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Abstract

Let k be a positive integer and G a graph with order n > 4k + 3. It
is proved that if the minimum degree sum of any two nonadjacent vertices
is at least n + k, then G contains a 2-factor with k + 1 disjoint cycles
C1,..., Cry1 such that C; are chorded quadrilateral for 1 < i < k — 1
and the length of Cy is at most 4.
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1 Terminology and Introduction

In this paper, we consider only finite undirected graphs without loops or multiple
edges and we use Bondy and Murty [1] for terminology and notation not defined
here. Let G = (V, E) be a graph, the order of G is |G| = |V| and its size is .
e(G) = |E|. A set of subgraphs is said to be vertex-disjoint or independent if
no two of them have common vertex in G, and we use disjoint or independent to
stand for vertex-disjoint throughout this paper. Let G, and G3 be two subgraphs
of G or subsets of V(G). If G, and G2 have no common vertex in G, we define
E(G4,G2) to be the set of edges of G between G, and G4, and let e(G1,Gp) =
|E(G1,G2)|. Let H be a subgraph of G and u € V(G) a vertex, N(u, H) is the
set of neighbors of u contained in H. We write d(u, H) = dg(u) = |N(u, H)|.
Clearly, d(u, G) is the degree of » in G, and we write d(z) to replace d(z, G).If
there is no fear of confusion, we often identify a subgraph H of G with its vertex
set V(H). For a subset U of V(G), we denote by G[U] the subgraph of G induced
by U and write dy(U) = 3__ ., du(z) for a subgraph H of G. Let C be a cycle,
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we use [(C) to denote the length of C. That is, {(C) = |C|. A Hamiltonian cycle
of G is a cycle which contains all vertices of G, and a Hamiltonian path of G
is a path of G which contains every vertex in G. A cycle of length 4 is called a
quadrilateral. For a noncomplete graph G, let 52(G) = min{d(z) + d(y)|zy ¢
E(G)}; if G is a complete graph, let 02(G) := co. Let D be the graph obtained
from K4 by removing exactly one edge.

In his very excellent paper [3], Enomoto proposed the following interesting
conjecture.

Conjecture 1.1 [3] Let s and k be two positive integers with1 < s < kand G
be graph with order n > 3s + 4(k — s) + 3. Suppose 02(G) > n+s. Then G
can be partitioned into k + 1 disjoint cycles Hy,...,Hyy1 satisfying |H;| = 3
forl<i<sand|H;|<4fors<i<k.

It is probably the first step to specify the length of [H;| fors < ¢ < kto
solve Enomoto’s Conjecture. The following result obtained by Yan stated that the
length of these cycles is four.

Theorem 1.2 [4] Let s and k be two positive integers with 1 < s < kand G
be graph with order n > 3s + 4(k — s) + 3. Suppose 02(G) 2 n + s. Then
G contains k disjoint cycles Hi, ..., Hy satisfying |H;| = 3 for1 < i < s for
1<i<sand|H;|=4fors<i<k.

Very recently, we improve the condition nn > 3s+4(k —s)+3 of Theorem 1.2
ton > 3s+4(k — s) + 1, and it seems that the following conjecture is the further
step to solve Enomoto’s Conjecture.

Conjecture 1.3 Let s and k be two positive integers with 1 < s < k and G be
graph with order n > 3s + 4(k — s) + 1. Suppose 02(G) = n + s. Then G
contains k disjoint cycles Hy, ..., Hy satisfying |H;| =3 for 1 £ i < sand H;
contains D as a spanning subgraph for s < i < k.

The main purpose of this paper is to prove the following theorem.

Theorem 1.4 Suppose G is a graph of order n > 4k + 3 with 02(G) 2 n + k.
Then G contains a 2-factor with k + 1 disjoint cycles Cy, .. ., Cky1 such that C;
are chorded quadrilateral for1 <i < k—1and l(Cy) < 4.

In the proof of Theorem 1.4, we make use of the following theorem which
solves the packing problem for D.

Theorem 1.5 [6] Let k be a positive integer and G a graph of order n > 4k + 1.
If02(G) > n + k, then G contains k disjoint D.
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2 Lemmas
In the following, G is a graph of order n > 3.

Lemma 2.1 [5] Let P = z1z2...Z,, be a path of G withm > 2 andy €
V(G) - V(P). Ifd(y, P) + d(zm, P) > m+ 1, then G has a path P' from z; to
y such that V(P') = V(P) U {y}.

Lemma 2.2 Let P = x, ...z, be a path withp > 1, M = y;2, be an edge and
S such that all of them are disjoint, where S is isomorphic to D or K. Suppose
e({z1,2,}UM, S) > 11, then G|V (M UPUS)] contains two disjoint subgraphs
S’ and P’ such that P' is a path of order p + 1, where S’ is isomorphic to D or
K,

Proof For convenience, we write V(S) = {a,b,c,d} so that ds(a) > ds(b) >
ds(c) > ds(d). Note that dg(a) = dg(b) = 3 and dg(c) = ds(d) > 2.

First suppose that P = z;. Then the condition implies that e(M, S) +
2d(z;,S) > 11. Since e(M,S) < 8, thus, d(z;,5) > 2. If d(z;1,5) = 4,
then e(M, S) = 0, so e(M, S) + 2d(z;,S) = 8 < 11, a contradiction. Hence,
d(z,,8) < 3. If d(z;,8) = 3, denote 8’ = G[N(z1,S5) U {z1}], we see that
G[V(M U P U S)] contains two required subgraphs S’ and P’ = y,2;. So,
it remains the case d(x;,S) = 2. Then we obtain e(M,S) > 7. By symme-
try, we may assume that d(y;,S) = 4 and d(2;,S) > 3. If az; ¢ E(G), then
Gl{1,21,b,d}] 2 D, which disjoints from the path P’ = ca. Consequently,
az; € E(G) and bz, € E(G) by symmetry. Furthermore, we may assume that
cz; € E(G) by symmetry. Then G[{y,a,d,b}] 2 D, which disjoints from the
path P = czy.

Hence, we may assume that the order of the path P is at least 2. Note that

11 < e({z1,z,} UM, S) = e({zp,11},5) + e({z1,21}, F),

and e({z,, 41}, S) < 8, we may assume that e({z,,y1}, S) > 6and then e({z1,21},5) >
3. Furthermore, we observe that e({z,,y1},S) < 6. Otherwise, it is easy to see

that G[V (M U S U P)] contains two required disjoint subgraphs. Then it follows

that e({zp,¥1},S) = 6 and e({z1,21},5) > 5. If d(y1,S) = 4, then we have
nothing to prove as d(z,,S) > 2. So, we assume 2 < d(y;,5) < 3 and then
d(z,,S) > 3.

Case 1. d(y1, S) = 3. Then d(z,, S) = 3.

Suppose that N(y1,S) = {a,b,c}. If z,d € E(G), then G[V(M U S U P))
contains two required subgraphs S’ = G[{y1, e, b, c}] and P’ = P+d. Therefore,
zpd ¢ E(G) and then {a,b,c} = N(zp,S). However, we observe N(z;,5) N
N(z1,8) = 0, which contradicts the fact that e({z1,2},S) > 5. Hence, by
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symmetry, we may assume that N(y1,5) = {d,b,c}. As G[{z1,d,b,c}] 2
D, z1a ¢ E(G) and z,a ¢ E(G). Then N(zp,S) = {d,b,c}. Note that
N(z1,S)NN(z1,8) C {b}, it follows from e({z,, 21}, S) > 5 that {z;b, z,b} C
E(G). Hence, G[V (M U S U P)] contains two required disjoint subgraphs S’ =
Gl{y1,z1,b,d}Jand P’ = P +c.

Case 2. d(y1,S) = 2. Thend(zp, S) = 4.

Suppose N(yi1,S) = {¢,d}. If d(21,8) > 3, then we have nothing to prove.
Hence, we may assume that d(z;,S) < 2 and so d(z,,S) > 3. By symme-
try, say cz; € E(G). Then G[V(M U S U P)] contains two required subgraphs
S' = G[{zp,a,b,d} and P’ = x,_;...z1cy;. Hence, by symmetry, we may
assume that N(y1,S) = {a,b} or N(31,5) = {c,a}. In both cases, since
Gl{y1,a,c,b}] 2 D, then we can choose P’ = P +d. The proof is complete. O

Lemma 2.3 [2] Let P = z1...xy be a path of G with k > 3. If d(z1, P) +
d(zx, P) > k, then G[V (P)) contains a cycle C such that V(C) = V.(P).

3 Proof of Theorem 1.4

Let G be a graph of order n > 4k + 3 with 02(G) > n + k. Suppose that
Theorem 1.4 is false. According to Theorem 1.5, G contains k vertex-disjoint
subgraphs Si, .. ., Sk such that S; is isomorphic D or K, foreachi € {1,...,k}.

We choose k disjoint Sy, ..., Sk in G such that

k
The length of a longest path in G — V(U S;) is maximized. 1)

i=1

Let P =z, - - -z, be alongest path of G — V(Uf__‘IC;). Subject to (1), we choose
k disjoint subgraphs Sj, ..., Sk and P in G such that

k
Size of the maximum matching in G — V(US,-) U V(P) is maximum. (2)

i=1

LetH = 5,5, F = G- V(H) and |F| = f. Clearly, f > 3asn > 4k +3.
Furthermore, let M = {4121, . .,¥r2-} be a maximum matching of F — V(P).
We suppose that I contains no hamiltonian cycle. Our proof includes several
claims. :

For convenience, for i = 1,...,k, we write V(S;) = {as, b, ci,d;} so that
ds,(a;) > ds,(b;) = ds; (ci) 2 ds; (d;). Note that dg, (a;)} = dg,(b;) = 3 and
ds, (C,) = ds-(d‘l) 22
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Claiml.p+2r > f— 1.

Proof On the contrary, suppose that p + 2r < f — 2. Let w; and w, be two non-
adjacent vertices in F'—V (P)UV (M) subject to (2). Then e({w1, w2}, yiz) < 2
foreachi € {1,2,...,7} by the maximality of M. We prove that e({w1,w.}, P) <
p. If p = 1, then by (2), we see that e({w1, w2}, P) = 0 < 1. Thus, it re-
mains the case that p > 2, by the maximality of P and Lemma 2.1, we see that
e({w1,ws}, P) < p. Thus, e({wy,ws}, F) < p+ 2r < f — 2. It follows that

e({"”l,'lﬂg},H) Zn+k~(f_2)=5k+2

This implies that there exists S; € H such that e({w;, w2}, S;) > 6. Without loss
of generality, say d(w,, S;) > d(ws, S;). Then d(w,, S;) > 3 and d(w2, S;) > 2.
We will show that G[V(S;) U {wy, w2}] contains a subgraph S! and an edge e
such that they are disjoint, where S; is isomorphic D or K.

If d(w, S;) = 4, it is obvious as d(ws, S;) > 2. So we may assume that
N(w,S;) = N(ws, S;) and d(wy, S;) = d(wp, S;) = 3. By symmetry, we may
assume that {d;, b;,c;} = N(wy, S;) or {a;, b;,¢;} = N(w,S;). In both cases,
we can choose S] = G[{wn, ¢;, w2, b;}] and e = a;d;.

In both cases, replace .S; with S; resulting a contradiction with the maximality
of M while (1) still holds. Thus,p+2r > f—1. O

Claim2.p > f - 1.

Proof By contradiction, suppose thatp < f—2. According to Claim 1, we see that
M # 0. Since P is a longest path in F, let R = {z1, zp, 41, 21 }. By the maximal-
ity of P and Lemma 2.1, we obtain e({z1,71}, P) < p and e({z,, 21}, P) < p.
Note thate({z,,x,}, F~V(P)) = 0, Thus, e(R, F) < 2p+2(f—p—1) = 2f-2.
As 21y, ¢ E(G) and z,z; ¢ E(G), we obtain

e(RH) > 2(n+k) — (2f — 2) = 10k + 2.

This implies that there exists some S; € H such that e(R, S;) > 11. By Lemma
2.2, G[V(S; U P) U {1, 21 }] contains a subgraph S! O D and a path P’ of
order p + 1 such that S; and P’ are disjoint. Replace S; with S/, we obtain a
contradiction with (I). Thus,p > f—-1. O

Claim 3. We can properly choose Sy, . .., Sk such that P is a hamiltonian path in
F,

Proof Otherwise, suppose p < f. By Claim2,p = f—1. Takey € V(F—P). By
Lemma 2.1, d(z,, P)+d(y, P) < p. So, d(z,, F)+d(y, F) < p+d(y, F~P) <
p+f—p—1= f~1 Itfollows that d(z,,H) + d(zp, H) + 2d(y, H) >
2(n+ k) — 2(f — 1) = 10k + 2. This implies that there exists S; € H such that
d(:l:l, S,) + d(:l:,,, S;) + 2d(y, S,) > 11.
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Now we will show that G[V/(S; U F)] can be partitioned into a subgraph
S; 2 D and P’ of order f such that they are disjoint, a contradiction. Clearly,
d(y,S:) = 2. fd(y,S;) = 4, as d(z1,5;) + d(z,5:) > 3, we may assume
that zz; € E(G) with z € V(S;). Then G[V(S; — 2) U {y}] 2 S; 2 D, which
disjoints the path P’ = P + z. Hence, we have d(y, S;) < 3 and so d(z,,S;) +
d(zp,S;) > 5. Without loss of generality, assume d(z1,.5;) > d(zp, S;). Then
d(xl, S,) > 3and d(:l:p, S,) > 1.

Subclaim 3.1. d(y, S;) < 2.

Otherwise, suppose d(y, S;) = 3. We observe that G[N(y, S;) U {y}] 2 D,
thus, it follows that N(y, S;) = N(z1,S;) and so d(zp, S;) > 2. If N(y, S;) =
{ai, bi, ¢}, then z,d; ¢ E(G). If a;z, € E(G), then we can choose S =
G[{y, bi,z1,¢:}] and P! = P — z, + a;d;. Hence, a;z, ¢ E(G) and so b;z,, ¢
E(G) by symmetry. It follows that d(zp, S;) < 1, a contradiction. Therefore,
by symmetry, we assume N(y,S;) = {d;, b;,¢;}. Clearly, z,c; ¢ E(G) and
zpd; ¢ E(G). Consequently, N(z,,S;) = {a;,b;}. Then we can choose S, =
G[{z1,bi,v,d;}] and P’ = P — x; + a;c; such that they are disjoint.

By Subclaim 3.1, we obtain d(y, S;) = 2and so d(z;, S;) = 4and d(zp, S;) >
3. Furthermore, we observe that N(y, S;) = {¢;,d;}. As d(zp, S;) > 3, by sym-
metry, we may assume that {a;, b;,c;} € N(zp, S;) or {ci, b, di} © N(zp,S;).
In both cases, we can choose S! = G[{z,,a:,b;,¢;}) and P/ = P — z, + d;y
such that S:» and P’ are disjoint. This completes the proof for Claim 3. O

By Claim 3, P = z; ...z is a Hamiltonian path in F. Subject to this fact,
we choose S, ..., Sk and P such that

k
Z |E(S;)| is maximized. 3

=1

Claim 4. For each 1 < i < k, d(z4, S;) + d(zy, S;) < 6.

Proof Otherwise, suppose d(z1,S1) + d(zs,S1) > 7. Then we may assume
that d(z;,S1) = 4 and d(zy,5;) > 3. By symmetry role of ¢; and d,, we
may assume that z;d; € E(G). Then G[V(S; U P)] can be partitioned into a
triangle a;b;c1a; and a cycle C' = zsdiz; ...z such that they are disjoint, a
contradiction. This completes the proof. O

Clearly, ;27 ¢ E(G). Applying Lemma 2.3 to P, d(z1, P) + d(z5, P) <
f — 1. Then d(z1,H) + d(z5,H) > n+ k — (f — 1) = 5k + 1. This im-
plies that there exists S; € H, say Sy, such that d(z,,5;) + d(z5,S1) = 6. By
Claim 4, d(z1, S1) + d(z, S1) = 6. Without loss of generality, we assume that
d(z1,81) > d(zy, S1) throughout the rest of this paper. Then d(z1, S1) > 3and
d(zs,S1) > 2.
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Claim 5. If d(x,, S1) = 4, then S} = D and N(zy,S;) = {a1,b1}.

Proof If 2yd; € E(G), then replace S; and P with G[{z,a1,b1,¢1}] and
P — 2y + dy, respectively, we see that S} = K by the choice of (3). Suppose
a1zy € E(G), then G[V(S; U P)] can be partitioned into a triangle a,b,d;a, and
acycle C' = zyc 1z ... zy such that they are disjoint, a contradiction. Therefore,
zycy ¢ E(G) and Sy = D. As d(zy,S)) > 2, it follows that N(zz,S;) =
{al,bl}. a

We derive the following claim to demonstrate the basic structure of the graph
G.

Claim 6. d(z,, ;) = 3 and d(z, $;) = 3.

Proof It suffices to prove d(z;, S;) < 3. Otherwise, suppose d(z1,51) = 4. By
Claim 5, $1 2 D and N(z7,8)) = {a1,b1}. Now denote P, = ¢121...25;
and G; = G[V(S; U P)). Since a1b1d;a, is a triangle, we obtain d(c;, Py) +
d(zs-1,P1) < f — 1 by applying Lemma 2.3 and the assumption that Theo-
rem 1.4 is false. Note that z;_1¢; ¢ E(G) and z5_1d; ¢ E(G). As S; & D,
we obtain d(zs_1,G1) + d(c1,G1) < f + 4. Consequently, it follows that

6({61,1‘]-1,2)1,18]},1{—3]) 22(n+k)-— (2f+9) = IO(k— 1)+1. “)

Then there exists S; € H — S, say S, such that e({c1, zf_1, 21,75}, S2) > 11.

In view of the existence of S; and zya;d1 b1z, we may assume that e({z, zs}, S2) >
e({c1,z5-1},82). Thene({z1,z}, S2) > 6. By Claim 4, we obtain e({z1,25},52) =
6 and so e({c1,z5-1}, S2) > 5.

Suppose that d(z}, S2) = 4. By Claim 5, it turns out that S 22 D, N(z4,Ss) =
{az,b2}. If £5_1co € E(G), then G[V(G1US2)] can be partitioned into S, So —
¢2 + z5 and zicozs_) ... T1, a contradiction. Hence, z5_1c0 ¢ E(G). By
the symmelric role of ¢z and dp, z5_1d2 ¢ E(G). As e({c1,z5-1},52) = 5,
we may assume that zy_jas € F(G) by symmetry. Then at lest one of ¢;
and d; is not neighbor of c;, otherwise, G[V (G, U S)] can be partitioned into
ciczbadacy, Tybidiayzy and z1a0zs-1 ... 21, a contradiction. Without loss of
generality, say c;do ¢ E(G). Then it follows that N(c;, S2) = {a2, b2, ¢z} and
N(zs-1,82) = {az, ba}. However, we see that G[V (G US,)] can be partitioned
into c1cabec1, S1—c1+xy and £1dagx s . .. 1 such that ¢; cobac; is a triangle,
acontradiction again. Consequently, d(z;, S2) < 3andsod(zy,S;) < 3 by sym-
metry. Then it follows from e({z1, 2y}, S2) = 6 that d(z s, S2) = d(z1,S2) = 3.

Suppose N(zy,S2) # N(z1,S52). Note that N(zy,S2) N N(z1,S:) # 0,
then S; = D by our assumption that Theorem 1.4 is false. We divide the proof
into two cases by symmetry.
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Case a. N(xhsz) = {a‘21b2:d2}’

By our assumption, zsc; € E(G). However, if we replace S; and P with
So—co+1) = K4 and P — 1z 4 co, respectively, then S = K4 by our choice (3),
which contradicts the fact that Sy = D.

Case b. N(SEI,SQ) = {dz,bg,Cz}.

By our assumplion, zyay € E(G). We have z5co € E(G), for otherwise,
{zsb2,zsd2} C E(G). If we replace S; and P with the subgraph G[{z, a2, b2, d2}]
and P — z5 + c3, respectively, we obtain S; & K4 by (3), which contradicts the
fact S2 & D again. Consequently, z1¢2% . .. 21, S2 — ¢2 and S is a partition of
G[V(G] U Sg)l

Hence, N(zy, S2) = N(z1,S52). Since S; = D, we may assume that dp €
N(z1,S2) N N(z, S2) by the symmetry role of da and cz. Then, z1d2zy ... 21,
Sy —dp and S} is a desired partition of G[V (G U S3)|. This completes the proof
forClaim6. O

Claim 7. N(z1, 1) = N(zy,51).

Proof By contradiction, suppose N(zy, S1) # N(z1,S1). By Claim 6, d(z1,51) =
d(zs,S1) = 3.If N(z1,51) = {a1,b1,¢1}, then we have zydy € E(G). Clearly,
Gl{a1,b1,¢1,71}] 2 S} = K4. If we replace Sy and P with S} and P — 1 +dj,
respectively, we obtain S; & K, by (3). As d(zy,S1) = 3, we may assume
that byz; € E(G). Consequently, G, can be partitioned into two disjoint cycles
Sy — by and z1by 7 ... z1. Therefore, by symmetry, it suffices to consider the
case {dy,b1,c1} = N(z1, S1). Then by our assumption, zra; € E(G). We must
have z;d, ¢ E(G), for otherwise, S1 — d; and z1d1zy ... 21 is a partition of
G,. Consequently, V(S1) — {d1} = N(zy,S1). Itis easy to see that 5; = D.
However, if we replace S and P with Sy —dy +z s and P— x5 +d, respectively,
we see that Sy = I, by (3), a contradiction. O

Now we are in the position to complete Theorem 1.4. According to Claim
7, we know N(z;,S1) = N(zy,S:). Therefore, we may assume that d; €
N(z1,51) N N(zy, S1) by Claim 6. Consequently, S — dy and z1dyz5 ... 7y is
a desired partition of G, and so G contains a 2-factor with k + 1 disjoint cycles
Sy —d1,8s,...,S; and z1dyf . .. T1, a final contradiction. This completes the
proof of Theorem 1.4.
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