an end of G such that |B| > £ and |B| > %. Then N(B) contains a

fragment F of G such that |F} < §.

Proof By Lemma 7, G has four N(B)-fragments Fy,F3, F3,Fy such
that Fy, F>, F3 and Fy N N(B) are pairwise disjoint. So, Fy N N(B),F2 N
N(B),F3 N N(B),Fy; N N(B) are pairwise disjoint. Suppose that |Fy N
N(B)| < |[RNN(B)| < |FNN(B)| < |[FsNN(B)|. By Ti, IFNN(B)| <
|N(B)| = &, we have |F; N N(B)| < %. By Lemma 6, we have that,
cither F; C N(B) and |Fy| = |[Fi N N(B)| < &, or ; C N(B) and
B <IRNNB) < 5.

3 Proofs

Proof of Theorem 1 Let G be a contraction-critical £ connected graph.
As we described in section 1, we may assume that a(G) = 1, and thus
5(G) = k. For the purpose, assuming that G has only one vertex a such
that d(a) = &, and G has no a pair of adjacent vertices z,y such that
max{d(z),d(y)} < |%] — 1, we deduce that @ is adjacent to a vertex y
such that d(y) < |%] - L.

Let W = {v € V| d(v) < | 3] — 1}. Clearly, if G contains a fragment
F such that a € F and |F| < | £), by the assumption, F' has at least one
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edge, and thus has two adjacent vertices of W. Also, if G has a fragment F
such that a € F and 2 < |F| < | %], then F contains two adjacent vertices
of W. Otherwise, F' has no edges, and then F' contains two vertices of
degree £. So we may assume that for each fragment F of G, if |[F| > 2,
then |F| > |£].

Let D = V — (N(a) U {a}). Now we deduce that D is an end of G.
Clearly, D is a fragment of G. If D is not an end of G, then there is an end
B of G such that BC D and B # D. As BUN(B) CDUN(a),a € B.
Moreover, |B| > 2, and hence |B| > | %] by the assumption. As a ¢ B, we
also have |B| > |£]. Then, by Corollary 1, N(B) contains a fragment F
of G such that |F| < |£]. As a € B, a € |F|, a contradiction.

In the follow, let D be an end of G. We claim that for any «-vertex-cut
Tof G,if TND #0, then a € T. For otherwise, let T' be a k-vertex-cut 7'
of G such that TN D # 0 and a ¢ T. Let F be a fragment of G such that
N(F)=Tanda€ F. Asa€ F,N(a)NF =0, and hence F C D. Note
that TND #0, F # D, a contradiction.

Let G' = G — {a}. Then G’ is & — 1 connected. For convenience,
we denote Ng/(F) by N'(F) for any fragment F of G'. Clearly, F is a
fragment of G’ if and only if F' is a fragment of G such that @ € N(F), so
N(F) = N'(F) U {a}. Hence N(a) N F # @ for any fragment F of G'. So
|N'(F)NN(a)| £ k-2 for any fragment F of G’ as N(a)NF # 0 # N(a)nF,
and thus N'(F)ND # §. Let A be an atom of G'. Let z € N'(A)N D and
¥ € N(z) N A. Since G is contraction-critical, G has a k-vertex-cut T such
that {z,y} CT. Thena € T as z € TND. Let F be a fragment of G such
that N'(F) = T — {a}. Note that y € N'(F) N A, we have A C N'(F) by
Lemma 2. Now we consider the fragments F of G’ such that N'(F) D A.
We distinguish two cases to deduce that |A4] < §.

Case1 AND # 0. Letz € AND and let y € N'(z) N F for
any fragment F' of G’ with N'(F) D A, we choose a k-vertex-cut S of G
such that S D {z,y}. By our choice, SN D # f, so we have a € S and
A C S —{a}. Hence, S, := 8 — (AU {a}) is a vertex-cut of k — [4] — 1
in G' — A. By regarding F as a fragment of G' — A, we have that G' — A
has a vertex-cut Sy of kK — |A| — 1 such that y € §; N F, S, N F # 0. Note
that G' — A is k — |A| — 1 connected and each fragment F of G' — A is a
fragment of G’ such that N'(F) D A. So G’ — A is almost critical. Let C
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be an atom of G' — A. Then |C| < "—'J%"'—l by Lemma 4. As |4| < |C|, we
obtain |4] < %.

Case2 AND=40. Then AC N(a).

If any end B of G' — A satisfies that N'(A)N(BND) = §, then N'(4)N
B C N(a). If BN D =@, then N(a) N B = B. As B is a fragment of G',
|B| > |A|, and thus [N(a)NB| = |B| > |A|. If BND # 0, as B is a fragment
of G, then (N(a)NB)U(N'(B)ND)U(N(a)NN'(B)— A) is a vertex-cut of
G', and thus |(N(e) N B)| + |(N'(B)ND)| +|N(a)NN'(B)| - |A| > N'(B).
Hence, |N(a)NB| > |A]. Now we choose an end B of G'—A and an end B’ of
G' — A contained in B. Then, by the assumption, we have |N(a)NB| > |A|
and |N(a)nB'| > |4|- So, 3|4] < |N(a)NB|+|Al+|N(a)nB'| < |N(a)| = &,
and thus |4| < §.

If there is an end B of G' — A such that N'(A) N (B N D) # 9, then
we choose a vertex z € N'(A)N (BN D) and a vertex t € N'(z) N A and a
k-vertex-cut R of G such that R D {z,t}. Let U be a fragment of G such
that N(U) = R. Note that RND # 0 and RNA#0, Ry :== R—(AU{a})
is a k — |A| — 1-vertex-cut of G' — A. So, U is a fragment of G' — A
such that Ng:_4(U) = R;. Since z € RN B, RiNB # 0. By using
Lemma 5 and Lemma 6, we can deduce that one of B, B,U, U has at most
5= 2 =1 vertices. Clearly, each of them is a fragment of G’. So we have
|A] < ==l4I=1 and then |A] < %.

As each vertex of A has degree at most | £] —1 and N(a)NA # 0, there
is a vertex y € N(a) N A such that d(y) < %] - 1. |

The proof of Theorem 3 By contradiction. Since 3 - 1 = §(G) <
a(G) + £ —1< 3 — 1, we have a(G) = §. It follows that the subgraph of
G induced by an atom is a complete graph. Suppose that G has at most
five disjoint atoms of cardinality %, we deduce a contradiction.

(3.1) Every end of G is an atom of G.

Proof Suppose that (3.1) is not true. Let B is an end of G such that
|B| > a(G) = £. By Lemma 7, G has four N(B)-fragments Fy, F2, F3, Fy
such that Fy, F», F3 and FyN N(B) are pairwise disjoint. Since F; is N(B)-
fragment for ¢ = 1,2,3,4, we have N(F;) N B # §, by Lemma 5, |F; N
N(B)| > a(G). So we have & = 4a(G) < Yi; |[F;N N(B)| < |N(B)| = &,

118



implying that |F; N N(B)| = a(G) = %, and hence |B| > |F; N N(B)| for
i=1,2,3,4. For the end B and the fragment F; for each i € {1,2,3,4}, by
noting that |F; N N(B)| = a(G) < |B| and |B| > a(G) and |Fj] > a(G) =
|F; N N(B)|, Lemma 6 implies that either F; C N(B), or F; C N(B) and
|F; N N(B)| > |F}| and |F}| < |B|. We claim that F; C N(B).

For otherwise, either F;NB # @ or ;B # . Moreover, F; C N(B) and
|F:NN(B)| > [Fil and [F}| < |B|. Then |[:NN(B)| = [Ff| = [FNN(B)| =
£+ This follows that |[N(B)NN(F;)| = §. If F;NB # 0, as B is an end of G,
then [N(F;)NB| > [F:NN(B)| = 4, and thus [N(F;)NB| < £ = [F;NN(B)),
implying F; N B = @ and |B| = [N(F;) N B < %, a contradiction. Hence,
F,NB =0and F;NB # 0. Thus B = N(F;) N B. As |B| > |Fj|, we still
have [N(F;) N B| > |[F;n N(B)| = &, then, by using the same argument as
above, we have F; N B = ), also a contradiction.

Hence, F; C N(B) and thus |F;| = |[F; N N(B)| = £ for i € {1,2,3,4}.
This follows that F; for ¢ € {1,2,3,4} is an atom of G. So N(B) contains
four disjoint atoms Fy, F5, F3, Fy.

In the below, we assume that the four atoms contained in N(B) are
Ay, Az, A3, Ay, s0 N(B) = U:=1 A;. Let T be a k-vertex-cut T of G and
F a fragment of G with N(F) = T. By Lemma 2, if A;NT # 0, then
A; CT foreach i € {1,2,3,4}, and if A;NF # 0 (or A;NF # 0), then
A; C F (A; C F, respectively) for each i € {1,2,3,4}.

Note that if an atom A of G contains a vertex z which is adjacent to a
vertex 2’ of an atom A’ of G, then N(A)NA' # 0 and N(A')NA # 0, by
Lemma 2, A' C N(A) and A C N(A’). We define that two atoms A, A’ of
G are adjacent, if A' C N(A) and A C N(4').

Pick any vertex z € N(A;)NB, y € N(z)NA,;. Since G is contraction-
critical, there is a x-vertex-cut T of G such that T' D {z,y}. Let F be a
fragment of G with N(F) =T. So A, CT.

For the moment we assume that N(B)NF = 9. Asz € BNT, then
FNB =0, hence FN B is a fragment, contradicting that B is an end.
Thus N(B) N F # 0. Similarly we have N(B) N F # (. Then, as we state
above, we may assume 4, C N(B)N F, A3 C N(B)NF. We consider A,.

If Ay C N(B)NT, then INB)NT| = |[AUA| =% KEIBNT| =
|IBNT| = %, then |(BNT)U(N(B)—F)| = &. As Bis an end, FNB = §.
Similarly we can deduce that ¥ N B = 0, and thus B = BN T, implying
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that |B| = a(G), a contradiction. If |[BNT| > |[BNT|, then |BNT| > §,
[BNT| < %. Then [(N(B)nF)U (T - B)| < &, and thus BnF =0
By the same argument, we have BNF = 0. Hence, |B| = [BNT| < %, a
contradiction. By symmetry, |[BNT| < [BNT| is also impossible, implying
that A4 € N(B)NT. So Ay C FNN(B) or A, CFNN(B).

By symmetry, we may assume that Ay C N(B)NF. Now N(B)NT =
A1, N(B)NF = A2, N(B)NF = A3UAs. EBNF # 0, as B is an end,
|BAT| > %+1,|BNT| < £ -1, and thus |(A3UA;UA))U(BNT)| < 61,
and |(A; UA2)U(BNT)| < k-1, implying that BNF =@ and BNF =,
and thus [B] = |[BNT| < % — 1, contradict a(G) = §. Hence, BNF = 0.
On the other hand, if BN F # @, then [BNT| < |[FNN(B)| = £, and
so BNF # (. From that we have BN F is a fragment of G. But B
is an end, and BN F C B — {z}, a contradiction. So BNF = 0. So,
F =FNN(B) = Az, and T = N(A3) 2 A;. It follows that 4,, A, are
adjacent and N(A4;)NB C N(Az2)NB. Note that F = A and A3UA4 C F,
A; is not adjacent to Az, Ag.

Let u € BNT = BN N(A2), v € N(u) N A;. Since G is contraction-
critical and uwv € E(G), there is a s-vertex-cut T1 of G such that T3 2
{u,v}. Then A, C N(B)NT; by Lemma 2. Moreover, we have N(B)NT; =
Aj by using the same argument as above. Let F) be a fragment of G such
that N(F) =Ty and F; D A;. As A, is not adjacent to As, A4, in view of
the above proof we have F; = N(B)NF, = A; and N(B)NF, = A3U As.
Hence N(A;) = T, and thus u € 1 N B = N(4;) N B. 1t follows that
N(Az2) N B C N(A;) N B. Combining the fact N(41) N B C N(42) N B,
we have N(A;) N B = N(Az) N B. Note that F} = A; and A3U A, C F,
A; is not adjacent to Az, A4.

Pick any vertex £ € N(As) N B and y € N(z) N A3. By noting that
both of A;, A; are not adjacent to Aj, A4, we can similarly deduce that
N(A3) N B = N(A4) N B and A3, A4 are adjacent.

Summarizing above results, we have that A;, A, are adjacent, A3, A4 are
adjacent, and both of A4;, A, are adjacent to neither of A3, A4. Moreover,
N(41)N B = N(A;) N B and N(A4s) N B = N(44) N B.

Claim 1 B C N(A,), B C N(43). For otherwise, we may assume that
B=N(A;) # 0, 50 N(A2)N(B—N(A;)) = 0. Then, (N(A;1)NB)U(A3UAy)
is a vertex-cut of G. It follows that |[N(A:)NB| > %, and thus [N(A;)NB| <
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£. Clearly, [N(A;) N B| > |A;| = % (for otherwise, B — N(4,) # 0, and
thus (V(A;) U B) U A2 U A3 U A4 is a vertex-cut of G with less than &
vertices, a contradiction). So |[N(4;) NB| = &, and thus [N(4;)NB| = 5.
It follows that (N (A;)NB)U (A3 U Ay) is a vertex-cut of G with & vertices,
and thus B — N(A,) is a fragment of G, contradict that B is an end of G.

By Claim 1, A, N B = §. As Ay C N(A,;) and that A, is not adjacent
to A3, A4, N(A2)NA; C A NB, and thus N(A2) N (A; NB) # 0, implying
that N(A2) N B € N(A;) N B. We can similarly deduce that N(4;)NB ¢
N(A2)NB, N(A3)NB & N(A4)NB, N(A4)NB Z N(43)nB.

Pick a vertex £ € N(A1)NB — A2, y € N(z) N Ay, and let T be a
k-vertex-cut of G such that T' D {z,y}. By Lemma 2, 4, C T.

Claim 2 TN B = . For otherwise, TN B # §. Let F be a fragment -
of G such that N(F) =T.

() FNB#0#FNB,as Bisanend of G, then FNB =0 = FN B,
and |FNAN(B)| > |TNB| > & and [FNN(B)| > TN B| > . Note that
A; CT, it implies that F N N(B) contains at least two of Az, A3, A4 and
F N N(B) contains at least two of Az, A3, A4, a contradiction.

(ii) If FNB # 0 and FNB = §, then FNB = §, and thus ¥ = FNN(B).
If F contains at least two of Az, A3, Ay, then [BNT| > |F| > %, implying
that [BNT| < § < [F|, and thus FNB = 0, and hence |B| = |[BNT| < &%,
a contradiction. So F contains exact one of Ay, A3, Ag. If F = Ay, then
z € TNB = N(A42) N B, contradict the choice of z. Hence, F = A; or
As. We may assume F = Aj, then T = N(A3) D A,, contradict the fact
that A, is not adjacent to A3. We can similarly deduce a contradiction if
FNB=0and FNB #0.

By (i) and (ii), we have B C T, and thus |[BNT| = |B| > %. Then we
can similarly deduce that |B| < & if we assume T'N N(B) contains two of
A1, Az, A3, A4. So TN N(B) = A,. We may assume that 4, C FNN(B).
Now if F N N(B) = As or Ay, then [F N N(B)| < |T N B| = | B, implying
that F = FNN(B) = Az or Ay, and thus that A4, is adjacent to As or Ag,
a contradiction. If FNN(B) = A3U Ay, then FNN(B) = A, similarly we
can deduce that F = FNN(B) = A;, and thus z € TNB = N(4;) N B,
contradict the choice of x. This proves Claim 2.

By Claim 2, TNB=0. AsBisanendof G, BC For BCF. We
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may suppose B C F, then F = FNB. Let B' C FN B be an end of G.
Note that z € TN B, we have that FNN(B) # 0. It follows that FNN(B)
contains at least one of A;, Az, Ay.

Claim 3 B’ is an atom of G. For otherwise, |B| > 4. We use the
same argument by substituting B by B’, we obtain that N(B') contains
four disjoint atoms of G. By the assumption that G has at most five disjoint
atoms, we may suppose that N(B') = A;UA;UA3UA;s and A5 C B. Since
Ay, Az are adjacent, Aj, A5 are adjacent. Clearly, Claim 1 holds also for
B',ie. B' C N(As3). Hence, |[N(A3)| > |B| + |A4] + |A4s] + |B'| > &, a
contradiction.

By Claim 3, B’ is an atom of G, we denote B' = As. By Lemma 3,
G ~ As is almost critical graph. By Lemma 4, G — A has a fragment
F such that |[F| < 254l = 3% Gince F is also a fragment of G such
that N(F) = Ng_a(F) U A, there is an end B; of G such that B; C F.
As |Bi| > %, then |F — By| < 38 — £ = £ If N(B;) N 45 = 0, then
N(By) € (F - B1) U(N(F) — As), and thus |[N(B;) < § +(k— §) <&,
a contradiction. Hence, N(B;) N As # 0, and thus 45 C N(B;). If B; is
an atom of G, then, by the assumption, B; is one of A;, As, A3, A4, and
hence A; is adjacent to one of A;, Az, A3, Ag. If |B1| > §, then we use the
same argument by substituting B by B;, we obtain that N(B,) contains
four disjoint atoms of G, and that A; C B; is adjacent to another atom
contained in B;. It follows that As is also adjacent to one of A;, As, A3, Ay.
We may assume that As is adjacent to A;.

Claim 4 As C N(A). Since we assume that A;, A5 are adjacent, we
have a s-vertex-cut T of G such that T' D A; U As. Then, TN B # § (for
otherwise, we can deduce, as in the proof of Claim 3, that one fragment F
of G with N(F) = T satisfies that F C B, and thus B has an atom which
is disjoint with As, contradict our assumption). If |T'N N(B)| = %, then
|TNB|=|FNN(B)| =|FnN(B)| = £, by assuming F N B # §, then we
have that F'N B is a fragment of G, a contradiction. So [T'N N(B)| < §,
and thus TN N(B) = A;. We may assume that |FFN N(B)| = § and
[FAN(B)| = £. Then, FNB =0 as |[FNN(B)| = |4s| < |TNB and that
Bis an end of G. On the other hand, if BNF # , then we have FNB = §;
if BNF =0, then |[BNT| = |B| > & = |FNN(B)|, and thus FNB = 0.

122



So FNB =0 = FNB, it follows that F C N(B). As 4; is not adjacent
to A3, A4 and A; C T, F N N(B) = Az, implying that A5 C N(Az). This
proves Claim 4.

By Claim 4 we have that A, UA; C N(4s). Pick a vertex z3 € N(43)N
B~ N(A4) and a vertex y3 € N(z3) N A3. Then there is a x-vertex-cut Ty
of G such that T3 D {z3,y3}. As Claim 2 shows, T3 N B = §). We suppose
B C F; for a fragment F3 of G with N(F3) = Ts. Then, As C F3, 43 C Ts
and F3 N N(B) # 0 by Claim 2 and Claim 3. Similarly, we pick a vertex
z4 € N(A4) N B — N(A3) and a vertex y4 € N(z4) N As. Then there is a
k-vertex-cut Ty of G such that Ty D {z4,y4}. Then Ty N B = @ by Claim
2. By supposing B C F, for a fragment Fy of G with N(Fy) = Ty. Then,
As C Fy, A4 C Ty and Fy N N(B) # 0. We consider the fragments F3, Fy.

Since As C F3 C B and A, U A C N(As), we have T3 D A; U Ay U A3,
and thus F5 N N(B) = A4. Similarly, we have that Ty D A; U A2 U A4 and
FiNN(B) = A3. As z3 € N(A3) and A3 C Fy, z3 € T3 — Fy. Similarly,
x4 € Ty — F3.

Note that F;NFy C As # B and FsNF; D B # 0. So, 5NF;
is a fragment of G and N(F5NFy) = (Tz — Fy) U(Ty — F3). Let T* =
(T5—F3)U(Ty— F3) and F* = F3UF,. Then N(F*) = T* and F* = F3NF,.
Clearly, As C F* and B C F*. Moreover, (U" A;) U {z3,2z4} C T*. So

i=1

F*NN(B) = F* N (Uj=; 4i) = 0. On the other hand, as BNF* = B,

i=1

|F* N N(B)| > |T* N B| > |{zs,4}|, a contradiction. This proves (3.1).
(3.2) Every atom of G is adjacent to another atom of G.

Proof Let A be an atom of G, then G — A is almost critical graph by
Lemma 3. By Lemma 4, G — A has a fragment F such that [F| < ”'2A =
35, Since F is also a fragment of G such that N(F) = Ng_4(F) U 4, by
(3.1), there is an atom A’ of G such that A’ C F. If A’ is not adjacent to
A, then N(A')N A = 0, and thus N(A') C (N(F) — A) U (F — A’), hence
IN(A")] < (k- §) + (3 — &) = %= < K, which contradicts |[N(4')| = x.
Hence, N(A') N A # 0, implying that A is adjacent to A'.

For the moment, we assume that G has only four disjoint atoms 4;, A,
A3, A4. By (3.2), Ay, As, A3 and A, satisfy one of the following properties:

(a) There is an atom which is adjacent to all other three atoms.
(b) There are two pairs of atoms such that every pair of atoms are
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adjacent.

In the case of (a), we may assume that A; is adjacent to Az, As, A4.
We obtain N(A4;) D As U A3 U Ay, then A; contains an end which is also
an atom by (3.1), a contradiction.

In the case of (b), we may assume that A; is adjacent to Az, A3 is
adjacent to As. We consider an edge zy € E(G) such that z € A4; and
y € A,. Since G is contraction-critical, G has an k-vertex-cut T 2 {z,y},
then T D A; U Ay by Lemma 2. Since Az is adjacent to A4, there is a
fragment F of G such that N(F) =T and FN(A3U A4) = 0. Then F
contains an atom of G by (3.1), a contradiction.

So G has at least five disjoint atoms. By our assumption, we suppose
that A;, As, Az, A4, As are all atoms of G. By using the reason of (a), each
atom of G is adjacent to at most three of the other atoms of G.

Claim 5 Each atom of G is adjacent to at most two of the other atoms
of G.

For otherwise, we may assume that A, is adjacent to Aj, A3, A4, and
A C A, is adjacent to A4. By Lemma 7, G has four N(A,)-fragments
Fy, F5, F3, Fy such that Fy N N(Al), Fn N(Al),Fs ] N(Al),F4 n N(A])
are pairwise disjoint. As in the proof of first paragraph of (3.1), we can
deduce that |F; N N(A;)| = % for each i € {1,2,3,4}. Clearly, there is a
i € {1,2,3,4} that F; N N(A;) does not contains any of Az, As, A4. We
may suppose that (F; NN (A4;))N(A2UA3UA,) = 0. Then, FiNA; # 0 (for
otherwise, F; = FyNN(4,) is an atom of G which is different to Az, A3, A4,
a contradiction). It follows that Fy N4, is a fragment of G. As this fragment
contains one end of G, by (3.1) and our assumption, A5 C F1 N A;. As we
assume that As is adjacent to A4, Ay C N(F1) NN(A;).

Note that N(Al)—Fl = A,UA3UA,. If N(Fl)nN(Al) = AgUA,, then
FLNN(A;) = A;. Thus Fi N4, = 0 (for otherwise, by the same reasoning
as in last paragraph, we can deduce that As C F] N A4, a contradiction).
So, F; = F; N N(A;) = A,. It follows that A, is adjacent to As, A4. Now
we pick a s-vertex-cut T” such that 7" O A4 U As. Note that A;, Az, A3
are pairwise adjacent, there is a fragment F' of G such that N(F') = T"
and F' N (4, U As U A3) = 0, and thus F’ contains an atom of G by (3.1),
a contradiction. If N(F;) N N(A1) = A2 U A4, then we similarly deduce a
contradiction.
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Hence N(F;) N N(A;) = A4. 1t follows that Ff N N(4;) = A3 U A3 and
As is not adjacent to Az, A3. Denote F;y N N(4,;) = D.

We still pick a x-vertex-cut 7" of G such that T’ D A4 U A5. We claim
that A, C T'. For otherwise, we may assume that A, is contained in a
fragment F’ of G with N(F') = T'. Then we can deduce that F' N 4; is
a fragment of G, which contains an atom of G by (3.1). This contradict
As CT'. Let F' be a fragment of G with N(F') = T', then F'NN(A4;) # 0
as A1 C T'. We claim that § < |F' N N(4;)| < &. For otherwise, we
have |[F' N N(A)| < § or [FFNN(AL)| > & If |F'NN(4) > £, as
N(F')NN(A;) = Ay, then [F'NN(A,)] < %. So we always have that either
|[F' N N(A1)| < § or [F'N N(A;)| < &. Without loss of the generality, we
assume that |F' N N(A;)| < £. Then F' N'A; = § (for otherwise, we can
deduce that F'NA4, is a fragment of G, which contains an atom of G by (3.1),
by noting that A5 C T”, a contradiction). Hence, |F'| = |F' N N(4,)| < 4
implying that F' C N(A4,) is an atom of G. So F' N N(A;) = A, or A3 as
A4 C T, it follows that A, or As is adjacent to As as As C T' = N(F'),
a contradiction. This shows that § < |F' N N(4;)| < §. Clearly, for F7
we also have that § < [F' N N(4,)| < §. From that we have that both of
F'NN(A;), F'N N(A;) can not contain A; U Az, but contain at least one
of Ag, A3.

We may assume that Ay, C F' N N(41), A3 C F'NN(A1). Let D, =
F'NN(A;) — A2 C D and D; = F'N N(A4;) — A3 C D. By above results
we have D) # 0 # D,. Then, Do C F;NF and A, C F' NF,. Since
ANF #£0# FNF, FiNF is a fragment of G. Let F* = F, N T,
then T* := N(F*) = (T' - F{) U(N(F) N F"). So A, UA,UA; C T*.
Note that D; C F'NF, A, C F'NF, and A3 C F' N F;, we have that
DyUAUA; C F'UF, = F~. By (3.1), F* contains an atom of G and
Fn (Uf’=1 A;) =0, a contradiction. This proves Claim 5.

By (3.2) and Claim 5, we may assume that A, is adjacent to A;, As,
but not adjacent to A4, As, and A4, As are adjacent.

Pick a x-vertex-cut T} of G such that T D A,UAs, let F} be a fragment
of G with N(F1) = T1. By (3.1), FiN (A1 UA2 U A3) # 0 and F{ N (4; U
Az U A3) # 0. As A, is adjacent to both of A, A3, we have A, C T;. We
may assume that A; C Fy, A; C Fj. Pick a x-vertex-cut 7% of G such that
T> 2 A1 U A;. let F; be a fragment of G with N(F;) = T;. By (3.1), we
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also have that F» N (Aa UAg U A5) # ® and En (As UAgU A5) # 0. As
Ay, As are adjacent, either F> N (A3 UAs) =0 or FBNn(Aq4U A4s) =0. We
may suppose that Fp N (A4 U As) = 0. Then, A3 C F and at least one of
Ay, As is contained in F». Suppose that Ay C Fp. Then As C FoUT,. We
distinguish two cases.

(i) As C F5. Then F) NT; 2 Ay, BNTyDAUA;and T1 NT, 2 A,
Note that A3 C FiNF3, we have FiNF; # 0. So FyNF, = @ (for otherwise,
Fy N F; is a fragment of G which is disjoint to Uif:l A;, a contradiction).
Moreover, [TaNEFy| > |FoNTy| > &. Hence, |[FANT2| = |Ai| = § = 42| =
|TyNT; and |TyNFi| = . Then |F2NTy| = Ty - (F2UTR)| £ § < | TN F),
implying that Fi N F, = 0. Thus F, = F; NT; = A,. It follows that 4, is
adjacent to Ag, A4, As as N(Al) =T D (A2UA4U As), contradict Claim
5.

(ii) As C T,. Then we have Fy NT; D A1, BNTy D Ay and TiNTy 2
Az U 4g. So l.I‘TlnTzl = |T2 - (Fl UT1)| < f As A3 C EQE # 9, we
have F} N F; = 0. Moreover, & > [Fi NT3| > |, NT1| > |A4]. It follows
that lEnTzl = % and o, NTy = Ay. Hence T NT, = Ay U Ag, and thus
(T, -FR)U(TNTF)| = k. EFLNF, #0, then Fi N F; is a fragment of G
with NF N F) = (T1 - B)U(T.nT), and Fy N F; is disjoint to U, 4s,
a contradiction. So F; NF> = 0, and thus F; = F,NT} = Ay, implying that
Ay is adjacent to A, Az, A5 as N(A4) = Ts 2 (A1 UA2UAs), contradicting
Claim 5. This proves Theorem 3.
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