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ABSTRACT

For integers p, ¢, swithp >¢>3and 1 < s<q—1, let £~%(p,q) (resp.
K3 °(p, q)) denote the set of connected (resp. 2—connected) bipartite graphs
which can be obtained from K, 4, by deleting a set of s edges. In this paper,
we prove that for any G € K;%(p,q) withp >¢>3,if9<s<g—1and
A(G') = s — 3 where G’ = K, 4 — G, then G is chromatically unique.

Keywords: Chromatic Polynomial; Chromatically unique; Chromatically
equivalent.

1. Introduction

All graphs considered here are simple graphs. For a graph G, let V(G),
E(G), §(G), A(G) and P(G, )) be the vertex set, edge set, minimum degree,
maximum degree and the chromatic polynomial of G, respectively.

Two graphs G and H are said to be chromatically equivalent (or simply
Xx—egquivalent), symbolically G ~ H, if P(G,)\) = P(H,)). The equiva-
lence class determined by G under ~ is denoted by [G]. A graph G is
chromatically unique (or simply x—unique) if H = G whenever H ~ G, i.e,
[G] = {G} up to isomorphism. For a set G of graphs, if [G] C G for every
G € G, then G is said to be x—closed. For two sets G; and G of graphs, if
P(Gh, ) # P(G2, ) for every G; € G; and Gy € G, then G; and G, are
said to be chromatically disjoint, or simply x—disjoint.

For integers p, ¢, s withp > ¢ > 2and s > 0, let K~*(p, g) (resp. K5*(p,q))
denote the set of connected (resp. 2—connected) bipartite graphs which
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can be obtained from K4 by deleting a set of s edges. For a bipartite
graph G = (4, B; E) with bipartition A and B and edge set E, let G' =
(A’, B'; E') be the bipartite graph induced by the edge set E' = {zy | zy ¢
E,z€ A,ye B}, where A’ C A and B’ C B. We write G' = K, ;, — G,
where p = |A| and q = | B|. Let A(G’) denote the maximum degree of G'.

Dong et al. [1] have shown that any G € K3*(p,q) with p > ¢ > 3, is
chromatically unique if one of the following conditions holds.

(i) 5<s<g-land A(G')=s—-1,0r
(i) 7<s<g—land A(G)=s-2.

In this paper, we give a similar result by examining the chromatic unique-
ness of G € K3 *(p, q), where 9 < s < ¢—1 and A(G’) = s — 3. This result
was obtained by using the same approach introduced by Dong et al. in [1].

2. Preliminary results and notation

For a graph G and a positive integer k, a partition { A;, Ag,...,Ax } of
V(G) is called a k-independent partition in G if each A; is a non-empty
independent set of G. Let a(G, k) denote the number of k—independent
partitions in G. For any graph G of order n, we have (see [3]):

P(G,)) = ia(G, K)AA=1)---(A =k +1).
k=1

Thus, we have
Lemma A. IfG~ H, then oG, k) = a(H,k) fork =1,2,...
Partition X~*(p, g) into the following subsets:

Dilpra,s) = { ¢ e k~(p,q)

A(G’):i}, i=1,2,...,s

Throughout this paper, we fix the following conditions for p, ¢ and s:
p2g=>23 and 1<s<qg-1

The following result was obtained in [1].
Theorem B. Letp>¢>3andl1 <s<g-1

(i) Di(p,q,s) is x—closed.

(i) Uacic(s+3)/2Di(p, g, 5) is x—closed for s 2> 2.
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(iii) D;(p,q, ) is x—closed for each i with [(s+3)/2] < i < min{s,q—2}.
(iv) Dg-1(p, q,s) N K5 °(p,q) is x—closed for s = q— 1.

For a bipartite graph G = (A4, B; E), let Z(G) be the set of independent
sets in G and

AUG)={QeI(G)|QNA#0,QNB#0}.

For any bipartite graph G = (A, B; E) with bipartition A and B and edge
set E, let
o(G,3) = (G, 3) — (2M41-1 4 21B1-1 _9), (1)

Lemma C (Donget al. [2]). For G € K~%(p, q),
o'(G,3) = |G)| 2 22V + 5 -1 - A(G).

For a bipartite graph G = (A4, B; E), the number of 4—independent parti-
tions { Ay, A2,A3,A4 } in G with A; C Aor A; C Bforalli=1234
is

(2141-1 _1)(21B1-1 _ 1) 4 %(3'**' —-3.241 4 3) ¢ %(3'3I -3.2IBl 1 3)
= (241-1 —2)(2!BI-1 _2) 4 -;-(31"I +318l) 2,
Define
d(G,4) =a(G,4) - { (2M41-1 _ 9)(2lBI-1 _9) 4 %(3'*‘I +3lBly _2 } .

Observe that for G, H € K~*(p, q),
a(G,4) = a(H,4) ifand only if o'(G,4)=<o/(H,4).

The following lemmas will be used to prove our main result.

Lemma D (Dong et al. [2]). For G = (A, B;E) € K~*(p,q) with |A| = p
and |B| =g,

o' (G,4) = Z (2P=1-1QNAl 4 99-1-1QNB) _ 2)
QeN(G)

+{{Q1, @2} | Q1,Q2€9(G), Q1NQ=0}].

Lemma E (Dong et al. [2]). For a bipartite graph G = (A, B; E), if vww
is a path in G’ with dg/(u) = 1 and dg/(v) = 2, then for any k > 2,

a(G, k) = a(G + uv, k) + (G — {u, v}, k- 1) + a(G - {u,v,w}, k—1).
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By using lemma E, we obtain the following lemma.

Lemma F. For a bipartite graph G = (A, B; E), if uwvw, uvy and wuy

are three paths in G' with dg'(u) =1 and dg/(v) = 3, then for any k > 2,

a(Gk) = oG+uv,k)+ a(E; {u,v}, k- 1)+ (G — {u,v,w}, k- 1)+
a(G - {u,v,y},k—1) + a(G - {u,v,w,y}, k- 1).

Proof. Since P(G, ) = P(G + uv, ) + P(G - wv, A), we have
(G, k) = a(G + uv, k) + (G - wv, k).

Let = be the vertex in G - uv produced by identifying u and v, and 2 the
vertex in G - uv - zw produced by identifying z and w. Notice that z is
adjacent to all vertices in V(G - uwv) — {z,w,y} and z is adjacent to all
vertices in V(G (uv - zw) — {2,y}. Thus
G-uw+rzw+zy = Ki+(G-{u,v}),
(G-uwv+zw)-zy = K+ (G- {u,vy}),
G-uw-zw+z2y = K +(G-{y,v,w}) and
G w-zw-zy = K+ (G- {u,v,wy})
We also observe that for any graph H, a(K; + H, k) = o(H, k — 1), since
P(Ky + H,A) = AP(H,X—1). Hence
a(G-uv,k) = a(G-w+zw,k)+a(G-uw-zw,k)
= oG- -w+zw+ 2y, k) + (G wv + zw) - Ty, k) +
(G uv-zw + 2y, k) + a(G - wv - zw - 2y, k)
oKy + (G — {u,v}), k) + a(K1 + (G — {u,v,9}),k) +
a(Ky + (G = {u,v,w}), k) + a(K) + (G — {u,v,w,y}), k)
a(G - {u,v}, k- 1)+ a(G - {u,v,y}, k- 1) +
(G - {u,v,w}, k—1) + a(G - {u,v,w,y}, k- 1).

The lemma is then obtained.

3. Main result

In [2], Dong et al. proved that every 2—connected graph in D;(p,q,s) is
x—unique. Then, Dong et al. in [1} also proved that G is x—unique for
every G € D,_1(p,q,s), where s > 5, and that G is x—unique for every
G € D,_2(p, g, s), where s > 7. In this section, we shall prove that for each
graph G in D,_3(p, q, s), where s > 9, G is x—unique. We first have the
following lemma.
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Lemma 1. For any G € D;-3(p,q,s), where s > 9, G' is one of the 20
graphs in Figure 1.

Our main result is Theorem 1.

Theorem 1. For any G € K3°(p,q), withp > ¢ > s+1 > 10, if A(G') =
s — 3, then G is x—unique.

Proof. Since s > 9, (s + 3)/2 < s — 3 and thus by Theorem B(iii),
D;-3(p, q, 8) is x—closed. By Lemma 1, if G € D;_3(p, g, s), then G is one
of the graphs in Figure 1. Thus D,_3(p, g, 8) contain 48 graphs, which are
named as W3, Vo, ..., Vis. We show the graphs V;, V5, and V5; to Vo4 in
Table 1. The reader may refer to [6] for the complete listing of the graphs.
We then group these graphs according to their values of o/(V;, 3) which can

be calculated by using Lemma C.

= {1}

s = {Vs,V6,V0,W3}

Ta = { Vo, Vio, Vi1, Vi2, Vi3, V14, V15, Vi6 }

Ts = { Vi7,Vis, V1o, Voo, Va1, Va2, Va3, Vau }

Ts = { Vas,Vae, Vor, Vas, Vao, Vao }

Tr = {Va,Vag, Va3, Va4, Vas, Vas, Vaz, Vag, Vag, Vio }

Ts = { Va1, Vag, Vas, Vaa, Vas, Vs }
7;) = {‘/47)‘/48}-

Observe that for any i, j with 1 <i < j <9, o/(V;,,3) > &/(V},,3) if
Vi €Tand Vj, €T Thus by Lemmas A and1,7; and 7; (1 <i < j < 9)
are x—disjoint and since D,_3(p, g, s) is x—closed, each T; (1 <1 < 9) is
x—closed. Hence, for each %, to show that all graphs in 7; are x—unique,
it suffices to show that for any two graphs, V;,, V;, € T;, if Vi, # Vi,, then
either o/(V;,,4) # o/ (V;;,4) or a(V;,,5) # a(Vi,,5). The values of o/(V;, 4)
can be obtained by using Lemma D.

We shall establish several inequalities of the form o/(V;,4) < o/(V},4) for
some i, j. Since the method used to obtain these inequalities is standard,
long and rather repetitive, we shall not discuss all of them here. In the
following we shall only show two examples of detail comparisons. In the
first example, we compare a’(V},4) and o'(V2,4) when p > g, and in the
second example, we compute a(Va;,5) — a(Vas, 5) when p = q. The reader
may refer to [4] for all the other detail comparisons.

(1) Vi and V, when p > ¢
o'(V1,4) — &' (Vs, 4)
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8-3
= [ (Z (s : 3) (2P~i-1 42172 2)) +7-2771 47,2972 42975 4

t=1

t=1
7.2971 p P8 4 7.0074 35]
53 s—3 . . .
= [Z ( . )(2?""l — 2971 - 2'-1)] +7(2P7 2971 —
i=1 b
7(2P~2 - 2972) — (2775 - 297F)
s—3 -5 -5 4(op—5 -5
<-7(7, )@t -2 )+ 7-24(2P8 —2975) —
7.23(2P~5 — 2975) — (27P~5 — 2975

< (2P7% —297%) [-7(313) +7-16—7-8—1]

= (P75 — 29-5) [—7 (s R 3) + 55]

< (2P7% — 29-%)(-50) [since (s ; 3) 2 (2) =15 ]

<0.

(2) Vo1 and Vo3 whenp=g¢q

When p = g, o/(Va1,4) — o(Vas,4) = 0. Since o'(Va1,4) = o'(Va3,4), we
need to calculate a(V21,5) — Va3, 5). Using Lemma F, we have

a(Va1,5) — a(Vas, 5)

= [Q(Vm + a1b1,5) + (Va1 — {a1,01},4) + a(Var — {a1,b1,¢1},4) +

a(Var — {a1,b1,d1},4) + (Vo1 - {al:blycladl}a‘l)] -
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[a(Vg:; + a2b, 5) + (Vs — {az, b2}, 4) + a(Vas — {aa, b2, c2}, 4) +
a(Vas — {az, by, d2},4) + a(Vas — {az, b, ¢, da}, 4) ]

= (a(v21 — {a1,b1,61},4) — a(Vaz — {az, by, cz},4)) +
(o,(v21 —{a1,b1,d1},4) — a(Vas — {az, bo, d},4) ) +

( a(%l - {aly bla 1, dl}y 4) - a(‘/23 - {a2) b2a c2d2}1 4) )
since Va1 + a1by & Vo3 + agby and Va; — {a1, b1} & Va3 — {ay, by}

= (Ot'(Vzl —{a1,b1,¢1},4) — o' (Vaz — {az, b, 2}, 4) ) +
( o' (Va1 = {a1,b1,d1},4) — o (Vas — {ag, be, d2}, 4) ) +
( al(%l - {aly bl) a, dl})4) - a’(V23 - {02, b21 c2d2}) 4) )

_ ( 82:_3 (s : 3)(2p_3_i +29-3 _9)_ § (s : 3) (2P=2-% 4. 2974 _ 9) ) n

= i=1

( g ( )(2’,_3_1 +207 - SZ: ( i 3) (2P~2F 4 2974 _ 9) ) :

i=1
a=3 , _ _ =8 /o _ s )
(;(s ) 3)(2P-4-'+2q 3_ ;( 3)(2" 2i 4 99 5-2))
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s—3 |
2( -1( )(2‘1- gp—3— ')+Z( )(3 985 _ 3'2,,-4_,))

i =1

(s
7{ (s (2*1—5 2P=%) + (s B 3) (2975 —2P%) +
(s : 3) (2975 — 2P~T) ... 4 (z : g) (2975 — 9p—o-1) }

7{ (s 2?'5 —2P75) + (S N 3) (@5 - 2%+
(s

)(2?"5 Ty ... 4 (: : 2) (2P — 2p—5~1) } since p=g¢

>0 since s> 9

Similarly, we can show that for any two graphs, V;,, V;, € 7;, if V;, £V,
then either o/(V;,,4) # a'(V;,,4) or a(V;,,5) # a(V.,,S) (see [4]). Hence
the proof of the theorem is complete. [

Using the same method, we obtained the following extention of Theorem
1.

Theorem 2. (Roslan and Peng [5]) For any G € K5 °(p,q), withp > g 2
s+1> 12, if A(G') = s — 4, then G is x—unique.

We end this paper with the following conjecture which is true for ¢t = 3, 4,
5 and 6.

Conjecture. For any G € K;°(p,q) withp > ¢ > s+12 2t (t =
3,4,5,...), if A(G') = s — t + 2, then G is x—unique.

Acknowledgments. The authors would like to thank the referee for his
helpful comments. '
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!
Graphs Graphs V;
V; (Vi = Kp.b" Vi) o' (V;, 3) o' (V;,4)
|A]=p,|Bl =¢q
.83 o
A bems g Til ()@ 22—
Y 7-2P"147.29-2.429-5¢
B 7.28-4_35
-3 — ——— _
4 T (P v oot
V2 ps-3 413 7.2P-247.29-1 4 9p=54
B 7.28=4_35
e RPA 8~3 (5-3) (gp—i—1 | 9¢—2
DM Gt [t R Lo I
Va1 223416 2P +3.2P4 1 7.20-24
y, B 7.25-3 .91
1
; 23 o _
A i (et et oy
Va2 297348  7.2p-242943.20-44
kg PV B 7.25-3 _21
. _3 _3 - ——— _
A i1 (".'3)(2p =lyp2r-2_2)+
V23 2s-3 +6 7.9p-2 +2943. 2q—4+
2 2ng 7.25-3_21
A -3 (5-3 —de _
V; 203 16 i ()it 22— 9)4
2 2P +3.27—4 4 7.99-24
"3t B 7.29-3_21
TABLE 1
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