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Abstract

Let I' be a d—bounded distance-regular graph with diameter d >
3 and with geometric parameters (d,b,a). Pick z € V(I'), and let
P(z) be the set of all subspaces containing z. Suppose P(z,m) is
the set of all subspaces in P(z) with diameter m, where 1 < m < d.
Define a graph I whose vertex-set is P(z,m), and in which A, is
adjacent to Az if and only if d(A; N Az) = m — 1. We prove that T
is a distance-regular graph and compute its intersection numbers.

Key words: Distance-regular graph, Strongly closed subgraphs, d—bounded.
2000 MSC: 05E80

1 Introduction

Let ' = (V(T'), E(T)) be a graph, with vertex set V(T') and edge set E(T).
For two vertices u,v € T, let 8r(u, v) denote the distance between u and v
in T, i.e. the length of a shortest path connecting u and v. We also write

*Address correspondence to Suogang Gao, Mathematics and Information College,
Hebei Normal University, Shijiazhuang, 050016, P.R. China; E-mail: sggao@heinfo.net

ARS COMBINATORIA 98(2011), pp. 135-148



8(u,v) when no confusion occurs. Let
d(T) = max{d(u,v)|u,v € v([)}
and call d(T') the diameter of I'. For u € V(T'), set

Ti(u) = {veVD)|or(u,v) =1}, I'(u) =T1(u).

For vertices u,v € I" with 8(u,v) = 1, set
C(u,v) = Ci(u,v) = Lici(u)NT(v),

A(u,v) Ai(u,v) = Ti(u) NT(v),
B(u,v) = Bi(y,v) = Tip1(u)NT(v).

For the cardinalities we use lower case letters, i.e.

e = a(y,v) = |Cily,v)],
a; = ai(u,'v) = IA,'('U.,‘U)',

bi = bi(u,v) = |Bi(u,v)|.

A connected graph I is said to be distance-regular if ¢;, a;, b; are well-
defined for all i,0 < ¢ < d, i.e. these numbers depend only on ¢ rather than
the individual choice of vertices. The constants c;, a; and b; (0 < i < d)
are known as the intersection numbers of T'.

The reader is referred to [1,2,3] for general theory of distance-regular
graphs.

For a subset A ¢ V(I'), we identify A with the induced subgraph on A
and write A = (V(A), E(A)). Denote by d(A) the diameter of a subgraph
A,

A subgraph A of " is said to be strongly closed if C(u,v)UA(u,v) C A
for every pair of vertices u,v € A. Properties of strongly closed subgraphs
of distance-regular graphs are discussed first by H. Suzuki in [9]. A subspace
of I is a regular strongly closed subgraph ([11]). It is obvious the strongly
closed subgraphs are connected and for all u,v € A, dr(u,v) = 9a(u,v).
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We use {(z,y)) to denote the smallest strongly closed subgraph containing
z and y for z,y € V(T').

Let I' be a distance-regular graph with diameter d. T is said to be
d—bounded, if the following two conditions hold:

(i) Every strongly closed subgraph of I is regular,

(ii) For all z,y € V(T'), = and y are contained in a common strongly
closed subgraph of diameter 9(z, y).

It is clear that every strongly closed subgraph in a d—bounded distance-
regular graph is a subspace.

A distance-regular graph I' is said to have classical parameters (d, b, o, §)
whenever the diameter of T" is d, and the intersection numbers of I" satisfy

[;],, (‘*“[ill]b) 0<i<d,
([‘fL‘ [i],,) ( - [;L) 0<i<d,

[i] ={ M=) ifb=1,
l, L=l if b#1
are Gaussian binomial coefficients with basis b.
A distance-regular graph I" with classical parameters (d, b, &, 8) is said
to have geometric parameters (d,b,a) if B = (1 +b%)/(1 —b), b# —1.
The following two classes of distance-regular graphs have geometric pa-

¢

b;

where

rameters.
Example 1. Let I" denote a distance-regular graph with diameter d >
3, and let b denote a complex number. Then the following (a)-(b) are
equivalent [6].

(a) —bis a power of a prime, and I' is the dual polar graph 2A24_1(—b).

(b) T has geometric parameters (d, b, o), where & = b(b - 1)/(b+ 1).
Example 2. Let I" denote a distance-regular graph with diameter d >
3, and let b denote a complex number. Then the following (a)-(b) are
equivalent [7, 8, 10].

(a) —b is a power of a prime, and I' is the Hermitian forms graph
Her_y(d).
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(b) T has geometric parameters (d,b, &), where o = b — 1.

Let I’ be a d—bounded distance-regular graph with diameter d > 3 and
with geometric parameters (d, b, @). Pick z € V(T'), and let P(z) be the set
of all subspaces containing z. Suppose P(z,m) is the set of all subspaces
in P(z) with diameter m, where 1 < m < d. Define a graph I whose
vertex-set is P(z,m), and in which A; is adjacent to Az if and only if
d(Al ﬂAz) =m-—1.

Remark: The construction itself is directly analogous to the construction
of the Grassmann graph.

The following is our main result.

Theorem 1.1. Let I = (V', E') be the graph constructed above. Then I'
is a distance-regular graph with diameter min(d — m,m) and intersection

v - w7157,

' t 2

“ = ([i.)

B o= pitt2 [m—t] [d—m—t]
’ 1 e 1 b

where 1 < t < min(d —m,m) and [’;]b2 are Gaussian binomial coefficients
with basis b.

numbers

2 Proof of Theorem 1.1

Let T be a d—bounded distance-regular graph, and let A, A’ be two sub-
spaces in I". The smallest subspace containing A and A’ is called the join
of A and A’ and denoted by A + A’

In [11], Chih-wen Weng obtained the following two important results.

Proposition 2.1. ( [11] Lemma 4.2, 4.5 ) LetT' = (V(I'), E(T")) be a
d—bounded distance-regular graph with diameter d. Then the following (i)-
(#ii) hold.
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(1) The intersection of two subspaces is either a subspace or the empty

set.
(i) Let A be a subspace of T, and 0 < i < d(A). Then A is distance-

regular with intersection numbers

c(d) = ¢
a,-(A) = Qa4
bi(A) = b — ba(a)-

(ii) For any z,y € V(T), the subspace of diameter d(z,y) containing

T,y is unique.

Proposition 2.2. ( [11] Lemma 5.5) LetT = (V(T'), E(T)) be a d—bounded
distance-regular graph with geometric parameters (d,b, ) and with diame-
ter d > 3. For any subspaces A and A’ in T, if ANA’ #0, then

d(A) +d(A") =d(ANA") +d(A + A").

Lemma 2.3. Let T’ be a d—bounded distance-regular graph with geomet-
ric parameters (d,b,a) and with diameter d > 2. Suppose A and A’ are
strongly closed subgraphs with diameter i and i + s +t < d, respectively,
and with A C A'. Then the number of the strongly closed subgraphs A with
diameter i + s satisfying A C A C A, denoted by N(i,i + s;i+ s + 1),
is determined by i,s and t, independent of the choice of A and A’ and is

[s—}-t]
S bg,

where [°'],. is @ Gaussian binomial coefficient with basis b2.

given by

Proof. By Lemma 2.1 of [4], we have N(i,i+ s;i+ s +t) is independent of
the choice of A and A’, and

(bi = bigoge)(bi1 = bigste) ++ (bigs—1 — bigste)
(bi = bigs)(bit1 — bigs) -« - (bigs—1 — biys)

Since I is a d—bounded distance-regular graph with geometric parameters
(d,b, ), we have

N@i+si+s+1t)=
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14 b

and
o = ([1],-[1) (o555 -21])
’ 1], 1], 1-b 1j,
b2d_b2i
G
It follows that
N(i,i+s;i+s+1)

(b2(i+a+t) - b2z')(b2(i+s+t) — b2(i+l)) e (b2(i+s+t) — p2(+s—1) )
(bz(i+s) - b2i)(b2(i+s) _ b2(i+1)) e (bz(i+s) — p2(i+s-1) )
(bz(s+t) - b°)(b2(3+‘) —b?)..- (b2(s+t) - b2(s-1))
(b2s _ bO)(sz - b?) ve (b2s - b2(s-—1))

[s+t]
S bz.

Lemma 2.4. Let I’ be a d—bounded distance-regular graph with diameter
d > 3 and with geometric parameters (d,b,a). Pick z € V(T'), and let P(z)
be the set of all subspaces containing x. Let Ay, A and A be subspaces in
P(z) such that A; C A C A with diameter t, i+t and dy, respectively,
where 0 <t < i+t,j+t <i+j+t < dy <d. Then the number of subspaces
A in A with diameter j +t such that AN A’ = A, is independent of the
choice of A and Ay, is denoted by M;(t,i+t,j + t;d1), and is given by

a

Mi(ti+ 4,5 +t;dy) = b2 [dl _.2—t] '
J X

Furthermore, the number of subspaces A’ in A with diameter j +t such
that d(ANA') =t is independent of the choice of A, is denoted by M (t,i+
t,j +t;dy), and is given by
‘. -1 - r+t
M(t,i+1t,5 +t;di) = b7 [d‘ ! t] [H' ] ,
2 b2 t b2

where [2;]1)2 are Gaussian binomial coefficients with basis b°.
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Proof. By a similar argument to the proof of Lemma 2.1 of (5], we have
My(t,i+1t,5+t;dy) is independent of the choice of A and A;, and

Mi(¢,i+t,5 +t;d1)
(Bitt = bay ) (bives1 = bay) - - (Bieri—1 — bay)
(be = bje)(bess = bjye) -+ (brajo1 — bjte)
(b%4r — p26+D))(p2dr _ p2(+E+D)) . (p2eh _ p2+EHI-1))
b20i+t) — p2t)(p2(i+t) — p2(t+1))... (p2(3+t) — p2(i+t-1)
( X )+ ( )
(bZd;—i—t _ b°))(b2d’ —i—t _, b2) v (b2d1—i—t - b2(j—1))
(6% — bOY (% — b2) .- (b% — b2U-D)

i e

= p2i

It follows that
M(t,i+t,j+t;dy) = b*7 [dl —.z—t] [H_t] .
J b2 t |4
O

Lemma 2.5. Let I'' = (V', E') be the graph constructed above. For any
Ay, Ag € V!, 80(A1,A2) = i if and only if d(A; N Ag) = m — i, where
0 < i < min(m,d — m).

Proof. Suppose that d(A; N Az) = m — 7. Then from Proposition 2.2
d(A; + Az) = m + ¢. Take y in A; N Az such that dp(z,y) = m — 4.
Then from Proposition 2.1, A; N Az = {z,y)). Thus there exists z in A,
such that dp(z, z) = i, dr(z,y) = m and {z,y)) = A;; similarly, there ex-
ists w in A such that dp(y, w) = ¢, where Or(z, w) = m, and (z, w)) = A,.
We first show that dp(z,w) = m + ¢ and A; + Ay = {(z,w)). Pick a short-
est path connecting z and z in A, z = v;, vj—1, -+, V1, Yo = T, Where
Or(v,vi—1) = 1, 1 <1 < i; pick a shortest path connecting ¥ and w in A,,
Y = up, Uy, ', i—1, ¥; = w, where Op(u,u—1) = 1,1 <! < 4. In the
following, we prove that dr(z,u;) =m+1{, where 0 <! <i.

The assertion is clearly true when [ = 0. Suppose it is true when [ — 1.
Then dr(z,u-1) = m + 1 — 1. It follows that dp(z,w;)) =m+1 -2, m +
l -1 or m+ ! Suppose that dr(z,w;) = m+!1—2o0orm+1—1. Then
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u € C(z,u-1) U A(z,u-1) C {z,u-1)). Since {(z,%;-1)) is the subspace
containing A; and {(z,u;)), and

«"B: y» C A1 N «IB, ul» C Al n A2a

we have
A1 Nz, w) = (=z,v)

From Proposition 2.2,

d(Ar + =z, w))
= d(Ay) +d({x, w)h) — d(A1 0 (z, w))
= m+l

contradicting the fact that {(z,u;_1)) is a subspace with diameter m+{—1.
So 8p(z,w) = m+1, where 0 < ! < i. It implies that dr(z,w) = m+1, and
hence A; + A = {(z,w)).

Next, we show that 8p (A1, Ag) < i. Set A~ = (v;_¢,u,)), where 0 <
t < i. Then A® = A, and A® = A,. Since v; and u;, where 0 <! <i-1,
are the vertices on a shortest path connecting 2 and w, we have d(AG-9) =
m, where 0 < t < i. From Proposition 2.2, d(AG-8 N AG-t1) = m — 1,
that is, 8p(AG-1), AG-t-1) =1, 0 <t <i— 1. Thus 8 (A1,42) < i.

Finally, we show 8 (A1, Ag) =t > i. Let Op(A1,A2) = ¢, and let

A= A® ACD L AD AQ Z Ay

be the vertices on a shortest path connecting A; and Az, where 9 (A®, AU-1
1,1 <1 <t We claim that d(A; + A®D + -+ AD 4+ A)) < m +t.
Indeed, from Proposition 2.2, we have d(A; + Al-1)) =m +1 and

d(A; + A 4+ AC-2)

d((A1 +A®D) 4+ AL-D)

d(A; + ACD) +d(ACD) — d((A; + AN AL-D)
d(A; + ACD) 4 AC-D) — d(AC-D 0 A2

m+ 2.

IAN 0
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So we may assume that d(A; + A1 4... +A(1)) < m+t—1. Then from
Proposition 2.2,

d(A; + A 4o A 4 A)

d((Ar + A 4o AD) 4 A)

d(A; + A 4o AD) £ d(Ag) - d((Ar + A®D £ AD) A A)
d(Ay + A 4 ADY £ d(Ag) - d(AD N Ay)

m+t.

A

IA

Since d(A;+Az) =m+iand Aj+As C A +AED 4. b AD LAy we

have m+i < m+t. Thus 8p/(A;, Ag) = £ > i. It follows that 8p+(A;, Az) =
Conversely, let 8+ (A1, Az) =iandlet A; = AD), AG-D ... Al AW© —

A; be the vertices on a shortest path connecting A; and A, where 9 (A®), AC-1)) =

1,1 <t <i. In the following we show d(A; + Ag) = m + i. Note that

d(A N AC-)) = m ~ 1,1 < ¢t < i. Thus from Proposition 2.2 and the

proof similar to that above
d(A +AFY 4 AD L Ay <m i

Consequently d(A; + A) < m+1, since Ay + Ay C Ay + AC=D ... 4
AWM + Ay, Suppose that d(A; + Ag) = m + 1 < m +i. Then from Propo-
sition 2.2, d(A; N Ag) = m — I. By the proof of sufficiency, we obtain
that 8p(A1,A2) = I < i, a contradiction. Thus d(A; + A2) = m + 4.
Furthermore, from Proposition 2.2, d(A; N Ap) =m — 3. O

Lemma 2.6. LetI" = (V', E') be the graph constructed above. Let Ay, Aq €
V' such that 8p/ (A1, Ag) = t, where 1 <t < min(d — m,m), and let Az be

a subspace with diameter m and Or/(QAs, Ag) = 1. Then d(A1NANA3) =

m —t—1 orm—t. Furthermore, if d(A1 N A3 NA3) =m~1t —1, then

d(A1NA3) =m—t—1orm—t; if d(A1 N AN A3z) = m —t, then

d(AiNAg)=m—~torm—t+1.

Proof. Let A, Ag € V' such that 8p(A1,Ap) =t, where1 <t < min(d —
m,m), and let Az be a subspace with diameter m and 9 (A3, Ag) = 1.
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Then from Lemma 2.5, d(A; N Ag) = m —t and d(Aa N A3) = m — 1.
We claim that d(A; N A2 N A3) = m —t — 1 or m — t. Indeed, since
d(Ar + (A2 NAg)) < d(A; + Ag) =m + ¢, it follows from Proposition 2.2
that

d(A; N Ay)

> d(A; N (A2 N As))

= d(A)) +d(A2 N Ag)) — d(A + (A2 N A))
> d(A) +d(A2 N As) — d(A; + Ag)

m—t—1.
It implies that d(A; N Ao N A3) =m —t — 1 or m — t. Note that

d(A;1 NA2N A3)

d(A1 N A3)

d(A1) +d(A3) — d(A; + As)

m+m—d(A; + (A2N A3g))

om — (d(A1) + d(A2 N Ag) — d(Ay N A2 N Ag)).

IA

So when d(A; N A2 NA3) =m—t—1, we have d(A; NA3)=m—t -1
or m —t; when d(A; N AN A3) = m —t, we have d(A; NA3) =m —tor
m-—t+1.

a

Proof of Theorem 1.1. By Lemma 2.4, I" is a regular graph with valency

m d—m
k' = M(m —1,m,m;d) = b* [ 1 ]lﬁ [ 1 ]b2-

Let A;, A € V' such that 8r/(A;, Az) = t, where 1 < t < min(d — m,m),
and let A3 be a subspace with diameter m and dr/(As, A2) = 1. To prove
I is a distance-regular graph, it suffices to prove b't and c; are independent
of the choice of A; and As.

By Lemmas 2.5 and 2.6, to compute b, we only consider the case d(A; N
Ap)=m—t,d(A2NAz)=m~1andd(A;NA2NAg)=m—t—1.
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Note that, for a given A;jNA2NA3, A2oNAj is a subspace with diameter
m—1, contained in A, and intersect A;jNAg at A; NA;NA3. Thus, from
Lemma 2.4, the number of subspaces of A NA3 with diameter m — 1 which
intersect A; N Ag at subspace with diameter m —¢ — 1 is

Mm—-t-1,m—tm-1;m).

From Lemma 2.4 again, for the given subspace Ay N A3z, the number of
subspaces Az with diameter m containing A; N Az and intersect A; N Ao
at A\NAyNAzis

M (m — 1,m,m;d).

So the number of subspaces A3 such that d(A; N A2 NA3) =m—t—1,
d(A1NAg)=m—tandd(A2NAg)=m—1is

M(m—t—-1,m-t,m-1;m)M(m - 1,m,m;d).

Clearly, the subspaces A3 above contain the subspaces Az with d(A; N
Az) = m —t. In the following we compute the number of such subspaces.

We claim that, for a given AgNAg3, Aj is the subspace with diameter m
such that d(A; NA3) = m—t if and only if there exists a subspace A4 with
diameter m—t in A; containing A;jNA2NA3 such that Az = Ay+(A2NA3).
Indeed, let Az = Ay + (A2 N Az) where Ay is a subspace with diameter
m —tin A} containing A; N Ay N Ags. Since

Aqn(AznAs)CAlnAznA;;,

we have
AsNANA3=A1NANA;.

From Proposition 2.2,
d(A1 + A2 NA3) =m +t.
So from Proposition 2.2 again,

d(Al NAj3) = d(A, n(A4 + A, nA;;)) =2m — d(Al + A; ﬂA3) = m—t.
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It implies that A3 is the subspace with diameter m satisfying d(A;NA3) =
m—1.

Conversely, let As be a subspace with diameter m satisfying d(A; N
A3) = m —t. Then A; N Az is a subspace with diameter m — ¢ in A,
containing A; N Az N Az. From Proposition 2.2,

d((A10A3)+(A20A3))=m—t+m—1—(m—t—1)=m.

It follows from Proposition 1.1(iii) that Az = (A; N A3z) + (A2 N Ag). Set
A4 = A1 N Ag, as desired.

From proof above, we know that for a given Az N Az, the number of
the subspaces A3 with diameter m satisfying d(A; N Az) = m —t is equal
to the number of the subspaces A4 with diameter m — ¢ in A, containing
Ay N Az N Ag such that Ag = Ay + (A2 N Az). The latter is N(m — t —
1,m —t;m) by Lemma 2.3. Note that A; NAg is a subspace with diameter
m —t in A, containing A; N Az N Aj such that

(Al n Ag) + (Az n Aa) = As.

So for a given Ag N As, the number of the subspaces Az with diameter m
satisfying d(Ay N A3z) =m —t, is

N(m -t- l,m -1 m) —-1= (bm—-t - bm)/(bm—t—l - bm—t)~

Thus, for a given subspace Ag N A3, the number of subspace A with
diameter m satisfying d(AjNAg)=m—-t—1is

Miy(m—-1,m,m;d)—Nm—-t—-1,m—t;m)+1
= m/(bm—l - bm) - (bm—t - bm)/(bm~t—l - bm—t)-

It follows that

b, = (b bm - bmot = bm )M(m—t—l,m—t,m—-l;m)
m

-1 bm bm—t—l - bm—t

- b4t+2[m—t] [d—-m-—t] .
1 b2 1 b2

Similarly,
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c=—""_" Nm-tm-1m)= .
E 7 bt = b1 ( ) 1]

Clearly c; and b}, where 1 < t < min(d — m,m), are independent of the
choice of A; and Ay. So I is a distance-regular graph. (]
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