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Abstract: In this paper we obtain the explicit recurrences of the independence poly-
nomials of polygonal cactus chains of two classes, and show that they are the extremal
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1 Introduction

The objects nowadays known as cactus graphs appeared in the scientific
literature more than half a century ago under the name of Husimi trees.
Their introduction was motivated by papers of Husimi [1} and Riddell [2]
dealing with cluster integrals in the theory of condensation in statistical
mechanics [3]. Besides statistical mechanics, where Husimi trees and their
generalizations serve as simplified models of real lattices [4, 5], the concept
has also found applications in the theory of electrical and communication
networks [6] and in chemistry [7, 8].

A cactus G is a connected graph in which each edge lies on at most a
cycle. Therefore, each block in G, a maximal 2-connected subgraph of G,
is either an edge or a cycle. An h-polygon cactus G is such a cactus that
each block is an h-polygon. We call G an h-polygon cactus chain if each
h-polygon has at most two cut vertices and each cut vertex lies on exactly
two polygons. The number of h-polygons in G is called the length of the
chains.
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Let G be an h-polygon cactus chain of length n. If n > 1 then G has
two so called the end h-polygons that each one of them contains a unique
cut vertex; while all the others are the internal h-polygons. If C is an
h-polygon, then its two vertices u and v is called j-para-position if the
distance between them is j. Specially, they are ortho-position if j = 1, and
meta-position if j = 2. An internal h-polygon in G is called ortho if the
two cut vertices that it contains are ortho-position. G is ortho-chains if
its internal h-polygons are all ortho. Meta~chains can also be analogously

- defined.

A subset S of the vertices of a graph G is called an independent set of G
if any two vertices of S are not adjacent, and S is called an k-independent
set if |S| = k. We denote by ax(G) the number of the independent sets of
G with k vertices, and consider ap(G) = 1 and ax(G) = 0 if k£ > a(G),
where a(G) is the number of the vertices of a maximum independent set

a(G)
of G. i(G;z) = Y ak(G)zF is called the independence polynomial of G,

where z is a formal variant. The number i(G; 1) of all independent sets of
G is called the Merrifield-Simmons indez of G in chemical terms.

In this paper we obtain the explicit recurrences of the independence
polynomials of ortho-chains and Meta-chains, and show that they are the
extremal polygonal cactus chains with respect to the number of indepen-
dent sets. :

2 Main results

Let S be a vertex of a graph G; we denote by G — S the subgraph of
G obtained by deleting S. In particular, if S = {u} then we will write
G —u instead of G — {u}. We denote by N[u] the set consisting of u and its
neighborhood. In this section, we denote by O, and M,, the ortho-chains
and meta-chains of length n, respectively. The following three lemmas are
due to Hosoya [9] and will be used repeatedly.

Lemma 1. Let G be a graph and u a vertez in G. Then
i(G;z) = i(G — w;z) + = - i(G — N[u}; z).
Lemma 2. Let G be a graph consisting of the components G1,Ga, ..., Gk.
Then i(G; z) = i(G1; 2)i(Ca; ) - - i(Cik; 7).
Lemma 3. Suppose that P, is a path on n vertices. Then
L-=)
. n+l-—k
iPaz)= > (", T

k=0

We often write i(G) for i(G; ) unless confusion rises. For n =0,1,2 we
can verify that the independence polynomials of O, and M, are all equal,
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that is
(Oo) = i(Mo)

i(01) = i(M))
i(02) = i(M2)

1;
i(Chn);
#(Ch)i(Pa—3) + zi(Pn_1)[i(Ph—a) + (Pr-3)].

In the following, we will use the notation G for (@), when it would lead
to no confusion.

Figure 1: O,

Theorem 4. Ifn > 2, then we have
(1) On = Ph—20 -1+ IUP;?_:;On—Z;

(2) M, = (Ph_s +zP,_s +$Ph_3)Mn_1 + (tl:P,f_“ - 2xPh_5Ph_3)Mn_2.

Proof. Suppose that the chain O, is as in Figure 1, where C; is its i-th
h-polygon (1 < i < n) and a! and @} are the first and second cut vertices
on C; (2 <4< n~1). If n =2 then we can easily verify that (1) is true.
So we next assume n > 3. Deleting a2, by Lemmas 1 and 2, we have

On = On - a'e‘ + :B(O" - N[ag])
= Pr-30n-1 + (€Pa-q + 2Py_3)(On-1 — a3 }). (2.1)

Note that O,,_; — ag"l =On_2Py_3+zPy_4(Op2 ~ a§'2). We have
On = Po_30n_1 + (2Py_4 + 2P4_3)(On-2Ps_g + TPy _4(On—2 — ag"‘;))z.

The result follows from (2.1) and (2.2). Similarly, we can show that (2) is
also true. O
Next we will give the extremal h-polygon cactus chains of k-independent
sets. We start with a claim; Claim 5 will be used to prove Lemma 6, from
which we obtain Corollaries 7 and 8. Finally, we prove our main results by
the virtue of the two Corollaries.
The following claim can be easily obtained.
Claim 5. Let P, be a path on n vertices. Then
(1) P,=P,_, + zP,_o;
(2) Pm+n = PmP -1+ zP, —1Pn—2; m,n = 0.

Let A, be a set of h-polygon cactus chains of length n. Suppose A, €
A, and denote by j the vertex labeled on the n-th h-polygon C, of A,, as
in Figure 2. If j € {2,3,..-, [-;LJ} then by Lemmas 1, 2 and 3, we have

An = Ph—3 : An-—l + (-TPh—rl +xPh—3)(An—1 - sn—l), (23)
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Ap—2=Py_3-Ap—1+zPh_4(An_1—3n-1), (24)
An—3 = Phyg-An—1+(zPrs+zPh3)(An-1—5n-1), (2:5)
Apn—j=Pj_3Pn_j_1 - An_1 +(cPj_3Pr_j2+2Pj_4Pp_;)(An-1— 81{—1))-
2.6
Let f(z) = Y axz* and g(z) = . bxz* be two polynomials of z. Then
P

=0 k=0
we write f(z) < g(z) if for any k, ax < b (0 < k < n); and f(z) < g(z) if
for any k, ax, < by and there exists some k such that ax < b (0 < k < n).

h=1

Figure 2: A,

Lemma 6. Forn > 2, if A, is as in Figure 2, and j € {4,---, [%j}, then
Ap—-2<A,—j<A.-3.
Proof. By the above (2.4), (2.5), (2.6) and Claim 5, we have
(An "".7) - (An _3)
= Apn_1(Pj—3Ph—j-1 — Ph-4) + (An—1 = 8n-1)[xPj—3Pn—j—2
+ 2Pj_gPy—j —xPy_5 —TPy—3
= 23P;_5Ph_j_3[(An-1 — N[sn-1]) = (An-1 — 8n-1)};
(An—J) = (An—2)
= An—1(Pj—3Pa—j-1 — Pa_3) + (An-1 — 8n-1)[xPj—3Pn—j-2

+zP;_4Py_j —zPh_4
= 22Pj_4Ph-j—2((An-1 — Sn—1) — (An_1 = N[sa-1])]-

Note that (Ap—1 — Sp—1) — (An—1 — N[sp_1]) > 0. We have A, —2 <
Lemma 6 has two immediate corollaries.

Figure 3: M,
Corollary 7. Suppose that Oy, is as in Figure 1. Then O, —a3 < Op—j <
On —a2, j€{4,5,-,| %]}
Corollary 8. Suppose that M, is as in Figure 3. Then My, —a3 < M, —j <
Mn - ag; .7 € {4’5: ] I.LJ}
Now we can prove the Following theorem which contains the results that

we want.
Theorem 9. If A, € A, (n 2 3), then we have

170



(i) On—af X An -5 I M, —af j€{2,3,--,| & ]};
(ii) Onp < A, X M,,.
Proof. Note first that if A, = M,, or A, = O, then the equalities in (i)
and (ii) hold by Corollaries 7 and 8. Hence we assume below that A, # O,
and A,, # M,. We use the induction on n. Suppose n = 3. Then we have
As—j = Pj_3Puj1-As+ (2P-3Pa_j o+ TPj_4Pa_;)(As — s2);
Mz —ai = PhaMo+ (xPys+zPy3) (M2 — a});

= Pj3Py_j_1 A+ (xPj_3Ph—j_2 + zPj_4Pn_j) (A2 — s2);
O3 — ag = Pn-305+ a:Ph_4(02 - ag)
Thus by Corollaries 7 and 8, we know
(As = j) — (M3 —a})
= (Pj-1Pr—j—1 — Po_a)Ms + (zP;_3Py_j_g + zP;_4 Py_;) (M2 — s2)
— (Ph—s + 2Py_3)(M> — a3)
< (Pj—2Ph—j —~ Pn_3)Mz + (zPj_3Ph—j_2 + zPj_4Py_;
- .'BP),_s - mPh_a)(Mg - a§
= 2°Pj_s Ph—j_3[(Mz — N[a3]) — (M2 — a3)] < 0;

(A3 —j) — (Os — aj)
=Pj_3Py—j_1+Ag + (xPj_3Py_j_3 + xPj_4Py_;)(Az — 52) — Po—302

— zPu4(02 - a3)
> (Pj=3Pn-j—1 — 1;;;-3)02 + (xPj—3Ph-j—2 + TPj_4 Py_;

- zPh_4)(02 - as 9
= 22Pj_4Pr_j_2[(Oz - a3) — (02 - N[a3])] > 0.
We also note
Az Py_3A2 + (Py—g + zPr_3)(A2 — s2)

Ph_3My + (zPh—g + zPh_3)(Mz — 52)
Pu_302 + (xPy—g + zPy_3)(03 — s3);
M; Py _3M; + (xPh—g + Py_3)(M2 — a3);
Os Py,_305 + (xPh—4 + zPy—3)(02 — a3).

By Corollaries 7 and 8, we know that My — s < My — a3 and Op — 53 >

O — a3. Hence Az < M3 and Az > Os.
Next we assume n > 4. Note that any A, of 4, can be obtained

from an appropriately chosen graph A,_; € A,_; by attaching to it a new
h-polygon C,, as in Figure 2. By the inductive hypothesis that A,_; —
8p—1 < Mp_1-a57" and Ap_1 < Mn_1; An—1—8n—1 > Op—; —a3~! and
An_y > Op_q, we have
(An — j) — (M, — a3)
=P;_3Ph—j—14n—1 + (An-1 — 37-1)(@Pj_3Ph_j—2 + TPj_4Py_;)
— PooaMy_y — (Mp—1 — a3 ) (zPu—s + zPh_3)
< (Pj-3Pu_j—1— Pa_a)Mp_y + (Mp_y— ag_l)(sz—3Ph—j-2
+xPj_4Py_j — zPy_5 — xPy_3)
= 2°Pj_5Ph—j—3[(Mn—1 — N[a3™"]) = (Mn_1 — a37")] < 0;

mngnn
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(An _J) - (On - aé‘)
= Pj_3Py_j1An-1+ (An-1 — $n-1)(@Pj—3Py_j—2 + TP;_4Pn;)
— Py_30n_y — zP4_4(Op-1 — a3 ")
> (Pj—3Ph—j—1 — Pa=4)On—1 + (On_1 — a3 *)(zP;-3Ph—j-2
+ 2P 4Py_j — zPh_4)
= 22P;j_4Ph—j—3[(On-1 — a37") = (On-1 — N[z ™'])} > 0.
Thus (i) is finished.
By (2.3) we know
An Pho1-Ap-1+22Py_2(An-1 — Sn-1);
M, Po_1M, 1+ 22Py_p(Mp_1 — a37");
O, Py_10p-1 + 28Py_2(On—1 — a3 1),
By (i) we know M,_; — a5~ ! = A,_1 — sp—1. Therefore, by the inductive
hypothesis that M,,_; > A,_1, we have A, < M,,. Similarly, we can also
prove A, > O,. O
As a consequence of Theorem 9, we have
Theorem 10. If A,, € A, then ar(0O,) = ar(An) 2 ar(My). In addition,
for all k, ai(0n) < ar(An) < ax(M,) unless A, = My, or A, = Oy,
The following theorem is equivalent to Theorem 10.
Theorem 11. For A,, € A,, we have
(i) If Ap # Oy, then i(An,1) > i(On, 1),
(i) If An # M, then i(A,,1) < i(Mp,1).
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