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Abstract

A finite simple graph is of class one if its edge chromatic number
is equal to the maximum degree of this graph. It is proved here that
every planar graph with the maximum degree 5 and without 4 or
5-cycles is of class one. One of Zhou's results is improved.
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1 Introduction

All graphs considered here are finite and simple. Let G be a graph with
the vertex set V(G) and edge set E(G). We denote the maximum degree
of G by A(G). If v € V(G), then its neighbor set Ng(v) (or simply N(v))
is the set of the vertices in G adjacent to v. For V' C V(G), denote
N(V') = Uyev'N(u). Given a plane graph G, let F(G) be the face set of
G. A face of a graph is said to be incident with all edges and vertices in
its boundary. Two faces sharing an edge e are said to be adjacent at e.
The degree of =, denoted by d(z), is the number of vertices adjacent to z if
z € V(G) , or the number of edges incident with z where each cut edge is
counted twice, if x € F(G).

A graph is k-edge-colorable, if its edges can be colored with k colors in
such a way that adjacent edges receive different colors. The edge chromatic
number of a graph G, denoted by x'(G), is the smallest integer k such that
G is k-edge-colorable. In 1964, Vizing showed that if G is a graph with
maximum degree A, then A < x/(G) < A+ 1. A graph G is said to be of
class one if x'(G) = A, and of class two if x'(G) = A+ 1. A graph G is
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critical if it is connected and of class two, and x'(G — €) < X/(G) for every
edge e of G. A critical graph with maximum degree A is called a A-critical
graph. It is clear that every critical graph is 2-connected.

For planar graphs, more is known. As noted by Vizing [1}, if Cy, K4,
the octahedron, and the icosahedron have one edge subdivided each, class
two planar graphs are produced for A € {2,3,4,5}. He proved that every
planar graph with A > 8 is of class one (There are more general results, see
[2] and [5]) and then conjectured that every planar graph with maximum
degree 6 or 7 is of class one. The case A = 7 for the conjecture has been
verified by Zhang [8] and, independently, by Sanders and Zhao [6]. The
case A = 6 remains open, but some partial results are obtained. Theorem
16.3 [1] stated that a planar graph with the maximum degree A and the
girth gis of classone if A >3 and g >8,orA>4andg>5,0rA2>5
and g > 4. Lam, Liu, Shiu and Wu [7] proved that a planar graph G is
of class one if it satisfies one of the following conditions: (1) A > 6 and G
contains no 4-cycles; (2) A > 6 and no two 3-cycles of G sharing a common
vertex; (3) A > 5 and G contains no 4-cycles and 5-cycles; (4) A > 5 and
G contains no 4-cycles and has no two 3-cycles sharing a common vertex;
(5) A > 4 and G contains no i-cycles, where 4 < ¢ < 14; (6) A > 4 and
G contains no 4-through 6-cycle and has no two cycles sharing a common
vertex. Zhou [9] obtained that every planar graph with A = 6 and without
4 or 5-cycles is of class one. Recently, We proved in [7] that every planar
graph with A > 6 and without 6-cycles is of class one. In the paper, we
shall improve some above results by proving that every planar graph with
A =5 and without 4 or 5-cycles is of class one.

2 The main result and its proof

To prove our result, we will introduce some known lemmas.

Lemma 2.1. [1] If G is a graph of class two, then G contains a k-critical
subgraph for each k satisfying 2 < k < A(G).

Lemma 2.2. (Vizing’s Adjacency Lemma [1]). Let G be a A-critical graph,
and let u and v be adjacent vertices of G with d(v) = k. Then
(a) if k < A, then u is adjacent to at least A — k + 1 vertices of degree

(b) if k = A, then u is adjacent to at least two vertices of degree A.

From the Vizing’s Adjacency Lemma, it is easy to get the following
corollary.

Corollary 2.3. Let G be a A-critical graph. Then
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(a) every vertez is adjacent to at most one 2-vertex and at least two
A-vertices;

(b) the sum of the degree of any two adjacent vertices is at least A + 2;

(c) ifuv € E(G) and d(u)+d(v) = A+2, then every vertez of N({u,v})\
{u,v} is a A-vertes.

Lemma 2.4. [8] Let G be a A-critical graph, uwv € E(G) and d(u)+d(v) =
A+2, Then
(a) every vertex of N(N({u,v}))\ {u,v} is of degree at least A —1;
(b) if d(u),d(v) < A, then every vertex of N(N({u,v}))\ {u,v} is @
A-vertez.

Lemma 2.5. [6] No A-critical graph has distinct vertices z, y, z such that
z is adjacent to y and z, d(2) < 2A - d(z) — d(y) + 2, and xz is in at least
d(z) + d(y) — A — 2 triangles not containing y.

To be convenient, for a plane graph G, a k-vertex or k*-vertex is a
vertex of degree k or at least k, respectively. Similarly, we define a k-face
or k*-face. A k-face of G is called an (41,2, - - - ,4x)-face if the vertices in its
boundary are of degrees 4y,1a, - , ik respectively. A 3-face is denoted by
[z,y,2] if it is incident with distinct vertices z,y, z and d(z) < d(y) < d(2).

Theorem 2.6. Let G be a planar graph with A = 5. If G contains no
4-cycle or 5-cycle, then G is of class one.

Proof. Suppose that G is a counterexample to our theorem with the mini-
mum number of edges and suppose that G is embedded in the plane. Then
G is a 5-critical graph by Lemma 2.1, and it is 2-connected. By Euler’s
formula |V(G)| - |E(G)| + |F(G)| = 2, we have

D @d)-6)+ Y. (d(z)-6)=-12. 1)

z€V(G) 2€F(G)

We define ch to be the initial charge. Let ch(z) = 2d(x) — 6 for each
z € V(G) and ch(z) = d(z) — 6 for each z € F(G). In the following, we will
reassign a new charge denoted by ch/(z) to each z € V(G)UF(G) according
to the discharging rules. Since our rules only move charges around, and do
not affect the sum, we have

> k(@)= Y ch(z)=-12. (2)
zeV(C)UF(G) z€V(G)UF(G)

If we can show that ch/(z) > 0 for each z € V(G) U F(G), then we obtain
a contradiction to (2), completing the proof.

First, we assume that G contains no 4-cycle. Then the discharging rules
are defined as follows.
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R1-1. For each 2-vertex v, every 5-vertex adjacent to v sends 1 to v.

R1-2. For each a 3-face f = [z,9,2], (i) if f is a (k,5, 5)-face, k=2, 3
or 4, then each of y,z sends 3 to f; (ii) if f is a (k, k, k)-face, k=4 or 5,
then each of z,v, z sends 1 to f; (iii) if f is a (3,4, 5)-face, then y sends 1
to f and z sends 2 to f; (iv) if f is a (4,4, 5)-face, then each of z,y sends
3 to f and 2z sends § to f.

R1-3. For each 5-face f, if each vertex incident with f is of degree at
least 4, then each of them sends % to f, otherwise every 4-vertex incident
with f sends % to it and every 5-vertex incident with f sends § to it.

Let f be a 3-face. Then ch(f) = —3, and by Lemma 2.2, each 3-face
must be one of the types (2,5,5), (3,4,5), (3,5,5) and (4%,4%,4%)-face.
Thus, by R1-2, ch/(f) = -3+3 =0.

Let f be a 5-face. Then ch(f) = —1. If there is a 2-vertex incident
with f, by Corollary 2.3, f is a (2,5,5,5,5)-face. Thus, ch'(f) = -1+
1x 4> 0. If there is a 3-vertex incident with f, then f must be one of
the types (3,3%,5,5,5) and (3,4,4,5,5)-face by Lemma 2.4. By R1-3, we
have ch’(f) > 0 in each type. Otherwise, every vertex incident with f is of
degree at least 4. It follows that ch/(f) = -1+ § x 5> 0.

Let f be a 6*-face. Then ch/(f) = ch(f) > 0.

Let v be a 2-vertex. Then ch(v) = -2, and by Corollary 2.3, v is
adjacent to two 5-vertices, so ch/(v) = -2+1x2=0.

Let v be a 3-vertex. Then ch'(v) = ch(v) =0.

Let v be a 4-vertex. Then ch(v) = 2, v is adjacent to at most one
3-vertex and min{d(u)lu € N(v)} > 3 by Lemma 2.2. Since G contains
no 4-cycle, v can be incident with at most two 3-faces. By R1-2 and R1-
3, we know that v sends at most 1 to each incident 3-face and % to each
incident 5-face. If v is incident with no 3-faces, then v is incident with
at most four 5-faces. Thus ch/(v) > 2 — 1 x 4 > 0. If v is incident with
exactly one 3-face, then v can be incident with at most three 5-faces. Thus
ch'(v) 2 2—1-1x3> 0. Now, assume that v is incident with exactly
two 3-faces. If there is a 3-face f incident with v which receives 1 from v
by R1-2, then f is a (4, 4,4)-face or (3,4,5)-face. In each case, the other
incident 3-face of v must be a (4, 5,5)-face by corollary 2.3. It follows that
ch'(v) > 2—1-0~1 x 2> 0. Otherwise, v sends at most § to each 3-face
by R1-2. So we have ch/(v) >2—-3 x2-1x2=0.

Let v be a 5-vertex. Then ch(v) = 4, v is adjacent to at most one
2-vertex, and min{d(u)|u € N(v)} > 2 by Lemma 2.2. Since G contains no
4-cycle, there are at most two 3-faces incident with v. If v is not incident
with 3-faces, then v can be incident with at most five 5-faces. Thus ch’(v) >
4-1-1x5>0byR1-1and R1-3. If v is incident with exactly one 3-face,
then there are at most four 5-faces incident with v. Whether v is adjacent
to a 2-vertex or not, we have ch’(v) > 4—max{1+3+ 3 x4, 2+3 x4} > 0.
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Now, assume that v is incident with exactly two 3-faces. We consider the
following cases.

Case 1-1. min{d(u)ju € N(v)} = 2. Let u be the 2-vertex which receives
1 from v by R1-1. Then the other vertices adjacent to v are of degree 5
by corollary 2.3, and each of the 3-faces incident with v could only be a
(2,5, 5)-face or a (5, 5, 5)-face. If the edge vu is incident with a (2, 5, 5)-face,
then the other face incident with vu is a 6*-face since G contains no 4-cycle.
Thus, we have that v is incident with at most two 5-faces each of which is a
(4%,4%,5,5,5)-face by Lemma 2.4, and then ch’(v) > 4-1-3-1-1x2=0.
Otherwise, v sends 1 to each of its incident 3-faces by R1-2. It follows that
ch'(v) >24-1-1x2-3x3=0.

Case 1-2. min{d(u)|lu € N(v)} = 3. Then v is adjacent to at least three
5-vertices and at most two 3-vertices. If v sends 2 to a (3,4, 5)-face by
R1-2, then the other 3-face incident with v could only be a (5, 5, 5)-face by
Lemma 2.4. Thus, ch’(v) > 4—2—-1-1x3 = 0. Otherwise, v sends at most
3 to each of its incident 3-faces, and then ch’(v) >4~ 3 x2-1 x3=0.
Case 1-3. min{d(u)|u € N(v)} > 4. Then v sends at most 3 to each of its
incident 3-faces, and we also have ch/(v) >4 -3 x2- 1 x3=0.

Now we assume that G contains no 5-cycle. Then the discharging rules
are defined as follows.

R2-1. For each 2-vertex v, every 5-vertex adjacent to v sends 1 to v.

R2-2. Let f = [z,y, 2] be a 3-face.

R2-21. Suppose f is a (2,5,5)-face. If z is incident with a 7+-face
f’, then each of y, z sends 1 to f and f’ sends 1 to f via z, too. Otherwise,
z is incident with a (2,5, 5, 5)-face f’ by Corollary 2.3 (see Figure 1(a)).
Then each of y, z sends g- to f and the 5-vertex which is incident with f/
and not adjacent to z sends 1 to f through f’.

R2-22. Suppose f is a (3,4, 5)-face. Then y sends 1 to f and z sends
2to f.

R2-23. Suppose f is a (3,5,5)-face. If f is adjacent to just one
(3,4, 5)-face, and assume that they are adjacent at zy, then y send 1 to f
and z sends 2 to f. If f is adjacent to two (3,4, 5)-faces (see Figure 1(b)),
let v be the other 5-vertex which is adjacent to the 4-vertex here, then each
of y,2,v sends 1 to f. Otherwise each of y, z sends % to f.

R2-24. Suppose f is a (4,4, 5)-face. Then each of z,y sends § to f
and z sends £ to f.

R2-25. Suppose f is a (4,4,4)-face, (4,5,5)-face, or (5,5, 5)-face.
Then each of z,y, z sends 1 to f.

R2-3. For each 4-face f, if f is a (k, 5,5, 5)-face, k=2 or 3, then each of
the 5-vertices sends % to f; if f is a (3,3,5,5)-face or (3,4, 5, 5)-face, then
each of the 5-vertices sends 1 to f; otherwise each 4*-vertex incident with
f sends % to f.
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(b)

Figure 1: The two special cases of R2-21 and R2-23 respectively.

Let f be a 3-face. Then ch(f) = —3, and each 3-face must be one of the
types (2,5,5), (3,4,5), (3,5,5) and (4+,4*,4%)-face by Lemma 2.2. Thus,
by R2-2, ch’'(f) = -3+ 3=0.

Let f be a 4-face. Then ch(f) = —2, and by Corollary 2.3, each 4-face
must be one of the types (2,5, 5,5), (3,3%,5,5,), and (4%,4%,4%,4%)-face.
Thus, f receives exactly 2 from its incident vertices by R2-3 and ch/(f) = 0.

Let f be a 6-face. Then ch/(f) =ch(f) =0.

Let f be a 7*-face. Then f just sends charges out via 2-vertices by R2-
21. By Corollary 2.3 and Lemma 2.4, there are at most [ﬂ,ﬁ] 2-vertices in

the boundary of f. It follows that ch’(f) > d(f) — 6 — [£L] > 0.

Let v be a 2-vertex. Then ch(v) = -2, and by Corollary 2.3, v is
adjacent to two 5-vertices, so ch/(v) = -2+ 1x2=0.

Let v be a 3-vertex. Then ch/(v) = ch(v) =0.

Let v be a 4-vertex. Then ch(v) = 2, and min{d(u)|u € N(v)} > 3 by
Lemma 2.2. Let s and ¢ be the number of 3-faces and 4-faces incident with
v, respectively. Then we have s < 2 since G contains no 5-cycle. If s =0,
then t < 4 and v sends at most —;— x4 out by R2-3. If s=1, thent <1 and
v sends at most 1+ & out by R2-2 and R2-3. If s =2, thent =0 and v
sends at most 1 x 2 out by R2-2. Thus, we have ch/(v) > 0.

Let v be a 5-vertex. Then ch(v) = 4, v is adjacent to at most one 2-
vertex and at most two 3-vertices and min{d(u)|u € N(v)} > 2 by Lemma
2.2. Suppose v sends charges to its non-incident 3-faces just through its
incident (2,5,5,5)-faces by R2-21. Then all vertices adjacent to v are of
degree at least 4 by Lemma 2.4. Let s be the number of such (2,5,5,5)-
faces incident with v. We have 1 < s < 2 since G contains no 5-cycle,
and each of such 4-faces receives % from v by R2-3. If s = 1, then v sends
at most I x 2 to its other incident 3-faces and 4-faces. It follows that

5

ch'(v) >4—31—-2%2-1x2>0. If s = 2, then there is no other 3-face or
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4-face incident with v, and so ch/(v) > 4— 3 x2— 2 x 2 > 0. Suppose
v sends 1 to a non-incident 3-face by R2-23. Then it is adjacent to four
5-vertices and a 4-vertex by Lemma 2.4. Whether v sends charges to other
non-incident 3-faces by R2-21 or not, we have that v sends out at most 3
in all. It follows that ch’(v) > 0. Now we assume that v only sends charges
to its incident faces and adjacent 2-vertices.

Suppose min{d(u)lu € N(v)} = 2. Let u be the 2-vertex adjacent to
v. Then v is adjacent to four 5-vertices, and v sends 1 to u by R2-1.
Each 3-face incident with v must be a (2,5, 5)-face or a (5, 5, 5)-face, and
by Lemma 2.4, each 4-face incident with v must be a (2,5, 5,5)-face or a
(4%,5,5,5)-face. We use f, and fo to denote the two faces incident with uv,
respectively. (i) If d(f1), d(f2) > 6, then v sends at most max{1 x 2, § x 3}
to its incident faces. It follows that ch/(v) >24-1-2> 0. (ii) If d(f;) = 3
and d(f2) > 6, we have d(f2) > 7 and v is incident with at most another
two 3-faces or two 4-faces, since there is no 5-cycle in G. Thus ch’(v) >
4-1-1x3= 0 (iii) If d(f1) = 3 and d(f2) = 4, then v sends 3 to
fi by R2-1 and to fo by R2-3. Additionally, v sends at most 1 to the
other 3-face or 4-face incident with it. So ch’/(v) 24-1-34-2-1=
(iv) Otherwise, we have d(f1) = 4 and d(f2) > 6 or d(f1) = d(f2) = 4. In
each case, v sends no more than 3 to its incident 3-faces and 4-faces. Thus
ch'(v) 2 0.

Let s and ¢ be the number of 3-faces and 4-faces incident with v, re-
spectively. Then we have s < 3 since G contains no 5-cycle. Suppose
min{d(u)|u € N(v)} = 3. We consider the following three cases.

Case 2-1. v is adjacent to two 3-vertices 1 and ug. Then the other vertices
adjacent to v are of degree 5, and each of vu; and vus is not incident with
3-faces because of Lemma 2.5. So in this case, the 3-faces incident with v
could only be (5, 5, 5)-faces and then 0 < s < 2. If s = 0, then ¢t < 5. There
are at most one 4-face incident with v which receives 1 from it, and the
other incident 4-faces of v are (k, 5, 5, 5)-faces where k > 3 by Lemma 2.4.
Thus ch/(v) > 4—1-2 x4 > 0 by R2-3. If s = 1, then ¢ < 2. Since v sends
at most 1 to each 4-face incident with it, we have ch/(v) > 4-1-1x2> 0.
If s =2, then t < 1, and it follows that ch/(v) >24-1x2-1>0.

Case 2-2. v is adjacent to a 3-vertex and a 4-vertex. Then the other vertices
adjacent to v are of degree 5. If s = 0, then ¢ < 5. There are at most one
incident 4-face of v which receives 1 from v by R2-3, and each of the other
4-faces incident with v receives at most 2 from it by Lemma 2.4. Thus
ch'(v) >4-1-2x4>0.Ifs=1, thent<2 Since v sends at most 2
to the 3-face by R2-2 and at most 1 to each of these 4-faces by R2-3, we
have ch/(v) >4 -2-1x2=0. If s =2, then t < 1. We know that v can
not send 2 to each (3,5, 5)-face by R2-23, otherwise it is adjacent to one
3-vertex and four 5-vertices by Lemma 2.4, which is a contradiction. Thus
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v sends at most 3 to its incident 3-faces by R2-22, R2-23, and R2-25, and
we have ch/(v) >4—-3—-1=0. If s =3, then t =0, and we also have that
v sends at most 4 out by R2-22, R2-23, and R2-25. Thus ch/(v) > 0.

Case 2-3. v is adjacent to a 3-vertex and four 5-vertices. Then each 3-face
incident with v could only be a (3,5,5)-face or a (5,5,5)-face. If s =0,
then t < 5. There are at most one 4-face incident with v which receives 1
from v by R2-3 and the other 4-faces are (k, 5,5, 5)-faces where k > 3 by
Lemma 2.4. Thus ch’(v) >4—-1-2x3>0. If s=1, thent < 2. By
R2-23, R2-25, and R2-3, it follows that ch/(v) > 4-2-1x2=0. If s =2,
then t < 1. In the case that v sends out 2 by R2-23, the other 3-face must
be a (5,5,5)-face by Lemma 2.4. And in the other case v sends at most
2 x 2 to its incident 3-faces. Thus ch/(v) 24 —-83—1=0. If s = 3, then
t = 0. We also have ch/(v) > 0 by R2-23 and R2-25.

Suppose min{d(u)lu € N(v)} > 4. Then each 3-face incident with v
could only be a (4,4, 5)-face, (4,5, 5)-face or (5,5,5)-face. If s = 0, then
t < 5. In the case that there is a 4-face which receives 1 from v, this
4-face must be a (3,4, 5, 5)-face and the other 4-faces incident with v are
(k,5,5,5)-faces where k > 2. Thus ch/(v) >4—-1-3 x4 > 0. In the
other case, v sends at most % to each of its incident 4-faces, so we also have
ch'(v) > 0. If s=1, then £ < 2, and ch/(v) 24— — 1 x 2> 0 by R2-24,
R2-25, and R2-3. If s =2, then t < 1, and ch/(v) 24- I x2-1>0. If
s = 3, then ¢t = 0. We also have ch’(v) > 4—-;— x 2—1>0 by R2-24 and
R2-25 because there are at most two (4, 4, 5)-faces incident with v. (]

Remarks: (1) Li and Luo in [4] proved that a simple graph G with the
maximum degree A and the girth g that is embeddable in a surface £ of
characteristic x(X) > 0 satisfies x’'(G) = Aif A>3 andg>9,0r A >4
and g > 5, or A > 5 and g > 4. Here, if we make a further discussion in
the above proof, it is easy to get the stronger result about the case A =5
and 4-cycle-free, with a surface of nonnegative characteristic instead of the
plane.

(2) It is proved in [7] that every planar graph with A > 6 and without
6-cycles is of class one. we conjecture that it is also true for A = 5.
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