On 2-Factors with Chorded Quadrilaterals in Graphs*

Yunshu Gao[†] Jin Yan[‡] Guojun Li[§]

Abstract

Let k be a positive integer and G a graph with order $n \geq 4k + 3$. It is proved that if the minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a 2-factor with k + 1 disjoint cycles C_1, \ldots, C_{k+1} such that C_i are chorded quadrilateral for $1 \leq i \leq k-1$ and the length of C_k is at most 4.

Key words: Degree condition; Vertex-disjoint; Disjoint cycle.

AMS subject classification: 05C35, 05C38.

1 Terminology and Introduction

In this paper, we consider only finite undirected graphs without loops or multiple edges and we use Bondy and Murty [1] for terminology and notation not defined here. Let G=(V,E) be a graph, the order of G is |G|=|V| and its size is e(G)=|E|. A set of subgraphs is said to be vertex-disjoint or independent if no two of them have common vertex in G, and we use disjoint or independent to stand for vertex-disjoint throughout this paper. Let G_1 and G_2 be two subgraphs of G or subsets of V(G). If G_1 and G_2 have no common vertex in G, we define $E(G_1,G_2)$ to be the set of edges of G between G_1 and G_2 , and let $e(G_1,G_2)=|E(G_1,G_2)|$. Let G_1 be a subgraph of G_1 and G_2 and G_3 and let G_4 and G_5 is the set of neighbors of G_4 contained in G_4 . We write G_4 to replace G_4 for G_4 is the degree of G_4 in G_4 and we write G_4 to replace G_4 for a subset G_4 for a subgraph G_4 for a subgraph of G_4 induced by G_4 and write G_4 for a subgraph G_4 for

^{*}This work is supported by research grants from Ningxia University under grant number: (E)ndzr09-1 and Scientific research project in Xinjiang under grant number: XJEDU2009S101.

[†]School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, P. R. China, E-mail: gysh2004@mail.sdu.edu.cn.

[‡]School of Mathematics, Shandong University, Jinan, 250100, People's Republic of China

[§]School of Mathematics, Shandong University, Jinan, 250100, People's Republic of China

we use l(C) to denote the length of C. That is, l(C) = |C|. A Hamiltonian cycle of G is a cycle which contains all vertices of G, and a Hamiltonian path of G is a path of G which contains every vertex in G. A cycle of length 4 is called a quadrilateral. For a noncomplete graph G, let $\sigma_2(G) = \min\{d(x) + d(y)|xy \notin E(G)\}$; if G is a complete graph, let $\sigma_2(G) := \infty$. Let D be the graph obtained from K_4 by removing exactly one edge.

In his very excellent paper [3], Enomoto proposed the following interesting conjecture.

Conjecture 1.1 [3] Let s and k be two positive integers with $1 \le s \le k$ and G be graph with order $n \ge 3s + 4(k - s) + 3$. Suppose $\sigma_2(G) \ge n + s$. Then G can be partitioned into k + 1 disjoint cycles H_1, \ldots, H_{k+1} satisfying $|H_i| = 3$ for $1 \le i \le s$ and $|H_i| \le 4$ for $s < i \le k$.

It is probably the first step to specify the length of $|H_i|$ for $s < i \le k$ to solve Enomoto's Conjecture. The following result obtained by Yan stated that the length of these cycles is four.

Theorem 1.2 [4] Let s and k be two positive integers with $1 \le s \le k$ and G be graph with order $n \ge 3s + 4(k - s) + 3$. Suppose $\sigma_2(G) \ge n + s$. Then G contains k disjoint cycles H_1, \ldots, H_k satisfying $|H_i| = 3$ for $1 \le i \le s$ for $1 \le i \le s$ and $|H_i| = 4$ for $s < i \le k$.

Very recently, we improve the condition $n \ge 3s + 4(k-s) + 3$ of Theorem 1.2 to $n \ge 3s + 4(k-s) + 1$, and it seems that the following conjecture is the further step to solve Enomoto's Conjecture.

Conjecture 1.3 Let s and k be two positive integers with $1 \le s \le k$ and G be graph with order $n \ge 3s + 4(k - s) + 1$. Suppose $\sigma_2(G) \ge n + s$. Then G contains k disjoint cycles H_1, \ldots, H_k satisfying $|H_i| = 3$ for $1 \le i \le s$ and H_i contains D as a spanning subgraph for $s < i \le k$.

The main purpose of this paper is to prove the following theorem.

Theorem 1.4 Suppose G is a graph of order $n \geq 4k + 3$ with $\sigma_2(G) \geq n + k$. Then G contains a 2-factor with k + 1 disjoint cycles C_1, \ldots, C_{k+1} such that C_i are chorded quadrilateral for $1 \leq i \leq k-1$ and $l(C_k) \leq 4$.

In the proof of Theorem 1.4, we make use of the following theorem which solves the packing problem for D.

Theorem 1.5 [6] Let k be a positive integer and G a graph of order $n \ge 4k + 1$. If $\sigma_2(G) \ge n + k$, then G contains k disjoint D.

2 Lemmas

In the following, G is a graph of order $n \geq 3$.

Lemma 2.1 [5] Let $P = x_1x_2...x_m$ be a path of G with $m \ge 2$ and $y \in V(G) - V(P)$. If $d(y, P) + d(x_m, P) \ge m + 1$, then G has a path P' from x_1 to y such that $V(P') = V(P) \cup \{y\}$.

Lemma 2.2 Let $P = x_1 \dots x_p$ be a path with $p \ge 1$, $M = y_1 z_1$ be an edge and S such that all of them are disjoint, where S is isomorphic to D or K_4 . Suppose $e(\{x_1, x_p\} \cup M, S) \ge 11$, then $G[V(M \cup P \cup S)]$ contains two disjoint subgraphs S' and P' such that P' is a path of order p + 1, where S' is isomorphic to D or K_4 .

Proof For convenience, we write $V(S) = \{a, b, c, d\}$ so that $d_S(a) \ge d_S(b) \ge d_S(c) \ge d_S(d)$. Note that $d_S(a) = d_S(b) = 3$ and $d_S(c) = d_S(d) \ge 2$.

First suppose that $P=x_1$. Then the condition implies that $e(M,S)+2d(x_1,S)\geq 11$. Since $e(M,S)\leq 8$, thus, $d(x_1,S)\geq 2$. If $d(x_1,S)=4$, then e(M,S)=0, so $e(M,S)+2d(x_1,S)=8<11$, a contradiction. Hence, $d(x_1,S)\leq 3$. If $d(x_1,S)=3$, denote $S'=G[N(x_1,S)\cup \{x_1\}]$, we see that $G[V(M\cup P\cup S)]$ contains two required subgraphs S' and $P'=y_1z_1$. So, it remains the case $d(x_1,S)=2$. Then we obtain $e(M,S)\geq 7$. By symmetry, we may assume that $d(y_1,S)=4$ and $d(z_1,S)\geq 3$. If $az_1\notin E(G)$, then $G[\{y_1,z_1,b,d\}]\supseteq D$, which disjoints from the path P'=ca. Consequently, $az_1\in E(G)$ and $bz_1\in E(G)$ by symmetry. Furthermore, we may assume that $cz_1\in E(G)$ by symmetry. Then $G[\{y,a,d,b\}]\supseteq D$, which disjoints from the path $P'=cz_1$.

Hence, we may assume that the order of the path P is at least 2. Note that

$$11 \le e(\{x_1, x_p\} \cup M, S) = e(\{x_p, y_1\}, S) + e(\{x_1, z_1\}, S),$$

and $e(\{x_p,y_1\},S)\leq 8$, we may assume that $e(\{x_p,y_1\},S)\geq 6$ and then $e(\{x_1,z_1\},S)\geq 3$. Furthermore, we observe that $e(\{x_p,y_1\},S)\leq 6$. Otherwise, it is easy to see that $G[V(M\cup S\cup P)]$ contains two required disjoint subgraphs. Then it follows that $e(\{x_p,y_1\},S)=6$ and $e(\{x_1,z_1\},S)\geq 5$. If $d(y_1,S)=4$, then we have nothing to prove as $d(x_p,S)\geq 2$. So, we assume $2\leq d(y_1,S)\leq 3$ and then $d(x_p,S)\geq 3$.

Case 1. $d(y_1, S) = 3$. Then $d(x_p, S) = 3$.

Suppose that $N(y_1,S)=\{a,b,c\}$. If $x_pd\in E(G)$, then $G[V(M\cup S\cup P)]$ contains two required subgraphs $S'=G[\{y_1,a,b,c\}]$ and P'=P+d. Therefore, $x_pd\notin E(G)$ and then $\{a,b,c\}=N(x_p,S)$. However, we observe $N(z_1,S)\cap N(x_1,S)=\emptyset$, which contradicts the fact that $e(\{x_1,z_1\},S)\geq 5$. Hence, by

symmetry, we may assume that $N(y_1,S) = \{d,b,c\}$. As $G[\{y_1,d,b,c\}] \supseteq D$, $x_1a \notin E(G)$ and $x_pa \notin E(G)$. Then $N(x_p,S) = \{d,b,c\}$. Note that $N(x_1,S) \cap N(z_1,S) \subseteq \{b\}$, it follows from $e(\{x_1,z_1\},S) \ge 5$ that $\{z_1b,x_1b\} \subseteq E(G)$. Hence, $G[V(M \cup S \cup P)]$ contains two required disjoint subgraphs $S' = G[\{y_1,z_1,b,d\}]$ and P' = P + c.

Case 2. $d(y_1, S) = 2$. Then $d(x_p, S) = 4$.

Suppose $N(y_1,S)=\{c,d\}$. If $d(z_1,S)\geq 3$, then we have nothing to prove. Hence, we may assume that $d(z_1,S)\leq 2$ and so $d(x_1,S)\geq 3$. By symmetry, say $cx_1\in E(G)$. Then $G[V(M\cup S\cup P)]$ contains two required subgraphs $S'=G[\{x_p,a,b,d\}$ and $P'=x_{p-1}\dots x_1cy_1$. Hence, by symmetry, we may assume that $N(y_1,S)=\{a,b\}$ or $N(y_1,S)=\{c,a\}$. In both cases, since $G[\{y_1,a,c,b\}]\supseteq D$, then we can choose P'=P+d. The proof is complete. \square

Lemma 2.3 [2] Let $P = x_1 \dots x_k$ be a path of G with $k \geq 3$. If $d(x_1, P) + d(x_k, P) \geq k$, then G[V(P)] contains a cycle C such that V(C) = V(P).

3 Proof of Theorem 1.4

Let G be a graph of order $n \geq 4k+3$ with $\sigma_2(G) \geq n+k$. Suppose that Theorem 1.4 is false. According to Theorem 1.5, G contains k vertex-disjoint subgraphs S_1, \ldots, S_k such that S_i is isomorphic D or K_4 for each $i \in \{1, \ldots, k\}$. We choose k disjoint S_1, \ldots, S_k in G such that

The length of a longest path in
$$G - V(\bigcup_{i=1}^{k} S_i)$$
 is maximized. (1)

Let $P = x_1 \cdots x_p$ be a longest path of $G - V(\bigcup_{i=1}^k C_i)$. Subject to (1), we choose k disjoint subgraphs S_1, \ldots, S_k and P in G such that

Size of the maximum matching in
$$G - V(\bigcup_{i=1}^k S_i) \cup V(P)$$
 is maximum. (2)

Let $H = \bigcup_{i=1}^k S_i$, F = G - V(H) and |F| = f. Clearly, $f \ge 3$ as $n \ge 4k + 3$. Furthermore, let $M = \{y_1 z_1, \ldots, y_r z_r\}$ be a maximum matching of F - V(P). We suppose that F contains no hamiltonian cycle. Our proof includes several claims.

For convenience, for $i=1,\ldots,k$, we write $V(S_i)=\{a_i,b_i,c_i,d_i\}$ so that $d_{S_i}(a_i)\geq d_{S_i}(b_i)\geq d_{S_i}(c_i)\geq d_{S_i}(d_i)$. Note that $d_{S_i}(a_i)=d_{S_i}(b_i)=3$ and $d_{S_i}(c_i)=d_{S_i}(d_i)\geq 2$.

Claim 1. $p + 2r \ge f - 1$.

Proof On the contrary, suppose that $p+2r \leq f-2$. Let w_1 and w_2 be two non-adjacent vertices in $F-V(P)\cup V(M)$ subject to (2). Then $e(\{w_1,w_2\},y_iz_i)\leq 2$ for each $i\in\{1,2,\ldots,r\}$ by the maximality of M. We prove that $e(\{w_1,w_2\},P)\leq p$. If p=1, then by (2), we see that $e(\{w_1,w_2\},P)=0<1$. Thus, it remains the case that $p\geq 2$, by the maximality of P and Lemma 2.1, we see that $e(\{w_1,w_2\},P)\leq p$. Thus, $e(\{w_1,w_2\},F)\leq p+2r\leq f-2$. It follows that

$$e(\{w_1, w_2\}, H) \ge n + k - (f - 2) = 5k + 2.$$

This implies that there exists $S_i \in H$ such that $e(\{w_1, w_2\}, S_i) \geq 6$. Without loss of generality, say $d(w_1, S_i) \geq d(w_2, S_i)$. Then $d(w_1, S_i) \geq 3$ and $d(w_2, S_i) \geq 2$. We will show that $G[V(S_i) \cup \{w_1, w_2\}]$ contains a subgraph S_i' and an edge e such that they are disjoint, where S_i' is isomorphic D or K_4 .

If $d(w_1,S_i)=4$, it is obvious as $d(w_2,S_i)\geq 2$. So we may assume that $N(w_1,S_i)=N(w_2,S_i)$ and $d(w_1,S_i)=d(w_2,S_i)=3$. By symmetry, we may assume that $\{d_i,b_i,c_i\}=N(w_1,S_i)$ or $\{a_i,b_i,c_i\}=N(w_1,S_i)$. In both cases, we can choose $S_i'=G[\{w_1,c_i,w_2,b_i\}]$ and $e=a_id_i$.

In both cases, replace S_i with S_i' resulting a contradiction with the maximality of M while (1) still holds. Thus, $p+2r \geq f-1$. \square

Claim 2. $p \ge f - 1$.

Proof By contradiction, suppose that $p \leq f-2$. According to Claim 1, we see that $M \neq \emptyset$. Since P is a longest path in F, let $R = \{x_1, x_p, y_1, z_1\}$. By the maximality of P and Lemma 2.1, we obtain $e(\{x_1, y_1\}, P) \leq p$ and $e(\{x_p, z_1\}, P) \leq p$. Note that $e(\{x_1, x_p\}, F-V(P)) = 0$, Thus, $e(R, F) \leq 2p+2(f-p-1) = 2f-2$. As $x_1y_1 \notin E(G)$ and $x_pz_1 \notin E(G)$, we obtain

$$e(R, H) \ge 2(n+k) - (2f-2) = 10k + 2.$$

This implies that there exists some $S_i \in H$ such that $e(R, S_i) \geq 11$. By Lemma 2.2, $G[V(S_i \cup P) \cup \{y_1, z_1\}]$ contains a subgraph $S_i' \supseteq D$ and a path P' of order p+1 such that S_i' and P' are disjoint. Replace S_i with S_i' , we obtain a contradiction with (1). Thus, $p \geq f-1$. \square

Claim 3. We can properly choose S_1, \ldots, S_k such that P is a hamiltonian path in F.

Proof Otherwise, suppose p < f. By Claim 2, p = f - 1. Take $y \in V(F - P)$. By Lemma 2.1, $d(x_p, P) + d(y, P) \le p$. So, $d(x_p, F) + d(y, F) \le p + d(y, F - P) \le p + f - p - 1 = f - 1$. It follows that $d(x_1, H) + d(x_p, H) + 2d(y, H) \ge 2(n + k) - 2(f - 1) = 10k + 2$. This implies that there exists $S_i \in H$ such that $d(x_1, S_i) + d(x_p, S_i) + 2d(y, S_i) \ge 11$.

Now we will show that $G[V(S_i \cup F)]$ can be partitioned into a subgraph $S_i' \supseteq D$ and P' of order f such that they are disjoint, a contradiction. Clearly, $d(y,S_i) \ge 2$. If $d(y,S_i) = 4$, as $d(x_1,S_i) + d(x_p,S_i) \ge 3$, we may assume that $zx_1 \in E(G)$ with $z \in V(S_i)$. Then $G[V(S_i-z) \cup \{y\}] \supseteq S_i' \supseteq D$, which disjoints the path P' = P + z. Hence, we have $d(y,S_i) \le 3$ and so $d(x_1,S_i) + d(x_p,S_i) \ge 5$. Without loss of generality, assume $d(x_1,S_i) \ge d(x_p,S_i)$. Then $d(x_1,S_i) \ge 3$ and $d(x_p,S_i) \ge 1$.

Subclaim 3.1. $d(y, S_i) \leq 2$.

Otherwise, suppose $d(y,S_i)=3$. We observe that $G[N(y,S_i)\cup\{y\}]\supseteq D$, thus, it follows that $N(y,S_i)=N(x_1,S_i)$ and so $d(x_p,S_i)\ge 2$. If $N(y,S_i)=\{a_i,b_i,c_i\}$, then $x_pd_i\notin E(G)$. If $a_ix_p\in E(G)$, then we can choose $S_i'=G[\{y,b_i,x_1,c_i\}]$ and $P'=P-x_1+a_id_i$. Hence, $a_ix_p\notin E(G)$ and so $b_ix_p\notin E(G)$ by symmetry. It follows that $d(x_p,S_i)\le 1$, a contradiction. Therefore, by symmetry, we assume $N(y,S_i)=\{d_i,b_i,c_i\}$. Clearly, $x_pc_i\notin E(G)$ and $x_pd_i\notin E(G)$. Consequently, $N(x_p,S_i)=\{a_i,b_i\}$. Then we can choose $S_i'=G[\{x_1,b_i,y,d_i\}]$ and $P'=P-x_1+a_ic_i$ such that they are disjoint.

By Subclaim 3.1, we obtain $d(y,S_i)=2$ and so $d(x_1,S_i)=4$ and $d(x_p,S_i)\geq 3$. Furthermore, we observe that $N(y,S_i)=\{c_i,d_i\}$. As $d(x_p,S_i)\geq 3$, by symmetry, we may assume that $\{a_i,b_i,c_i\}\subseteq N(x_p,S_i)$ or $\{c_i,b_i,d_i\}\subseteq N(x_p,S_i)$. In both cases, we can choose $S_i'=G[\{x_p,a_i,b_i,c_i\}]$ and $P'=P-x_p+d_iy$ such that S_i' and P' are disjoint. This completes the proof for Claim 3. \square

By Claim 3, $P = x_1 \dots x_f$ is a Hamiltonian path in F. Subject to this fact, we choose S_1, \dots, S_k and P such that

$$\sum_{i=1}^{k} |E(S_i)| \text{ is maximized.}$$
 (3)

Claim 4. For each $1 \le i \le k$, $d(x_1, S_i) + d(x_f, S_i) \le 6$.

Proof Otherwise, suppose $d(x_1,S_1)+d(x_f,S_1)\geq 7$. Then we may assume that $d(x_1,S_1)=4$ and $d(x_f,S_1)\geq 3$. By symmetry role of c_1 and d_1 , we may assume that $x_fd_1\in E(G)$. Then $G[V(S_1\cup P)]$ can be partitioned into a triangle $a_1b_1c_1a_1$ and a cycle $C'=x_fd_1x_1\ldots x_f$ such that they are disjoint, a contradiction. This completes the proof. \square

Clearly, $x_1x_f \notin E(G)$. Applying Lemma 2.3 to P, $d(x_1,P)+d(x_f,P) \le f-1$. Then $d(x_1,H)+d(x_f,H) \ge n+k-(f-1)=5k+1$. This implies that there exists $S_i \in H$, say S_1 , such that $d(x_1,S_1)+d(x_f,S_1) \ge 6$. By Claim 4, $d(x_1,S_1)+d(x_f,S_1)=6$. Without loss of generality, we assume that $d(x_1,S_1) \ge d(x_f,S_1)$ throughout the rest of this paper. Then $d(x_1,S_1) \ge 3$ and $d(x_f,S_1) \ge 2$.

Claim 5. If $d(x_1, S_1) = 4$, then $S_1 \cong D$ and $N(x_f, S_1) = \{a_1, b_1\}$.

Proof If $x_fd_1 \in E(G)$, then replace S_1 and P with $G[\{x_1,a_1,b_1,c_1\}]$ and $P-x_1+d_1$, respectively, we see that $S_1 \cong K_4$ by the choice of (3). Suppose $c_1x_f \in E(G)$, then $G[V(S_1 \cup P)]$ can be partitioned into a triangle $a_1b_1d_1a_1$ and a cycle $C'=x_fc_1x_1\ldots x_f$ such that they are disjoint, a contradiction. Therefore, $x_fc_1 \notin E(G)$ and $S_1 \cong D$. As $d(x_f,S_1) \geq 2$, it follows that $N(x_f,S_1) = \{a_1,b_1\}$. \square

We derive the following claim to demonstrate the basic structure of the graph G.

Claim 6. $d(x_1, S_1) = 3$ and $d(x_1, S_1) = 3$.

Proof It suffices to prove $d(x_1,S_1) \leq 3$. Otherwise, suppose $d(x_1,S_1)=4$. By Claim 5, $S_1 \cong D$ and $N(x_f,S_1)=\{a_1,b_1\}$. Now denote $P_1=c_1x_1\dots x_{f-1}$ and $G_1=G[V(S_1\cup P)]$. Since $a_1b_1d_1a_1$ is a triangle, we obtain $d(c_1,P_1)+d(x_{f-1},P_1)\leq f-1$ by applying Lemma 2.3 and the assumption that Theorem 1.4 is false. Note that $x_{f-1}c_1\notin E(G)$ and $x_{f-1}d_1\notin E(G)$. As $S_1\cong D$, we obtain $d(x_{f-1},G_1)+d(c_1,G_1)\leq f+4$. Consequently, it follows that

$$e(\{c_1, x_{f-1}, x_1, x_f\}, H - S_1) \ge 2(n+k) - (2f+9) = 10(k-1) + 1.$$
 (4)

Then there exists $S_i \in H - S_1$, say S_2 , such that $e(\{c_1, x_{f-1}, x_1, x_f\}, S_2) \ge 11$. In view of the existence of S_1 and $x_f a_1 d_1 b_1 x_f$, we may assume that $e(\{x_1, x_f\}, S_2) \ge e(\{c_1, x_{f-1}\}, S_2)$. Then $e(\{x_1, x_f\}, S_2) \ge 6$. By Claim 4, we obtain $e(\{x_1, x_f\}, S_2) = 6$ and so $e(\{c_1, x_{f-1}\}, S_2) \ge 5$.

Suppose that $d(x_1,S_2)=4$. By Claim 5, it turns out that $S_2\cong D$, $N(x_f,S_2)=\{a_2,b_2\}$. If $x_{f-1}c_2\in E(G)$, then $G[V(G_1\cup S_2)]$ can be partitioned into $S_1,S_2-c_2+x_f$ and $x_1c_2x_{f-1}\dots x_1$, a contradiction. Hence, $x_{f-1}c_2\notin E(G)$. By the symmetric role of c_2 and d_2 , $x_{f-1}d_2\notin E(G)$. As $e(\{c_1,x_{f-1}\},S_2)\geq 5$, we may assume that $x_{f-1}a_2\in E(G)$ by symmetry. Then at lest one of c_2 and d_2 is not neighbor of c_1 , otherwise, $G[V(G_1\cup S_2)]$ can be partitioned into $c_1c_2b_2d_2c_1$, $x_fb_1d_1a_1x_f$ and $x_1a_2x_{f-1}\dots x_1$, a contradiction. Without loss of generality, say $c_1d_2\notin E(G)$. Then it follows that $N(c_1,S_2)=\{a_2,b_2,c_2\}$ and $N(x_{f-1},S_2)=\{a_2,b_2\}$. However, we see that $G[V(G_1\cup S_2)]$ can be partitioned into $c_1c_2b_2c_1$, $S_1-c_1+x_f$ and $x_1d_2a_2x_{f-1}\dots x_1$ such that $c_1c_2b_2c_1$ is a triangle, a contradiction again. Consequently, $d(x_1,S_2)\leq 3$ and so $d(x_f,S_2)\leq 3$ by symmetry. Then it follows from $e(\{x_1,x_f\},S_2)=6$ that $d(x_f,S_2)=d(x_1,S_2)=3$.

Suppose $N(x_f, S_2) \neq N(x_1, S_2)$. Note that $N(x_f, S_2) \cap N(x_1, S_2) \neq \emptyset$, then $S_2 \cong D$ by our assumption that Theorem 1.4 is false. We divide the proof into two cases by symmetry.

Case a.
$$N(x_1, S_2) = \{a_2, b_2, d_2\}.$$

By our assumption, $x_fc_2 \in E(G)$. However, if we replace S_2 and P with $S_2-c_2+x_1 \cong K_4$ and $P-x_1+c_2$, respectively, then $S_2 \cong K_4$ by our choice (3), which contradicts the fact that $S_2 \cong D$.

Case b.
$$N(x_1, S_2) = \{d_2, b_2, c_2\}.$$

By our assumption, $x_fa_2 \in E(G)$. We have $x_fc_2 \in E(G)$, for otherwise, $\{x_fb_2, x_fd_2\} \subseteq E(G)$. If we replace S_2 and P with the subgraph $G[\{x_f, a_2, b_2, d_2\}]$ and $P - x_f + c_2$, respectively, we obtain $S_2 \cong K_4$ by (3), which contradicts the fact $S_2 \cong D$ again. Consequently, $x_1c_2x_f \dots x_1$, $S_2 - c_2$ and S_1 is a partition of $G[V(G_1 \cup S_2)]$.

Hence, $N(x_f, S_2) = N(x_1, S_2)$. Since $S_2 \cong D$, we may assume that $d_2 \in N(x_1, S_2) \cap N(x_f, S_2)$ by the symmetry role of d_2 and d_2 . Then, $d_2 = d_2 = 1$ and $d_3 = 1$ is a desired partition of $G[V(G_1 \cup S_2)]$. This completes the proof for Claim 6. \square

Claim 7.
$$N(x_1, S_1) = N(x_f, S_1)$$
.

Proof By contradiction, suppose $N(x_f, S_1) \neq N(x_1, S_1)$. By Claim 6, $d(x_1, S_1) = d(x_f, S_1) = 3$. If $N(x_1, S_1) = \{a_1, b_1, c_1\}$, then we have $x_f d_1 \in E(G)$. Clearly, $G[\{a_1, b_1, c_1, x_1\}] \supseteq S_1' \cong K_4$. If we replace S_1 and P with S_1' and $P - x_1 + d_1$, respectively, we obtain $S_1 \cong K_4$ by (3). As $d(x_f, S_1) = 3$, we may assume that $b_1x_f \in E(G)$. Consequently, G_1 can be partitioned into two disjoint cycles $S_1 - b_1$ and $x_1b_1x_f \dots x_1$. Therefore, by symmetry, it suffices to consider the case $\{d_1, b_1, c_1\} = N(x_1, S_1)$. Then by our assumption, $x_f a_1 \in E(G)$. We must have $x_f d_1 \notin E(G)$, for otherwise, $S_1 - d_1$ and $x_1d_1x_f \dots x_1$ is a partition of G_1 . Consequently, $V(S_1) - \{d_1\} = N(x_f, S_1)$. It is easy to see that $S_1 \cong D$. However, if we replace S_1 and P with $S_1 - d_1 + x_f$ and $P - x_f + d_1$, respectively, we see that $S_2 \cong K_4$ by (3), a contradiction. \square

Now we are in the position to complete Theorem 1.4. According to Claim 7, we know $N(x_1,S_1)=N(x_f,S_1)$. Therefore, we may assume that $d_1\in N(x_1,S_1)\cap N(x_f,S_1)$ by Claim 6. Consequently, S_1-d_1 and $x_1d_1x_f\ldots x_1$ is a desired partition of G_1 , and so G contains a 2-factor with k+1 disjoint cycles S_1-d_1,S_2,\ldots,S_k and $x_1d_1x_f\ldots x_1$, a final contradiction. This completes the proof of Theorem 1.4.

Acknowledgments

The authors would like to thank the referees for their extremely careful reading of the paper, and their detailed corrections and helpful suggestions.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam 1976.
- [2] J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
- [3] H. Enomoto, Graph partition problems into cycles and paths, Discrete Math. 233 (2001) 93-101.
- [4] J. Yan, Disjoint triangles and quadrilaterals in a graph, Discrete Math. 308 (2008) 3930-3937.
- [5] H. Wang, Covering a Graph with Cycles, J. Graph Theory, 20 (1995) 203-211.
- [6] S. Fujita, Vertex-disjoint copies of K_4^- in graphs, Australasian Journal of Combinatorics, 31 (2005) 189-200.