On 2-Factors with Chorded Quadrilaterals in Graphs* Yunshu Gao[†] Jin Yan[‡] Guojun Li[§] #### Abstract Let k be a positive integer and G a graph with order $n \geq 4k + 3$. It is proved that if the minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a 2-factor with k + 1 disjoint cycles C_1, \ldots, C_{k+1} such that C_i are chorded quadrilateral for $1 \leq i \leq k-1$ and the length of C_k is at most 4. Key words: Degree condition; Vertex-disjoint; Disjoint cycle. AMS subject classification: 05C35, 05C38. ## 1 Terminology and Introduction In this paper, we consider only finite undirected graphs without loops or multiple edges and we use Bondy and Murty [1] for terminology and notation not defined here. Let G=(V,E) be a graph, the order of G is |G|=|V| and its size is e(G)=|E|. A set of subgraphs is said to be vertex-disjoint or independent if no two of them have common vertex in G, and we use disjoint or independent to stand for vertex-disjoint throughout this paper. Let G_1 and G_2 be two subgraphs of G or subsets of V(G). If G_1 and G_2 have no common vertex in G, we define $E(G_1,G_2)$ to be the set of edges of G between G_1 and G_2 , and let $e(G_1,G_2)=|E(G_1,G_2)|$. Let G_1 be a subgraph of G_1 and G_2 and G_3 and let G_4 and G_5 is the set of neighbors of G_4 contained in G_4 . We write G_4 to replace G_4 for G_4 is the degree of G_4 in G_4 and we write G_4 to replace G_4 for a subset G_4 for a subgraph G_4 for a subgraph of G_4 induced by G_4 and write G_4 for a subgraph ^{*}This work is supported by research grants from Ningxia University under grant number: (E)ndzr09-1 and Scientific research project in Xinjiang under grant number: XJEDU2009S101. [†]School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, P. R. China, E-mail: gysh2004@mail.sdu.edu.cn. [‡]School of Mathematics, Shandong University, Jinan, 250100, People's Republic of China [§]School of Mathematics, Shandong University, Jinan, 250100, People's Republic of China we use l(C) to denote the length of C. That is, l(C) = |C|. A Hamiltonian cycle of G is a cycle which contains all vertices of G, and a Hamiltonian path of G is a path of G which contains every vertex in G. A cycle of length 4 is called a quadrilateral. For a noncomplete graph G, let $\sigma_2(G) = \min\{d(x) + d(y)|xy \notin E(G)\}$; if G is a complete graph, let $\sigma_2(G) := \infty$. Let D be the graph obtained from K_4 by removing exactly one edge. In his very excellent paper [3], Enomoto proposed the following interesting conjecture. **Conjecture 1.1** [3] Let s and k be two positive integers with $1 \le s \le k$ and G be graph with order $n \ge 3s + 4(k - s) + 3$. Suppose $\sigma_2(G) \ge n + s$. Then G can be partitioned into k + 1 disjoint cycles H_1, \ldots, H_{k+1} satisfying $|H_i| = 3$ for $1 \le i \le s$ and $|H_i| \le 4$ for $s < i \le k$. It is probably the first step to specify the length of $|H_i|$ for $s < i \le k$ to solve Enomoto's Conjecture. The following result obtained by Yan stated that the length of these cycles is four. **Theorem 1.2** [4] Let s and k be two positive integers with $1 \le s \le k$ and G be graph with order $n \ge 3s + 4(k - s) + 3$. Suppose $\sigma_2(G) \ge n + s$. Then G contains k disjoint cycles H_1, \ldots, H_k satisfying $|H_i| = 3$ for $1 \le i \le s$ for $1 \le i \le s$ and $|H_i| = 4$ for $s < i \le k$. Very recently, we improve the condition $n \ge 3s + 4(k-s) + 3$ of Theorem 1.2 to $n \ge 3s + 4(k-s) + 1$, and it seems that the following conjecture is the further step to solve Enomoto's Conjecture. Conjecture 1.3 Let s and k be two positive integers with $1 \le s \le k$ and G be graph with order $n \ge 3s + 4(k - s) + 1$. Suppose $\sigma_2(G) \ge n + s$. Then G contains k disjoint cycles H_1, \ldots, H_k satisfying $|H_i| = 3$ for $1 \le i \le s$ and H_i contains D as a spanning subgraph for $s < i \le k$. The main purpose of this paper is to prove the following theorem. **Theorem 1.4** Suppose G is a graph of order $n \geq 4k + 3$ with $\sigma_2(G) \geq n + k$. Then G contains a 2-factor with k + 1 disjoint cycles C_1, \ldots, C_{k+1} such that C_i are chorded quadrilateral for $1 \leq i \leq k-1$ and $l(C_k) \leq 4$. In the proof of Theorem 1.4, we make use of the following theorem which solves the packing problem for D. **Theorem 1.5** [6] Let k be a positive integer and G a graph of order $n \ge 4k + 1$. If $\sigma_2(G) \ge n + k$, then G contains k disjoint D. #### 2 Lemmas In the following, G is a graph of order $n \geq 3$. **Lemma 2.1** [5] Let $P = x_1x_2...x_m$ be a path of G with $m \ge 2$ and $y \in V(G) - V(P)$. If $d(y, P) + d(x_m, P) \ge m + 1$, then G has a path P' from x_1 to y such that $V(P') = V(P) \cup \{y\}$. **Lemma 2.2** Let $P = x_1 \dots x_p$ be a path with $p \ge 1$, $M = y_1 z_1$ be an edge and S such that all of them are disjoint, where S is isomorphic to D or K_4 . Suppose $e(\{x_1, x_p\} \cup M, S) \ge 11$, then $G[V(M \cup P \cup S)]$ contains two disjoint subgraphs S' and P' such that P' is a path of order p + 1, where S' is isomorphic to D or K_4 . **Proof** For convenience, we write $V(S) = \{a, b, c, d\}$ so that $d_S(a) \ge d_S(b) \ge d_S(c) \ge d_S(d)$. Note that $d_S(a) = d_S(b) = 3$ and $d_S(c) = d_S(d) \ge 2$. First suppose that $P=x_1$. Then the condition implies that $e(M,S)+2d(x_1,S)\geq 11$. Since $e(M,S)\leq 8$, thus, $d(x_1,S)\geq 2$. If $d(x_1,S)=4$, then e(M,S)=0, so $e(M,S)+2d(x_1,S)=8<11$, a contradiction. Hence, $d(x_1,S)\leq 3$. If $d(x_1,S)=3$, denote $S'=G[N(x_1,S)\cup \{x_1\}]$, we see that $G[V(M\cup P\cup S)]$ contains two required subgraphs S' and $P'=y_1z_1$. So, it remains the case $d(x_1,S)=2$. Then we obtain $e(M,S)\geq 7$. By symmetry, we may assume that $d(y_1,S)=4$ and $d(z_1,S)\geq 3$. If $az_1\notin E(G)$, then $G[\{y_1,z_1,b,d\}]\supseteq D$, which disjoints from the path P'=ca. Consequently, $az_1\in E(G)$ and $bz_1\in E(G)$ by symmetry. Furthermore, we may assume that $cz_1\in E(G)$ by symmetry. Then $G[\{y,a,d,b\}]\supseteq D$, which disjoints from the path $P'=cz_1$. Hence, we may assume that the order of the path P is at least 2. Note that $$11 \le e(\{x_1, x_p\} \cup M, S) = e(\{x_p, y_1\}, S) + e(\{x_1, z_1\}, S),$$ and $e(\{x_p,y_1\},S)\leq 8$, we may assume that $e(\{x_p,y_1\},S)\geq 6$ and then $e(\{x_1,z_1\},S)\geq 3$. Furthermore, we observe that $e(\{x_p,y_1\},S)\leq 6$. Otherwise, it is easy to see that $G[V(M\cup S\cup P)]$ contains two required disjoint subgraphs. Then it follows that $e(\{x_p,y_1\},S)=6$ and $e(\{x_1,z_1\},S)\geq 5$. If $d(y_1,S)=4$, then we have nothing to prove as $d(x_p,S)\geq 2$. So, we assume $2\leq d(y_1,S)\leq 3$ and then $d(x_p,S)\geq 3$. Case 1. $d(y_1, S) = 3$. Then $d(x_p, S) = 3$. Suppose that $N(y_1,S)=\{a,b,c\}$. If $x_pd\in E(G)$, then $G[V(M\cup S\cup P)]$ contains two required subgraphs $S'=G[\{y_1,a,b,c\}]$ and P'=P+d. Therefore, $x_pd\notin E(G)$ and then $\{a,b,c\}=N(x_p,S)$. However, we observe $N(z_1,S)\cap N(x_1,S)=\emptyset$, which contradicts the fact that $e(\{x_1,z_1\},S)\geq 5$. Hence, by symmetry, we may assume that $N(y_1,S) = \{d,b,c\}$. As $G[\{y_1,d,b,c\}] \supseteq D$, $x_1a \notin E(G)$ and $x_pa \notin E(G)$. Then $N(x_p,S) = \{d,b,c\}$. Note that $N(x_1,S) \cap N(z_1,S) \subseteq \{b\}$, it follows from $e(\{x_1,z_1\},S) \ge 5$ that $\{z_1b,x_1b\} \subseteq E(G)$. Hence, $G[V(M \cup S \cup P)]$ contains two required disjoint subgraphs $S' = G[\{y_1,z_1,b,d\}]$ and P' = P + c. Case 2. $d(y_1, S) = 2$. Then $d(x_p, S) = 4$. Suppose $N(y_1,S)=\{c,d\}$. If $d(z_1,S)\geq 3$, then we have nothing to prove. Hence, we may assume that $d(z_1,S)\leq 2$ and so $d(x_1,S)\geq 3$. By symmetry, say $cx_1\in E(G)$. Then $G[V(M\cup S\cup P)]$ contains two required subgraphs $S'=G[\{x_p,a,b,d\}$ and $P'=x_{p-1}\dots x_1cy_1$. Hence, by symmetry, we may assume that $N(y_1,S)=\{a,b\}$ or $N(y_1,S)=\{c,a\}$. In both cases, since $G[\{y_1,a,c,b\}]\supseteq D$, then we can choose P'=P+d. The proof is complete. \square **Lemma 2.3** [2] Let $P = x_1 \dots x_k$ be a path of G with $k \geq 3$. If $d(x_1, P) + d(x_k, P) \geq k$, then G[V(P)] contains a cycle C such that V(C) = V(P). #### 3 Proof of Theorem 1.4 Let G be a graph of order $n \geq 4k+3$ with $\sigma_2(G) \geq n+k$. Suppose that Theorem 1.4 is false. According to Theorem 1.5, G contains k vertex-disjoint subgraphs S_1, \ldots, S_k such that S_i is isomorphic D or K_4 for each $i \in \{1, \ldots, k\}$. We choose k disjoint S_1, \ldots, S_k in G such that The length of a longest path in $$G - V(\bigcup_{i=1}^{k} S_i)$$ is maximized. (1) Let $P = x_1 \cdots x_p$ be a longest path of $G - V(\bigcup_{i=1}^k C_i)$. Subject to (1), we choose k disjoint subgraphs S_1, \ldots, S_k and P in G such that Size of the maximum matching in $$G - V(\bigcup_{i=1}^k S_i) \cup V(P)$$ is maximum. (2) Let $H = \bigcup_{i=1}^k S_i$, F = G - V(H) and |F| = f. Clearly, $f \ge 3$ as $n \ge 4k + 3$. Furthermore, let $M = \{y_1 z_1, \ldots, y_r z_r\}$ be a maximum matching of F - V(P). We suppose that F contains no hamiltonian cycle. Our proof includes several claims. For convenience, for $i=1,\ldots,k$, we write $V(S_i)=\{a_i,b_i,c_i,d_i\}$ so that $d_{S_i}(a_i)\geq d_{S_i}(b_i)\geq d_{S_i}(c_i)\geq d_{S_i}(d_i)$. Note that $d_{S_i}(a_i)=d_{S_i}(b_i)=3$ and $d_{S_i}(c_i)=d_{S_i}(d_i)\geq 2$. Claim 1. $p + 2r \ge f - 1$. **Proof** On the contrary, suppose that $p+2r \leq f-2$. Let w_1 and w_2 be two non-adjacent vertices in $F-V(P)\cup V(M)$ subject to (2). Then $e(\{w_1,w_2\},y_iz_i)\leq 2$ for each $i\in\{1,2,\ldots,r\}$ by the maximality of M. We prove that $e(\{w_1,w_2\},P)\leq p$. If p=1, then by (2), we see that $e(\{w_1,w_2\},P)=0<1$. Thus, it remains the case that $p\geq 2$, by the maximality of P and Lemma 2.1, we see that $e(\{w_1,w_2\},P)\leq p$. Thus, $e(\{w_1,w_2\},F)\leq p+2r\leq f-2$. It follows that $$e(\{w_1, w_2\}, H) \ge n + k - (f - 2) = 5k + 2.$$ This implies that there exists $S_i \in H$ such that $e(\{w_1, w_2\}, S_i) \geq 6$. Without loss of generality, say $d(w_1, S_i) \geq d(w_2, S_i)$. Then $d(w_1, S_i) \geq 3$ and $d(w_2, S_i) \geq 2$. We will show that $G[V(S_i) \cup \{w_1, w_2\}]$ contains a subgraph S_i' and an edge e such that they are disjoint, where S_i' is isomorphic D or K_4 . If $d(w_1,S_i)=4$, it is obvious as $d(w_2,S_i)\geq 2$. So we may assume that $N(w_1,S_i)=N(w_2,S_i)$ and $d(w_1,S_i)=d(w_2,S_i)=3$. By symmetry, we may assume that $\{d_i,b_i,c_i\}=N(w_1,S_i)$ or $\{a_i,b_i,c_i\}=N(w_1,S_i)$. In both cases, we can choose $S_i'=G[\{w_1,c_i,w_2,b_i\}]$ and $e=a_id_i$. In both cases, replace S_i with S_i' resulting a contradiction with the maximality of M while (1) still holds. Thus, $p+2r \geq f-1$. \square **Claim 2.** $p \ge f - 1$. **Proof** By contradiction, suppose that $p \leq f-2$. According to Claim 1, we see that $M \neq \emptyset$. Since P is a longest path in F, let $R = \{x_1, x_p, y_1, z_1\}$. By the maximality of P and Lemma 2.1, we obtain $e(\{x_1, y_1\}, P) \leq p$ and $e(\{x_p, z_1\}, P) \leq p$. Note that $e(\{x_1, x_p\}, F-V(P)) = 0$, Thus, $e(R, F) \leq 2p+2(f-p-1) = 2f-2$. As $x_1y_1 \notin E(G)$ and $x_pz_1 \notin E(G)$, we obtain $$e(R, H) \ge 2(n+k) - (2f-2) = 10k + 2.$$ This implies that there exists some $S_i \in H$ such that $e(R, S_i) \geq 11$. By Lemma 2.2, $G[V(S_i \cup P) \cup \{y_1, z_1\}]$ contains a subgraph $S_i' \supseteq D$ and a path P' of order p+1 such that S_i' and P' are disjoint. Replace S_i with S_i' , we obtain a contradiction with (1). Thus, $p \geq f-1$. \square Claim 3. We can properly choose S_1, \ldots, S_k such that P is a hamiltonian path in F. **Proof** Otherwise, suppose p < f. By Claim 2, p = f - 1. Take $y \in V(F - P)$. By Lemma 2.1, $d(x_p, P) + d(y, P) \le p$. So, $d(x_p, F) + d(y, F) \le p + d(y, F - P) \le p + f - p - 1 = f - 1$. It follows that $d(x_1, H) + d(x_p, H) + 2d(y, H) \ge 2(n + k) - 2(f - 1) = 10k + 2$. This implies that there exists $S_i \in H$ such that $d(x_1, S_i) + d(x_p, S_i) + 2d(y, S_i) \ge 11$. Now we will show that $G[V(S_i \cup F)]$ can be partitioned into a subgraph $S_i' \supseteq D$ and P' of order f such that they are disjoint, a contradiction. Clearly, $d(y,S_i) \ge 2$. If $d(y,S_i) = 4$, as $d(x_1,S_i) + d(x_p,S_i) \ge 3$, we may assume that $zx_1 \in E(G)$ with $z \in V(S_i)$. Then $G[V(S_i-z) \cup \{y\}] \supseteq S_i' \supseteq D$, which disjoints the path P' = P + z. Hence, we have $d(y,S_i) \le 3$ and so $d(x_1,S_i) + d(x_p,S_i) \ge 5$. Without loss of generality, assume $d(x_1,S_i) \ge d(x_p,S_i)$. Then $d(x_1,S_i) \ge 3$ and $d(x_p,S_i) \ge 1$. ### Subclaim 3.1. $d(y, S_i) \leq 2$. Otherwise, suppose $d(y,S_i)=3$. We observe that $G[N(y,S_i)\cup\{y\}]\supseteq D$, thus, it follows that $N(y,S_i)=N(x_1,S_i)$ and so $d(x_p,S_i)\ge 2$. If $N(y,S_i)=\{a_i,b_i,c_i\}$, then $x_pd_i\notin E(G)$. If $a_ix_p\in E(G)$, then we can choose $S_i'=G[\{y,b_i,x_1,c_i\}]$ and $P'=P-x_1+a_id_i$. Hence, $a_ix_p\notin E(G)$ and so $b_ix_p\notin E(G)$ by symmetry. It follows that $d(x_p,S_i)\le 1$, a contradiction. Therefore, by symmetry, we assume $N(y,S_i)=\{d_i,b_i,c_i\}$. Clearly, $x_pc_i\notin E(G)$ and $x_pd_i\notin E(G)$. Consequently, $N(x_p,S_i)=\{a_i,b_i\}$. Then we can choose $S_i'=G[\{x_1,b_i,y,d_i\}]$ and $P'=P-x_1+a_ic_i$ such that they are disjoint. By Subclaim 3.1, we obtain $d(y,S_i)=2$ and so $d(x_1,S_i)=4$ and $d(x_p,S_i)\geq 3$. Furthermore, we observe that $N(y,S_i)=\{c_i,d_i\}$. As $d(x_p,S_i)\geq 3$, by symmetry, we may assume that $\{a_i,b_i,c_i\}\subseteq N(x_p,S_i)$ or $\{c_i,b_i,d_i\}\subseteq N(x_p,S_i)$. In both cases, we can choose $S_i'=G[\{x_p,a_i,b_i,c_i\}]$ and $P'=P-x_p+d_iy$ such that S_i' and P' are disjoint. This completes the proof for Claim 3. \square By Claim 3, $P = x_1 \dots x_f$ is a Hamiltonian path in F. Subject to this fact, we choose S_1, \dots, S_k and P such that $$\sum_{i=1}^{k} |E(S_i)| \text{ is maximized.}$$ (3) **Claim 4.** For each $1 \le i \le k$, $d(x_1, S_i) + d(x_f, S_i) \le 6$. **Proof** Otherwise, suppose $d(x_1,S_1)+d(x_f,S_1)\geq 7$. Then we may assume that $d(x_1,S_1)=4$ and $d(x_f,S_1)\geq 3$. By symmetry role of c_1 and d_1 , we may assume that $x_fd_1\in E(G)$. Then $G[V(S_1\cup P)]$ can be partitioned into a triangle $a_1b_1c_1a_1$ and a cycle $C'=x_fd_1x_1\ldots x_f$ such that they are disjoint, a contradiction. This completes the proof. \square Clearly, $x_1x_f \notin E(G)$. Applying Lemma 2.3 to P, $d(x_1,P)+d(x_f,P) \le f-1$. Then $d(x_1,H)+d(x_f,H) \ge n+k-(f-1)=5k+1$. This implies that there exists $S_i \in H$, say S_1 , such that $d(x_1,S_1)+d(x_f,S_1) \ge 6$. By Claim 4, $d(x_1,S_1)+d(x_f,S_1)=6$. Without loss of generality, we assume that $d(x_1,S_1) \ge d(x_f,S_1)$ throughout the rest of this paper. Then $d(x_1,S_1) \ge 3$ and $d(x_f,S_1) \ge 2$. **Claim 5.** If $d(x_1, S_1) = 4$, then $S_1 \cong D$ and $N(x_f, S_1) = \{a_1, b_1\}$. **Proof** If $x_fd_1 \in E(G)$, then replace S_1 and P with $G[\{x_1,a_1,b_1,c_1\}]$ and $P-x_1+d_1$, respectively, we see that $S_1 \cong K_4$ by the choice of (3). Suppose $c_1x_f \in E(G)$, then $G[V(S_1 \cup P)]$ can be partitioned into a triangle $a_1b_1d_1a_1$ and a cycle $C'=x_fc_1x_1\ldots x_f$ such that they are disjoint, a contradiction. Therefore, $x_fc_1 \notin E(G)$ and $S_1 \cong D$. As $d(x_f,S_1) \geq 2$, it follows that $N(x_f,S_1) = \{a_1,b_1\}$. \square We derive the following claim to demonstrate the basic structure of the graph G. **Claim 6.** $d(x_1, S_1) = 3$ and $d(x_1, S_1) = 3$. **Proof** It suffices to prove $d(x_1,S_1) \leq 3$. Otherwise, suppose $d(x_1,S_1)=4$. By Claim 5, $S_1 \cong D$ and $N(x_f,S_1)=\{a_1,b_1\}$. Now denote $P_1=c_1x_1\dots x_{f-1}$ and $G_1=G[V(S_1\cup P)]$. Since $a_1b_1d_1a_1$ is a triangle, we obtain $d(c_1,P_1)+d(x_{f-1},P_1)\leq f-1$ by applying Lemma 2.3 and the assumption that Theorem 1.4 is false. Note that $x_{f-1}c_1\notin E(G)$ and $x_{f-1}d_1\notin E(G)$. As $S_1\cong D$, we obtain $d(x_{f-1},G_1)+d(c_1,G_1)\leq f+4$. Consequently, it follows that $$e(\{c_1, x_{f-1}, x_1, x_f\}, H - S_1) \ge 2(n+k) - (2f+9) = 10(k-1) + 1.$$ (4) Then there exists $S_i \in H - S_1$, say S_2 , such that $e(\{c_1, x_{f-1}, x_1, x_f\}, S_2) \ge 11$. In view of the existence of S_1 and $x_f a_1 d_1 b_1 x_f$, we may assume that $e(\{x_1, x_f\}, S_2) \ge e(\{c_1, x_{f-1}\}, S_2)$. Then $e(\{x_1, x_f\}, S_2) \ge 6$. By Claim 4, we obtain $e(\{x_1, x_f\}, S_2) = 6$ and so $e(\{c_1, x_{f-1}\}, S_2) \ge 5$. Suppose that $d(x_1,S_2)=4$. By Claim 5, it turns out that $S_2\cong D$, $N(x_f,S_2)=\{a_2,b_2\}$. If $x_{f-1}c_2\in E(G)$, then $G[V(G_1\cup S_2)]$ can be partitioned into $S_1,S_2-c_2+x_f$ and $x_1c_2x_{f-1}\dots x_1$, a contradiction. Hence, $x_{f-1}c_2\notin E(G)$. By the symmetric role of c_2 and d_2 , $x_{f-1}d_2\notin E(G)$. As $e(\{c_1,x_{f-1}\},S_2)\geq 5$, we may assume that $x_{f-1}a_2\in E(G)$ by symmetry. Then at lest one of c_2 and d_2 is not neighbor of c_1 , otherwise, $G[V(G_1\cup S_2)]$ can be partitioned into $c_1c_2b_2d_2c_1$, $x_fb_1d_1a_1x_f$ and $x_1a_2x_{f-1}\dots x_1$, a contradiction. Without loss of generality, say $c_1d_2\notin E(G)$. Then it follows that $N(c_1,S_2)=\{a_2,b_2,c_2\}$ and $N(x_{f-1},S_2)=\{a_2,b_2\}$. However, we see that $G[V(G_1\cup S_2)]$ can be partitioned into $c_1c_2b_2c_1$, $S_1-c_1+x_f$ and $x_1d_2a_2x_{f-1}\dots x_1$ such that $c_1c_2b_2c_1$ is a triangle, a contradiction again. Consequently, $d(x_1,S_2)\leq 3$ and so $d(x_f,S_2)\leq 3$ by symmetry. Then it follows from $e(\{x_1,x_f\},S_2)=6$ that $d(x_f,S_2)=d(x_1,S_2)=3$. Suppose $N(x_f, S_2) \neq N(x_1, S_2)$. Note that $N(x_f, S_2) \cap N(x_1, S_2) \neq \emptyset$, then $S_2 \cong D$ by our assumption that Theorem 1.4 is false. We divide the proof into two cases by symmetry. Case a. $$N(x_1, S_2) = \{a_2, b_2, d_2\}.$$ By our assumption, $x_fc_2 \in E(G)$. However, if we replace S_2 and P with $S_2-c_2+x_1 \cong K_4$ and $P-x_1+c_2$, respectively, then $S_2 \cong K_4$ by our choice (3), which contradicts the fact that $S_2 \cong D$. Case b. $$N(x_1, S_2) = \{d_2, b_2, c_2\}.$$ By our assumption, $x_fa_2 \in E(G)$. We have $x_fc_2 \in E(G)$, for otherwise, $\{x_fb_2, x_fd_2\} \subseteq E(G)$. If we replace S_2 and P with the subgraph $G[\{x_f, a_2, b_2, d_2\}]$ and $P - x_f + c_2$, respectively, we obtain $S_2 \cong K_4$ by (3), which contradicts the fact $S_2 \cong D$ again. Consequently, $x_1c_2x_f \dots x_1$, $S_2 - c_2$ and S_1 is a partition of $G[V(G_1 \cup S_2)]$. Hence, $N(x_f, S_2) = N(x_1, S_2)$. Since $S_2 \cong D$, we may assume that $d_2 \in N(x_1, S_2) \cap N(x_f, S_2)$ by the symmetry role of d_2 and d_2 . Then, $d_2 = d_2 = 1$ and $d_3 = 1$ is a desired partition of $G[V(G_1 \cup S_2)]$. This completes the proof for Claim 6. \square Claim 7. $$N(x_1, S_1) = N(x_f, S_1)$$. **Proof** By contradiction, suppose $N(x_f, S_1) \neq N(x_1, S_1)$. By Claim 6, $d(x_1, S_1) = d(x_f, S_1) = 3$. If $N(x_1, S_1) = \{a_1, b_1, c_1\}$, then we have $x_f d_1 \in E(G)$. Clearly, $G[\{a_1, b_1, c_1, x_1\}] \supseteq S_1' \cong K_4$. If we replace S_1 and P with S_1' and $P - x_1 + d_1$, respectively, we obtain $S_1 \cong K_4$ by (3). As $d(x_f, S_1) = 3$, we may assume that $b_1x_f \in E(G)$. Consequently, G_1 can be partitioned into two disjoint cycles $S_1 - b_1$ and $x_1b_1x_f \dots x_1$. Therefore, by symmetry, it suffices to consider the case $\{d_1, b_1, c_1\} = N(x_1, S_1)$. Then by our assumption, $x_f a_1 \in E(G)$. We must have $x_f d_1 \notin E(G)$, for otherwise, $S_1 - d_1$ and $x_1d_1x_f \dots x_1$ is a partition of G_1 . Consequently, $V(S_1) - \{d_1\} = N(x_f, S_1)$. It is easy to see that $S_1 \cong D$. However, if we replace S_1 and P with $S_1 - d_1 + x_f$ and $P - x_f + d_1$, respectively, we see that $S_2 \cong K_4$ by (3), a contradiction. \square Now we are in the position to complete Theorem 1.4. According to Claim 7, we know $N(x_1,S_1)=N(x_f,S_1)$. Therefore, we may assume that $d_1\in N(x_1,S_1)\cap N(x_f,S_1)$ by Claim 6. Consequently, S_1-d_1 and $x_1d_1x_f\ldots x_1$ is a desired partition of G_1 , and so G contains a 2-factor with k+1 disjoint cycles S_1-d_1,S_2,\ldots,S_k and $x_1d_1x_f\ldots x_1$, a final contradiction. This completes the proof of Theorem 1.4. #### Acknowledgments The authors would like to thank the referees for their extremely careful reading of the paper, and their detailed corrections and helpful suggestions. #### References - [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam 1976. - [2] J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135. - [3] H. Enomoto, Graph partition problems into cycles and paths, Discrete Math. 233 (2001) 93-101. - [4] J. Yan, Disjoint triangles and quadrilaterals in a graph, Discrete Math. 308 (2008) 3930-3937. - [5] H. Wang, Covering a Graph with Cycles, J. Graph Theory, 20 (1995) 203-211. - [6] S. Fujita, Vertex-disjoint copies of K_4^- in graphs, Australasian Journal of Combinatorics, 31 (2005) 189-200.