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Abstract: Let G be a connected simple graph with girth ¢ and minimal
degree § > 3. If G is not up-embeddable, then, when G is 1-edge connected,
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Di (6, 9)(k = 1,2, 3) are increasing functions on § and g.
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1 Introduction

Graph G = (V(G), E(G)) considered in this paper are all simple, undirected
and connected. For graphical notations without explanation, see [1].

The mazimum genus, yp(G), of a connected graph G is the largest
integer k such that there exists a cellular embedding of G in the orientable
surface with genus k. Recall that any cellular embedding of G has at
least one region. By the Euler polyhedral equation, the maximum genus
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m(G) £ [ﬂzglj, where 8(G) = |E(G)| — |V(G)| + 1 is the cycle rank or
Betti number of G. A graph G is up-embeddable if yp(G) = l_ﬂglj exactly.

For a spanning tree T in G, {(G,T) is the number of components of
G\ E(T) with odd number of edges. £{(G) = minr &(G,T) is called the Betti
deficiency number of G, where the minimum is taken over all spanning trees
T of G. There are two equivalent characterizations on the maximum genus
of a graph, due to Xuong [12], Liu [7), and Nebesky [10], respectively. The
following first theorem gives a formula on yum(G) by means of § (G) and
B(G).

Theorem A(Xuong [12], Liu (7)) Let G be a graph, then Yu(G) =
3(B(G) — &(G)); and graph G is up-embeddable if and only if {(G) < 1.

Let A be an edge subset of E(G). c(G \ A) denotes the number of
components of G \ A, and b(G \ A) denotes the number of components of
G\ A with odd Betti number. Let F be a subgraph of G, E(F,G) is the
set of edges which has one end in F' and the other is not in F. For any
set X, | X| denotes the cardinality of X. In 1981, Nebesky [10] obtained a
combinatorial expression of £(G) in terms of an edge set.

Theorem B(Nebesky [10]) Let G be a graph, then

£G) = Aggztc){C(G\A) +b(G\A) - |A| — 1}.

Based on Theorem B, Liu and Huang [8] provided some characteriza-
tions on not up-embeddable graphs.

Theorem C(Liu and Huang [8]) Let G be a graph, if G is not up-
embeddable, i.e., £(G) > 2, then there exists an edge subset A C E(G)
satisfying the following properties:

(1) e(G\A) = b(G\A) 2 2;

(2) for any component F of G\A, F is an induced subgraph of G;

(3) £(G) = 2¢(G\A) — |A| - 1.

The study on maximum genus was inaugurated by Nordhaus, Stew-
art and White [11]. From then on, various classes of graphs have been
proved up-embeddable. A formerly known result in paper[12] states that
every 4-edge connected graph is up-embeddable. For the vertex-(or edge-)
connectivity < 3, there exists many graphs(see paper[6]) which are not up-
embedabble. In this paper, we obtained a new lower bound on maximum
genus of simple graphs with edge-connectivity < 3 in terms of the girth and
minimal degree, which complements the results in paper|3] and improves
the results in paper{4] and [5].



2 The main results

The degree dg(v) of a vertex v is the number of edges incident with v. The
distance between two vertices u and v in G, denoted by dg(u,v), is the
length of a shortest (u,v)-path in G. For an edge e = zy and a vertex v
in G, define dg(e,v) = min {dg(z,v), de(y, v)} to be the distance between
the edge e = zy and vertex v in G. Especially, dg(uv,u) = dg(uv,v) =
dc(u,u) = 0. For any vertex or edge z in G, the i(¢ > O)neighbor set of x
in G is Ny(z) = {v | dg(z,v) = i,v € V(G)}.

A §(6 > 3)-regular simple graph of girth g with the least possible number
of vertices is called a (6, g)-cage. By considering the vertices whose distance
from a given vertex (or an edge) is at most |(g — 1)/2], we can obtain the
lower bound on the number of vertices of a (J, g)-cage, which is called Moore
bound M(9, g) (see [2], pp.180):

1+5+...+5(5_1)r-1_—.§u‘_2, g=2r+1,
M(s,9) = 6—3(5—1)r—2
2(1+(5—1)+-.-+(6-—1)"1)=——5T, g=2r

Clearly, a graph with girth g and minimal degree & has at least M (6,9)
vertices.

Let H be a connected induced subgraph of G, the vertex v € V(H) is
called a touching vertex of H when v is the end of some edges in E(H, G).

Lemma 1 Let G be a graph with girth g and minimal degree § > 3. H
is a connected induced subgraph of G with B(H) > 1.

(1) If |E(H, G)| <2, then |V(H)| 2 M(6, 9);

(2) If|[E(H,G)| =3, then |V(H)| > M(5,g) — 1.

Proof See the proof of Lemma 2.1 in the paper[9].

Let G be a graph with girth g and minimal degree § > 3, r = 12). IfG
is not up-embeddable, there exists an edge set A C E(G) satisfies Theorem
C. Define C(G \ A) to be the set of components of G \ A4, and

By = {F||E(F,G)| 24,F € C(G\ A)};
B; {FIIE(F,G)| =4,F € C(G\ A)}, i=1,2,3;
B; min{8(F)|F € B;}, i=1,2,3,4.

Clearly,

(G\ A) = |B1] + |B2| + | Bs| + | Ba|. (1)
By Theorem C, any component F' € C(G \ A) is an induced subgraph of
G, then

2E(F)| = Z da(v) — |E(F,G)| 2 §|V(F)| - |E(F,G)|.
vEV(F)



Hence, the Betti number of F is

B(F) |E(F)| - [V(F)| +1

8|V (F)| - |E(F, G)]
- — V(P +1

6- 2)IV(F)I - 1EFEG) |

2

From Lemma 1, when F' € By U By, |V(F)| M(6,g); when F € Bs,
[V(F)| > M(, g) — 1. Thus, when g = 2r,

ﬁl > (6—2)1"{2(6!9)"1+1=(6_1)1'_%’

ﬁ2 > (6—2)1‘{;(6,.9)_2+1=(6_1)r_1’
(6-2)-(M@G,g)-1)-3 . _ P61

Bs = 5 +1=06-1)"-35-35;

when g =2r +1,

g > GZIMGa-1,, 6o 1

B > (6—2)Mz(r5,g)—2+1___6(6_;)r_2’
(6-2)(M(,9)—1)-8 . _o6-1)" & 1

s 2 2 tl1=—" 22

By Theorem C, 31, B2 and B3 are odd, so we define the following functions
ond, g

[(52)_|+1 when g = 2r,
D1(5,9) = s(6 <1y
|_————_|+1 when g =2r +1;

— T —
2[————(6 12) 1] +1, when g = 2r,
Da8,9) =9 _s(6-1) —2
2[——4———] +1, wheng=2r+1.

_ §—1)" -6, when g = 2r,
DS(& g) = { 6(6 - 1)” — 5’ when g= 2r + 1.

Obviously, D1(8,g) = D2(d,g) > 3 and
ﬁl 2 D1(6)g): ﬂz 2 D2(6$ g)) 2ﬁ3 +12 D3(57g)' (2)
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For each edge e € A, the end vertices of e must belong to two distinct
components of G \ A, since any component F € C(G\A) is an induced
subgraph of G. On the other hand, the edge e € E(F,G) must belong to
A. Thus,

1 3 1
l4l= 3 > |E(FG)| 2 2|B4| + 3IBsl +1Bel + 5|Bul-  (3)
FeC(G\A)

In addition,

IEG)= ) [EEI+IA, V@)= Y VE) @

FeC(G\A) FeC(G\A)

Combining equations(1)-(4), we obtain

BG) = |EG)~IV(G)|+1
= Y EEI+A- Y VE)+1
FEC(C\A) FeC(G\A)
= D IBF)N+]Al -G\ A)+1
FeC(C\A)
> 4| Ba| + B3| B3| + B2|B2| + B1|B1| + |A| — C(G\A) +1
2 1 2
> (Ba+1)iBa+ 222 IBa|+ﬁz|le+ B 1By +1
2 1 2
> ﬂ” |Ba|+/32|32|+ ﬁ’ LBy +1
D3(4, 2D, (6, 1
> X "’lBs|+Dz(ag)|Bz|+‘—(-"-)—IBIIH.

When G is 1-edge connected, by simple calculations, D3(d, g) > D2(6,g) >
3(2D1(6,9) — 1), thus

2Dy(6,9)—1,1 3
8@ 2 PO g 4 By 31 +1,

this implies

1 3 38(G) -3
-~ et < 7
31Bsl +1Bal + 51Bil < 5ps S )
When G is 2-edge connected, |B;| = 0, thus
1
B(G) 2 Da(8,9)(51Bs| +B2l) + 1,
this implies 56)
1 G)-1
=|B By < ———. 6
2| 3|+| 2|— Dz(é,g) ( )
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When G is 3-edge connected, |B1| = |Ba} =0, thus

1B < 5 (7

From Theorem C and equations (1), (3),
£(G)

2(G\ 4) — |4 - 1
3 1
2(|Bs| + |Bs| + |Bz| + | B1]) — 2|Bs| — §|le — |Ba| — §|Bll -1

IA

1 3

5|Bs| + |Ba| + 5|Ba| — 1.

2 2

When G is 1-edge connected, by equation (5),

BE) - ADGED+D. g
2D1(6) g) -1 '

1 3
£(G) < §|le +|Be| + §IB1| -1<

When G is 2-edge connected, by equation (6),

= B(G) — (D2(8,9) +1)
§(G) < 5|Bs| + |Ba] —1< ) ©
When G is 3-edge connected, by equation (7),
G) — (Da(s
60 < 3Bl 1< A=A 1) w0

Now, by Theorem A, equations(8), (9) and (10), the following theorems are
obtained.

Theorem 1 Let G be a graph with girth g and minimal degree § > 3.
If G is not up-embeddable, then

D(5,9) -2 Dy(6,9) +1
m(G) 2 21)11(5,9)— PG+ 21)11(5,9) -1

Proof By Theorem A and equation (8),

BE) €0 | 36(G) — 2(D1(5,9) +1)
AR 8D > e - g o)
D (a,g)— Di(6,9) +1
55,69 =17 ”251(6,9)—1'

1Mm(G)
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Theorem 2 Let G be a k(k = 2,3)-edge connected graph with girth g
and minimal degree 6 > 3. If G is not up-embeddable, then

Di(6,9) =1, . . Dildg)+1
)2 569 POt InGe

Proof By Theorem A , (11)and (12), the proof is the same with The-
orem 1.

Corollary 1 Let G be a graph with girth g and minimal degree 6 > 3.

(1) When G s k(k = 2,3)-edge connected and B(G) < 3Dy(,g), then
G is up-embeddable;

(2) When G is 1-edge connected and B(G) < 2D, (4,g), then G is up-
embeddable.

Proof When G is k(k = 2, 3)-edge connected and is not up-embeddable,
by Theorem 2,

Di(g) =1, .  Dil6,9)+1_B(G) B(G)— Dilb,0)1
2De3,9) POt Do) - 2 DiGg)

As B(G) < 3Di(8,g), then
B(G) — Di(6,9) — 1

™(G) 2

<1,
2Dk(6) g)
namely vy (G) > ﬁ(—zcl — 1. This means G is up-embeddable. When G is
1-edge connected, the proof is the same. i}

Let G be a graph with minimal degree § > 3 and girth g, r = L£]-
By simple calculation, D;(3,4) = 5 and D;(4,3) = 7; D1(3,9) > 2" + 1,
D2(3)g) =27 - 1, D3(3;g) 2 27+l — 3) Dl(6»3) 2 %6(6 - 1)) D2(613) 2
3(8 + 1)(6 - 2) and D3(é,3) > 6(6 — 2). Furthermore, the lower bound on
vm(G) in Theorem 1 and 2 are increasing functions on D (4, g)(k = 1,2, 3)
respectively; Dy (6,g)(k = 1,2,3) all are increasing functions on & and g.
Thus, the following corollaries are direct results from Theorem 1 and 2.

Corollary 2 Let G be a graph with girth g and minimal degree § > 3.
If G is not up-embeddable, then,

(1) when g > 4, v41(C) 2 3B(G) + §;

(2) when § 2 4, ym(G) = ZB(G) + &.

Corollary 3 Let G be a graph with girth g and minimal degree > 3,
r=|2]. If G is not up-embeddable, then,

(1) when G is 1-edge connected, yp(G) > —f;—,‘_%lﬂ(G) + 2—3;—%;

(2) when G is 2-edge connected, yp(G) > %ﬁ(G) + %;

(3) when G is 3-edge connected, yp(G) > 2—3;—,"—3—3ﬂ(G) + 55y

Corollary 4 Let G be a graph with minimal degree § > 3. If G is not
up-embeddable, then,
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(1) when G is 1-edge connected, ymM(G) 2 ﬂ‘%:_—‘;‘_;‘l;ﬁ(G) + 2—&;%‘-‘_‘:%;
(2) when G is 2-edge connected, vm(G) 2 s ThranA(G)+ T =

2 _1\2
(3) when G is 3-edge connected, 1 (G) = S5t B(G) + Tt
Through simple comparison, the Corollary 2 complement the results in
paper(3], the Corollary 3 and 4 improve the lower bound on yp(G) of graph
G with the same connectivity in papers[4] and [5].
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