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Abstract

While powers of the adjacency matrix of a finite graph reveal in-
formation about walks on the graph, they fail to distinguish closed
walks from cycles. Using elements of an appropriate commutative,
nilpotent-generated algebra, a “new” adjacency matrix A can be as-
sociated with a random graph on n vertices. Letting X denote the
number of k-cycles occurring in a random graph, this algebra together
with a probability mapping allow E(Xx) to be recovered in terms of
tr A*. Higher moments of X} can also be computed, and conditions
are given for the existence of higher moments in growing sequences
of random graphs by considering infinite-dimensional algebras. The
algebras used can be embedded in algebras of fermion creation and
annihilation operators, thereby establishing connections with quan-
tum computing and quantum probability theory. In the framework of
quantum probability, the nilpotent adjacency matrix of a finite graph
is a2 quantum random variable whose m* moment corresponds to the
m-cycles contained in the graph.

AMS subject classification: 05C38, 05C80, 60B99, 81P68
Key words: cycles, Hamiltonian, enumeration, random graphs, quan-
tum computing . -

1 Introduction

The reader is referred to [8] for graph theory beyond the essential notation
and terminology found here. A graph G = (V, E) is a collection of vertices
V and a set E of unordered pairs of vertices called edges. A directed graph
is a graph whose edges are ordered pairs of vertices. Two vertices v;,v; € V
are adjacent if there exists an edge e = (v;,v;) € E. A graph is finite if
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V and E are finite sets, that is, if |V| and |E| are finite numbers. A loop
in a graph is an edge of the form (v,v). A graph is said to be simple if it
contains no loops and no multiple edges; i.e., no pair of adjacent vertices
shares more than one edge.

A k-walk {vo,...,vt} in a graph G is a sequence of vertices in G with
initial verter vy and terminal verter v; such that there exists an edge
(v5,v541) € E for each 0 < j < k—1. A k-walk contains k edges. A
k-path is a k-walk in which no vertex appears more than once. A closed
k-walk is a k-walk whose initial vertex is also its terminal vertex. A k-cycle
is a closed k-path with vy = v;. A Hamiltonian cycle is an n-cycle in a
graph on n vertices; i.e., it contains V. A k-trail is a k-walk in which no
edge appears more than once. A k-circuil is a closed k-walk. An Euler
circuit is a circuit encompassing every edge in E exactly once.

When working with a finite graph G on n vertices, one often utilizes the
adjacency matriz A associated with G. If the vertices are labeled {1,...,n},
A is defined by

(L.1)

A = 1 if v;,v; are adjacent
i 0 otherwise.

A simple but useful result of this definition, which can also be general-
ized to directed graphs, is given here without proof.

Proposition 1.1. Let G be a graph on n vertices with associated adjacency
matriz A. Then for any positive integer k, the (3,5)" entry of A* is the
number of k-walks i — j. In particular, the entries along the main diagonal
of A* are the numbers of closed k-walks in G.

What the usual adjacency matrix fails to provide, however, is a method
of counting self-avoiding walks and cycles in G. This problem is overcome
by constructing a nilpotent adjacency matrix.

All graphs in this work are assumed to contain no multiple edges and
no loops. Graphs may be directed or undirected.

The methods employed here are original with the authors. The tech-
nique involves mapping combinatorial structures into algebras where self-
intersections are “sieved out” by multiplication. Then the remaining struc-
tures, representing cycles and paths, are recovered by projection.

Other algebraic-probabilistic approaches to graph theory include the
works of Hashimoto, Hora, and Obata (2] and Obata [4]. Overlaps be-
tween quantum probability and graph theory have also been discussed by
Lehner (3].
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1.1 Algebraic preliminaries

Let V be a finite set, and let My denote the abelian algebra generated by
the collection {{;}, (i € V) along with the scalar 1 = (p subject to the
following multiplication rules:

Gi¢i=¢¢ foris#j, and (1.2)
¢2=0 forieV. (1.3)

A general element o € Ny can be expanded as
a= Y oG, (1.4)
i€P(V)

where P(V') is the power set of V' used as a multi-indexing set, o; € R, and

Ci = HCL'

€L
For a fixed finite set E, let Zg denote the abelian algebra generated

by the collection {v;} (i € E) along with the scalar 1 = +y subject to the
following multiplication rules:

Yiv; =% fori# j, and (1.5)
Y2 =7 fori€E. (1.6)

It is evident that a general element 8 € Zg can also be expanded as in
(1.4).
The inner-product is defined by

(u,'v)=< Z ui G, Z v,_-(',_~>= Z u; V. 1.7)
i€P(V) JEP(V) i€P(V)

Hence, arbitrary u € Ay has the canonical decomposition

u= Y (G)G (1.8)

iE€P(V)

Finally, define the double angle bracket to mean the sum of all scalar
coefficients. That is, for u € Ny,

()= Y wu. (1.9)

ieP(V)
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1.2 Nilpotent Adjacency Matrices

Definition 1.2. Define the nilpotent adjacency matriz associated with G
by

Cj, if (‘Ui,’Uj) € E(G)
Aij = .
0, otherwise.

Observe that A € Mat,(Nv), the algebra of n x n matrices with entries in
the abelian nilpotent-generated algebra Ny .

(1.10)

Proposition 1.3. Let A be the nilpotent adjacency matriz of a graph G on
n vertices. For any m > 1, summing the coefficients of (A™)i; yields the
number of m-cycles based at v; occurring in G.

Proof. Proof is by induction on m. When m = 1, the proposition is true
by definition of A.

Now assuming the proposition holds for m and considering the case
m+ 1,

n

(A™1); =A™ x Ay =D (A™);p Aas. (1.11)
£=1
Considering a general term of the sum,
(A™e= Y.  Wm,and (1.12)

m-paths wa,:vi—ve

Ag = l-path wy : vg — w;, if (ve,z.).-) €eE (113)
0 otherwise.
It should then be clear that terms of the product
(A™);q Ae (1.14)

are nonzero if and only if they correspond to m + 1-paths v; — vg — v;.
Summing over all vertices vg gives the sum of all m + 1-cycles based at
Vq. O

Because A has entries in My, AF is identically the zero matrix for all

n
k > n. As aresult, (] —tA)~! exists as the finite sum Ztk A* for real
k=0
parameter ¢, and tr A is recovered as the Ny-valued coefficient of t* in the
power series expansion of tr(] — tA)~!.

Example 1.4. The 5-cycles contained in the randomly generated graph
in Figure 1.1 are recovered by examining the trace of A®. Dividing by
five compensates for the five choices of base point, and dividing by two
compensates for possible orientations.
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In{50):= NilpotentLabeledPlotGraph[A]

€23
€
i3y
g
Ciay
l Ci6)
Cisy

In[{58):= NilpotentAdjacencyMatrix[A] // MatrixForm

Out [58)//MatrixForm=

0 €2y €333 O Cisy O S
€y O €3y Sy L5y Cer Cimy
€y &2y O 0 0 0 0

0 &2 0 0 0 0 &
€y &z O 0 0 iy O

0 Ci2y O 0 Cisy O 0
Sy G O Sy O 0 0

In{55):= Simplify[Tr[ClMatrixPower[M, 5]]/2/5]
out[55]= &£(1,2,3,4,7) + §(1,2,3,5,6) +§(1,2.4,5,7) + §(1,2,5,6,7)
In{56]):= ScalarSum{%]

out[56j= 4

Figure 1.1: A randomly generated graph on 7 vertices.
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A nilpotent adjacency matrix for random graphs can also be defined by
attaching edge existence probabilities to the nilpotent generators of Ny.
Using this approach, E(X}) is recovered from the trace of A [7].

In the number of algebra multiplications required, cycle enumeration is
reduced to matrix multiplication. Hence, the time complexity of enumerat-
ing a graph’s k-cycles requires no more than O(kn?) algebra multiplications.
Several NP-complete problems are moved into class P in this context[6].

However, computing higher moments of X requires computing proba-
bilities P( X = £) for £ > 0, and the abelian nilpotent-generated algebra Ny
is not sufficient for this purpose. In order to compute higher moments, it is
necessary to define a nilpotent adjacency matrix with entries in Iy xv @ Ny.

2 Cycles in random graphs

Consider a random graph G = (V, E) on n vertices, V = {v1,...,v,}. Let
2 <k <mn,and let w € {1,2} be defined by

= {1 if G is directed or k = 2 @2.1)

2 otherwise.

For each ordered pair (v;,v;) € V xV, define the probability of existence
of edge (v;,v;) in the graph G by

pi; = P{(vi,v;) € E}. (2.2)

Defining the random variable X} as the number of k-cycles occurring
in the graph, the goal is to compute E(X}) as well as the variance and the
higher moments.

Definition 2.1. Labeling the vertices with nilpotents and the edges with
idempotents, the edge-labeled nilpotent adjacency matriz of G = (V,E) is
defined by

Yi,) ¢ if(5,5) €E
A= 2.3
*J {0 otherwise (23)

for i, € V. It is clear that A € Mat, (Zyxv ® Nv), the algebra of
n X n matrices with entries in Zy xy ® My.

Definition 2.2. Let u € Ty xv @ Ny and define

o= (Hm) ¥ € Zvxv. (24)

ieP(VxV) \:€i
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The p-evaluation of u is then defined as the linear functional

(Vp 1 Ivxv ® Ny = R,

We=( Y, wnGe)= > uye, (2.5)
i€EP(VxV) iI€EP(VXV)
J€P(V) IEP(V)

where ; denotes the product Hpb.
L€L
Ifu=u;;7v(j for some i € P(V x V), j € P(V) where [i| = k, and
|7] = ¢, then w is referred to as a k ® £-vector.

When k > 3, tr A* will give wk copies of each k-cycle in G. In the
particular case k£ = 2, only two copies will be obtained because only one
orientation is possible. Let

= ﬁtr A, (2.6)

Because the graph contains no multiple edges and no loops, 1, = 0

and all values of k are hereby assumed to be greater than or equal to 2.

Because the edge probabilities are independent, the -evaluation of each

k @ k-vector is the probability of existence of a k-cycle in G. Then, 7

represents the collection of all & ® k-vectors associated with the edges and
vertices belonging to the k-cycles of nonzero probability in G.

Further,
EXe)= ) P{U)} = (m)y, (2.7)

k-cycles

where U; denotes the event that the i*h k-cycle exists, X} is the number of
k-cycles in G, and (7)., denotes the y-evaluation of 7.
Now define the map

9 :Tyxv @Ny = Ty xv @ Np(vxv)

by linear extension of
9 (’rg CJ) =765 (2.8)

where £ € P(V x V) is a fixed multi-index, j € P(V) is an arbitrary multi-
index, and f : P(V x V) — [2IV*V]] is an enumeration of the power set of
V x V. Each subset of V x V is now associated with one nilpotent generator
of the 2!V *V|-dimensional algebra Np(v xv). The associated vertex sets are
discarded.

With the proper tools in place, the strategy is as follows:
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e Considering the k*" power of the edge-labeled nilpotent adjacency
matrix reveals the collection of k-cycles within the graph. The trace
is an element of the algebra. These cycles are then associated with
nilpotent generators in a higher-dimensional algebra.

o Taking the £ power of the resulting element recovers all distinct ¢-
tuples of k-cycles because each k-cycle is associated with a distinct
nilpotent element.

¢ Because the edges of the graph are associated with idempotent ele-
ments, the probability evaluation can be applied to edge sets repre-
senting multiple k-cycles regardless of multiplicity. That is, a single
edge may be part of numerous distinct cycles, but its probability need
only be considered once when computing the probability of existence
for a given collection of cycles.

(k-1)
w
refers to the maximum number of k-cycles possible in a graph on n vertices.

Remark 2.3. Throughout the remainder of the paper, the quantity (Z)

Theorem 2.4. Let A be the edge-labeled nilpotent adjacency matriz of a
random graph G = (V, E). For fized positive integer k < |V|, let X denote
the number of k-cycles in G, and let 7, = 9 (Z:tr(A¥)) . Then,

Rt O L T
P{X, =¢} = <(—1)"2e—’~ -2y ( 13)' fd — -T—z‘-> . (2.9)
—~ ! !

Proof. Given 7} = 9(7i), denote by fk(i) the k ® k-vector associated with
the i*" k-cycle enumerated in G. Utilizing idempotency of the edges and
nilpotency of the vertices and expanding 7 in terms of the k-cycles it
represents, namely

()
s X A
i=1

~

one can see that Z T,Si) ';”',Ej ) gives the collection of s ® t-vectors associated
i<j

with edge- and vertex-sets of pairs of k-cycles, where s and ¢ are positive

integers satisfying k < s,t < 2k. Because distinct cycles are associated with

distinct nilpotent generators, a straightforward inductive argument shows

that for any positive integer 7,

#9 = 41 Z )Ll (2.10)

i1 <ig < <ij
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Because the ¢-evaluation determines the probability of distinct subsets
of edges in G, it is further evident that the probability that G contains a
particular ¢-tuple of k-cycles is given by

PWU, NV, N---NU;,) = <'r‘-,£"‘) .. .+,§"')>¢ . (2.11)

Now the probability that G contains one or more k-cycles is found by
the principle of inclusion-exclusion:

PU1 U+ VU g = S PU) - ) PU, NU,)

i) <iz

n) (k=11
+ S PU, U, U;) -+ (-1 55 I]IP(U,-,n---nUi(z) o)
)1 <ia<is
~(1 ~(%) (7 (1) ~(7) A(€
- <ZT’5)> - <ZT:§’T;§’)> +< T 4050 )>
i . i<j 0 i<j<e "

n —1)! n) (k=DI

Y (R <+,gn...f,g(k) = >> . @12)
7]

This is simplified by applying (2.10) as follows:

. 1, 1,.
PU,U-- U U(:)gk;xp) = (Tk)‘p -3 (Tk2>‘l’ + 3 Tk3>¢ — e
n !k—-l!l_I]
(—l)l(k) w . (n) (=13
e (T k)T . (2.13)
ny (k—1)!
((k) ul ’)' < >‘P
Note that in the remainder of the proof, superscripts on 7, are exponents.
Then, by linearity of p-evaluation and nilpotency,
PULU- - UUmygoim) =1~ (e ), - (2.14)

Similarly, the probability that G contains two or more k-cycles is com-
puted by inclusion-exclusion. That is,

P(Xk>22) = Y PU, NU,)~ > B, NU;,NU;)

i) <ig i1<iz<ia
n\ (k=1)t
+oeet (—1)[(k) w ]P(Uil n---N U‘l(:) (=1}t )
) 1,. 1,
= () = 5 (B + 3 ()=

DI, ey
+ g(—(lz))TL_;l)_'-)T- <7“-k (::)%L>‘P, (2.15)
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which is simplified to become
P(Xx22) = (e + 7 —1),. (2.16)

It is now evident that if X denotes the number of k-cycles appearing
in G, the probability that G contains £ or more k-cycles is equal to the
probability one or more ¢-tuples of k-cycles exist in G. Using inclusion-
exclusion and induction, the following result is obtained:

u»{xk(n)ze}=<( e 4 50 CH 1)’”' > . @)

7=0

Therefore,

P{Xy = £} = P{X > ¢} -n»{xk >e+1}=

it+e- t(-1)
<( 1)8 —‘rk+Z( 1) j+€ > _<(_1)e+1e—i~k +E( :.lj)!.'l+l7':kj>

@ =0 ®
s —1)i+ et
< (—1)2e~™ — Z( ) _—:v'> (2.18)
j=0 "
0

Corollary 2.5. Let m > 1 be fized, and let G be a random graph on n
vertices with associated edge-labeled nilpotent adjacency matriz A. Then
fork <m,

E(ka) - igm <(_1)£2e-—'i'k _ Z( 1)J+l j %:> . (219)

=1 "

The variance of Xy is then given by

varX = i (e2 <( 1)‘2e~" — 22( D it’f,—e> )-(ﬁ)j’.
"4

=1 3=0
(2.20)

For a finite random graph, the asymptotic behavior of "!im E(X,™) is
—00
characterized in the next proposition.
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Proposition 2.6. Let G = (V| E) be a finite random graph. Fiz k > 2,
and define the following quantities:

= P{X, = £} (2.21)
A =max{¢: c¢ # 0}. (2.22)

Then,

m A=l avied 2 A
lim SXET) <( —1)*2e -Tk—2z( ? w-"‘—> . (2.23)

moco A 5
J=

Proof. By definition of the m*® moment of X,

EX™) = e P{X = g} = 3 emc. (2.24)
4 14

Let A denote the maximum value of £ such that ¢; # 0. Then,

%{ﬁ—) = —Cg =c\+ Z et (2.25)
e<r\

Observing that A is finite, ; < 1, and 0 < c¢ < 1, the proof is complete. [

3 Convergence of Moments

Let G = (G,) denote a sequence of random graphs with vertex sets V,
and edge sets E,. For each n > 0, let G, denote a random graph on n
vertices having no more than 2(3) edges, with probabilities of existence
{p1,---,p z 2)} Further assume that each G, is a subgraph of Gn4;. In

other words,

v; €V, =y € Vn+1, and
(vi,v;) € Ep = (vi,v;) € Enqa.

For each n > 0, the edge-labeled nilpotent adjacency matrix of G, has
entries in Zy, xv, ® My,. Each algebra is therefore canonically embedded
in the infinite-dimensional algebra 7 ® NV, defined by

IQN =P @vixv. ®My,). (3.1)

n=1
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The -evaluation is extended naturally to Z ® A/. The goal is to de-
termine a condition on the matrices {A,} so that nlingo E(Xk(n)™) < o0.

That is, a condition is sought to ensure that

oo ) +C s ¢
nli'rrolo;ﬂ <(—1)’2e"'=(") Z( 1) )i — Tk(g) > < co.
- ®

J=0
(3.2)
For the case m =1,
. /1 k
lim E(Xx(n)) = lim <Etr (A,. )>¢ , (3.3)

provided the limit exists. The next theorem gives a sufficient condition for
convergence of higher moments.

Theorem 3.1. Let (G,) = (V,, E;) be an increasing sequence of random
graphs such that G, is a subgraph of Gp1 for alln. Let integers k,m > 2
be fized. For eachn € N, let A, denote the edge-labeled nilpotent adjacency

matriz of Gy, and define Tx(n) = 9 (;—}lztr (Ank) . Suppose that there

exist positive real numbers L and N such that for all £ > L, the following
inequality is satisfied for alln > N:

J+é-1 .
<( 1)! =7k (n) +Z (= 1) Tk(n)3> < ﬁ (3.9)

]

Then lim E(Xi(n)™) erists.
Proof. Let k be fixed. Observe that for fixed n and ¢,
P(Xk(n) =€) < P(Xk(n) > £). (3.5)

Hence,

<(-1)‘2e-n(n) Z( l)m n)? -Lk(eni)e>

< <( 1) _T"(")+Z( 1);“_ Tk(ﬂ)j> . (3.6)

j=0 @

14

236



Now,

L
E(Xp(n)™) = " <(—1)fze—+k<n> Z( 1) T (n) — rk(erlz)>

=1 ®

+e§ em<(—1)‘2e—mn> Z( 1.”‘ j____*k(e’!‘)e> ER)
=L+1 P

Assuming the conditions in the statement of the theorem and applying
inequality (3.6) yield the following inequality, valid for all » > N:

i m <(_1)£2e—ﬁ=(n) Z ( 1)]+£ j _ 'i"k(e":')e>
€=L+1 @
Z em+1+e = z g1+e (3.8)

Z——L+1 e=L+1

O

4 Links to Quantum Computing

The algebra Ny can be constructed within the group algebra of Z,". The
idempotent-generated algebra Ty « v can be realized using mutually orthog-
onal hyperplane projections in RIY*VIl. The realization chosen here unites
both algebras within a context familiar to physicists and quantum proba-
bilists.

For fixed n > 0, the n-particle fermion algebra is defined as the as-
sociative algebra generated by the collection {f;, fi*}, where 1 < i < n,
satisfying the following:

{fit fi} =0y (4.1)

Unfi} = (A%, 5%} =o0. (42)

Here, {a,b} = ab+ ba is the antl-commuta.tor, and d;; is the Kronecker

delta function. For each 1 < i < n, f;* denotes the i*h fermion creation
operator, while f; denotes the i* fermion annihilation operator.

When V is a set with n elements, the algebra Ny is constructed within
the 2n-particle fermion algebra by writing

=T (4.3)
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The algebra Zy xv is constructed within a 2n(n — 1)-particle fermion
algebra. Fix n > 0 and consider elements of the form

i .+ n2—n+i +2_ i
yi = % (1+ (fl+2fz ) (f + -;-fn n+1)) ) (44)

Direct calculation shows

Litfit f,‘z_,‘+‘-+f:2_“ i
1+ (4% )( ~intont

2

V= 3
_L L (BB (Frrnest S
4 2 2 2
LU (B SN (Froonti+ B (ft 5T (Frni ot Fnne
(i) ()
- 1 =7. (4.5)

Because each +; is written using a pair (4,n® — n + i) of fermion cre-
ation/annihilation operator pairs and because these pairs are disjoint for
i # j, direct calculation also shows that «;y; = ;v for i # j.

Letting F denote the infinite-dimensional fermion algebra,

IQNCFQ®F.

The edge-labeled nilpotent adjacency matrix associated with a finite
graph can itself be considered a quantum random variable whose m'* mo-
ment corresponds to the number of m-cycles occurring in the graph [5].
Considering sequences of such quantum random variables associated with
ascending sequences of random graphs is a topic for further research.
Acknowledgment. The authors owe a debt of gratitude to the referee for
a number of valuable suggestions.
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