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Abstract

In this article, we give new lower bounds for the size of edge
chromatic critical graphs with maximum degrees of 8, 9 respectively.
Furthermore, it implies that if G is a graph embeddable in a surface S

with characteristics ¢s = —1 or —2, then G is class one if maximum

degree A > 8 or 9 respectively.
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1 Introduction

A k-edge-coloring of a graph G is a function ¢ : E(G) — {1,--- ,k} such
that any two adjacent edges receive different colors. The edge chromatic
number, denoted by x.(G), of a graph G is the smallest integer & such
that G has a k~edge-coloriﬁg. Vizing’s Theorem [13] states that the edge
chromatic number of a simple graph G is either A or A+1, where A denotes
the maximum vertex degree of G. A graph G is class one if x.(G) = A and
is class two otherwise. A class two graph G is critical if xe(G — €) < x(G)
for each edge e of G. A critical graph G is A-critical if it has maximum
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degree A. The following conjecture was proposed by Vizing [14] concerning

the sizes of critical graphs.

Conjecture 1.1. If G = (V, E) is a critical simple graph, then |E| >
HIVI(A - 1) +3).

We list some results of critical graphs with small maximum degrees in

the following.

Theorem 1.2. Let G be a critical graph with mazimum degree A. Then,
(1) (I5)) |El 2 22|V| 6 <A <8,
(2) (9)) |E| > 2|V| if A > .

2|\v|, B|V|, &|V|, }IV] if A=4,5,6,T respectively.

A&t |y f8<ALIT.
4) (1) 1Bl > { AV, 2|V, 8|V| if A=10,11,12 respectively.

(3)((15, 16]) |E| > {

In section 3, we will present new lower bounds on the size of A-critical
graphs: |E(G)| > 1T”IV(G)| if A = 8, and |E(G)| = 3.6|V(G)| if A = 9.
These bounds are better than those in [9] and [18] and are closer to Con-
jecture 1.1 for A = 8,9. In section 4, by applying these results, we obtain
that if G is a simple graph with maximum degree A that is embeddable in
a surface S of characteristic cg = —1, or =2, then G is class one if A > 8
or 9 respectively.

Let V and E be the vertex set and edge set of a graph G, respectively.
Let |V] and |E| be the cardinality of V and E of G, respectively. Two
vertices are adjacent to each other if there is an edge of G connecting them.
A k-vertex (or, (< k)-vertex, (= k)-vertex) is a vertex of degree k (or
< k, > k, respectively). For a vertex z € V(G), let N(z) be the set of
vertices adjacent to x. A vertex y is a neighbor of z if y € N(z). A k-
neighbor y of z is a neighbor of = having a degree of k. For V' C V(G),
let N(V') = Ugey'N(z). Vi (or Voi, V<i) is the set of k-vertices (or,
(> k)-vertices, (< k)-vertices, respectively). Let d(z) be the degree of the
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vertex z. We define di(z) (or d>x(z), d<i(z)) as the number of k-vertices

(or (= k)-vertices, (< k)-vertices, respectively) adjacent to z in G.

2 Adjacency Lemmas

In this section, first we list some useful known adjacency Lemmas of critical
graphs, later we give an improved adjacency Lemma. The following one

belongs to Vizing [14], and we refer it as VAL.

Lemma 2.1. (VAL) If G is a A-critical graph and xy is an edge of G, then
z is adjacent to at least (A—d(y)+1) A-vertices other thany, d(z)+d(y) >

A + 2 and every vertez is adjacent to at least two A-vertices.

Zhang ([17]) gave an adjacency lemma on two adjacent vertices whose
sum of degrees is A + 2, it was obtained independently by Sanders and

Zhao [12]. But in this paper, it is referred as Zhang’s Adjacency Lemma.

Lemma 2.2. (Zhang [17]) Let G be critical, zy € E(G) and d(z) + d(y) =
A+ 2. The following hold:

(1) each neighbor of x,y is a A-vertez; (2) every vertez of N(N(z,y))\
{z,y} is of degree at least A — 1; and (8) if d(z),d(y) < A, then every
vertez of N(N(z,y)) \ {z,y} is a A-vertez.

For an edge e of a A-critical graph G, G—e has a A-edge-coloring. Given
two colors j and k, the subgraph of G — e induced by the edges colored
either j or k, call it G(4,k), has maximum degree two, and is thus the
disjoint union of paths and cycles. A bi-colored (k, j)-path is a component
of G(k, j) which is a path. Let Py j(z) be a bi-colored (k, j)-path starting
at z. A vertex v sees color j if v is adjacent to an edge colored by j. Given
a vertex v in G that sees j and doesn’t see k, swapping (k, j) along v means
switching the colors j and k along the (J, k)-bi-colored path staring at v.

If edge zy misses g, swapping zy to a color ¢ means that swapping (j, q)
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along = where zy colored by j. Let ¢ be a A-edge-coloring of G — e. Let

#(v) be the set of colors appearing on the edges adjacent to the vertex v.
For the purpose of simplicity, in this paper, let G be the A-critical graph

with 7 < A < 9. Following lemmas summarize results in [6-11] which will

be used to prove the main theorem.

Lemma 2.3. [10] Let x be a 3-vertex in G. Then
(1) there are at least two A-vertices y in N(x) with d<a-2(y) <1, end

(2) = has a neighbor which is adjacent to at least A — 6 A-vertices z with
d<a-3(z) =0.

Lemma 2.4. [10] Let = be a 4-vertez in G.

(1) If = is adjacent to four A-vertices and one of its neighbors is adjacent
to three (< A — 2)-vertices, then each of the remain three neighbors of = is

adjacent to only one (< A — 2)-vertez, which is x;

(2) If z is adjacent to a (A—1)-vertex, then there are at least two A-vertices
in N(z) which are adjacent to at most two (< A — 2)-vertices. Moreover,
if T is adjacent to two (A — 1)-vertices, then each of the two A-neighbors

is adjacent to ezactly one (< A — 2)-vertex, which is z.

For the sake of convenience of discussion, we denote by 4;(z) the mini-
mum degree of vertices adjacent to z. The following three lemmas could be
obtained by mimicking proofs of Lemma 2.5, lemma 2.7 in [7]and lemma
2.5 in [6] without restriction of A > 10. To avoid repetition, we omit the

proofs here.

Lemma 2.5. [7] Let = be a 5-vertez in G and w be a §;(z)-neighbor of z.

(i) If d(w) = A and it is adjacent to four (< A — 3)-vertices, then, the
remain neighbors of = are all A-vertices and none of them is adjacent to

any (< A — 3)-vertices other than z.
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(i) d(w) = A — 1.

(4-1) If w is adjacent to two (< A — 2) vertices other than =z, then the
remain four neighbors of z are all A-vertices and each of them is adjacent

to all (> A — 1)-vertices other than x.

(4-2) If w is adjacent to one (< A — 2) vertices other than z, then there
are three (> A — 1)-neighbors y of x including at least one A-neighbor
satisfying the following: if y is a A-vertez, then it is adjacent to at most
two (< A = 1)-vertices; if y is a (A — 1)-vertex, then it is adjacent to only

one (< A — 1)-vertex which is z.
() d(w) = A — 2.

(#i-1) If w is adjacent to one (< A — 2)-verter other than z, then all
other four neighbors of x are A-vertices and each of them is adjacent to

(= A — 1)-vertices other than z.

(i4i-2) If w is adjacent to only one (< A — 2)-vertex which is z, then there
are three (> A — 1)-neighbors of = including at least two A-neighbors y
satisfying the following: if it is a A-vertex, then it is adjacent to at most
two (< A — 2)-vertices; if it is a (A — 1)-vertez, then it is adjacent to one

(£ A — 2)-vertex which is «.

Lemma 2.6. [6] Let x be a 5-vertez of a A-critical graph G. |[VaANN(z)| =
2 and |VA_1 N N(a:)| = 3, then N(N(.'B) N VA) - VZA—z-

Lemma 2.7. (7] Let z be a 6-vertex in G and w be a 6,(x)-neighbor of x
where 81(z) = A — 2, or A — 1. Then we have following:

(i) dw)=A~2.

(i-1) If w is adjacent to three (< A — 2)-vertices, then each of the five
neighbors of z other than w is A-vertez and is adjacent to all (> A — 2)-

vertices other than z.
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(i-2) If w is adjacent to two (< A—2)-vertices, then there are four (> A—1)-
neighbors of z including at least two A-neighbors y satisfying: if y is a
A-vertez, then it is adjacent to at most two (< A — 2)-vertices; if y is a

(A — 1)-vertez, then it is adjacent to one (< A — 2)-vertex which is z.

(i-8) If (i-1) and (i-2) do not happen, then each A — 2-neighbor of x is
adjacent to one (< A —~ 2)-vertex which is z, and each A-neighbor of x is

adjacent to at most three (< A — 2)-vertices.
(i) d(w) = A -1.

(4-1) If w is adjacent to four (< A — 3)-vertices, then each of the five
neighbors of = other than w is A-vertez and is adjacent to all (> A — 2)-

vertices other than x.

(i-2) If (ii-1) does not happen, then each (A —1)-neighbor of w is adjacent
to at most three (< A — 3)-vertices.

Lemma 2.8. [11] Let = be a j-vertezx of a A-critical graph which is adjacent
to a k-vertez y. if 7 < A,k < A, then x is adjacent to at least A — k +1
vertices z satisfying the following: z # y; z is adjacent to at least 2A —j—k
vertices different from x of degree at least 2A — j — k+ 2; and if z is not
adjacent to y, then z is adjacent to at least 2A — j — k+1 vertices different
from z of degree at least 2A — j - k + 2.

Lemma 2.2 (L.Zhang [17]) gives some information on two adjacent ver-
tices of a critical graph whose sum of degrees is A + 2. Naturally, we ask
that are there any similar results for two adjacent vertices of a critical graph
whose sum of degrees is A + 37 The following Lemma gives partial answer

to the question.

Lemma 2.9. Let x be a j-vertezx of a critical graph G which is adjacent to
a vertez w such that d(z) + d(w) = A + 3 and [N(z) N V<a_1| = 2. Then
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there are at least j — 2 A-vertices y € N(x) satisfying: y # w;y is adjacent
to all vertices of degree at least A — 1.

Figure 1: A-edge coloring ¢ of G-zw exhibited at N(z) U N(w) in

Lemma 2.9.

Proof. Since G is critical, G —zw has an edge A-coloring. Each color shows
either at z or at w, or G has an edge A-coloring. Without loss of generality,
the edges incident with z in G — zw are colored 1,---,j — 1, while those
incident with w are colored j —1,--- , A since 7 + k = A + 3 (See Figure
1).

By Lemma 2.2-2.4 in [?], we have following observation, that is, there
are j—2 vertices z in N(z)\ {w} with zz colored by a color in {1,--- ,5-2}
so that each of them has degree at least A — 1 where j + k= A+ 3. On
the other hand, by VAL, z is adjacent to at least j — 2 A-vertices. Thus it
is sufficient to consider following two cases without loss of generality.

Case I: There is a A-vertex z in N(z) \ {w} with zz colored by color
4 —1 and there is a < (A — 1)-vertex y in N(z) \ {w} with zy colored by a
color in {1,---,5 —2}.

Case II: There is a (< A — 1)-vertex z € N(z) \ {w} with zz colored by
j =1, and there are j — 2 A-vertices y in N(z) \ {w} with zy colored by
colors in {1,--.,5 —2}.

Since proof of Case I is not only similar to, but also harder than that

of Case II, we are to give the proof of case I only.
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We call a swapping (i,7) along a vertex u is a nice swapping if the
swapping does not affect the colors of edges incident with vertices z and w.

Proof of Case I. Without loss of generality, we assume zy is colored 1.
It is sufficient to show that z is adjacent to all vertices of degree at least
A — 1. We use C to denote the set of colors: {1,---,A}.

(1) We claim that y may miss one color j — 1 only.

(1-1) Claim that y sees each color in {j,--- ,A}.
It is obvious since each path P, x(z) must end at w for each k €

{J, ’A}.

(1-2) Claim that y sees each color in {1,---,j —2}.

For a color r € {2,---,j — 2}, if y misses it, then we can do a nice
swapping (7, A) along z. Under current edge coloring, y sees r but misses
color A which contradicts (1-1). Hence y may miss color j — 1 only since
dy)<A-1.

(2) Consider a neighbor u of z such that zu is colored r € {j,---,A}. We

claim that « must see each color in {1,-:- ,A}.

(2-1) u sees j — 1. Otherwise, we recolor zu,zz with j — 1,7 respectively.

Under current coloring, y must see j — 1 but 7. A contradiction to (1).

(2-2) u sees each color in {j,-- ,A}.

Otherwise, assume that u misses £ € {j,- -+ , A}. Here, we use P; 4(v)4 to
denote (4, g)-bi-colored path starting at v under edge coloring ¢ of G — zw.
Consider P;_1,¢(u)s. We do a nice swapping (j — 1,¢) along u. Denote new
edge coloring of G — zw by ¢'.

If Pj_1,¢(u)g ends at z, then it doesn’t pass through y as y misses j —1.
Note that colors of edges adjacent to y don’t be affected under ¢'. So, by
using same argument as in (1), ¥ must see j — 1, but misses color £. A

contradiction.



If Pj_1,(u)g ends at y, note that colors of edges adjacent to = and
w haven’t been affected under ¢’. Now y sees j — 1, but it misses ¢, a
contradiction rises again.

Now we consider the case that P;j_; ¢(u),s doesn’t end either at z or at
y. Under ¢', we recolor zu,zz with j — 1,7 respectively. Denote current
edge coloring of G — zw by ¢”. Please note that colors of edges adjacent
to y haven’t been affected. Under ¢”, by using same argument as in (1), y

must see j — 1, but misses color r which causes a contradiction.

(2-3) We claim that u sees each color in {1,---,j — 2}.

Without loss of generality, we assume that « misses color 1. We do a
nice swapping (1, A) along z. By mimicking the proof as in (2-1) and (2-2)
under current edge coloring of G — zw, we have that u must see each color

in C\ {A,2,---,7— 1} which implies that u sees color 1. A contradiction.

(3) Consider a neighbor v of z such that zv is colored by a color b €

{1, ,7 ~ 2}, we are to show that v must see each color in C \ {j — 1}.

(3-1) Claim that v sees each color in {j,--- ,A}.

Assume that v misses a color p € {j,--- ,A}. Note that v and z are not
in the same component of G(b, p), and so as vertex v and w. Hence we do a
nice swapping (b, p) along v. Now v sees p. By applying the same argument

in (2), we have that v sees each color in C. A contradiction.

(3-2) Claim that v sees each color in {1,---,j —2}.

Assume that v misses a color ¥’ € {1,-:-,7 — 2}. We implement a nice
swapping (b',A) along z. By (2), v sees each color in C, a contradiction.
Hence, from (3-1) and (3-2), we obtain that d(v) > A — 1. Thus, we finish

our proof of Case I.
O
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3 Main Results

Theorem 3.1. Let G be a A-critical graph with7 < A < 9. Then |E(G)| >
Mguq where ¢ = 6.5 or 7.2 if A =8 or 9 respectively.

Proof. Suppose to the contrary, the Theorem is not true. Then
Y zev(d(z) —g) < 0. We are to use charge-discharge method to get con-
tradictions. We call ¢(z) = d(z) — ¢ the initial charge of the vertex x and

will assign a new charge to each vertex z according to the following rules.

(R1) Let z be a 2-vertex and u,v € N(z). z receives d(y) — ¢ from each
adjacent A-vertex y and each z € N(u)\ {z,v} sends ﬂfAﬂ to z via u and
each z € N(v) \ {z,u} sends &At‘l to = via v. Note that each A-vertex
adjacent to both « and v sends 2 x &A_u to z in total.

(R2) Let z be a 3-vertex. Let w € N(z) with d(w) = A — 1. T receives
d(y) — ¢ from each adjacent (> A — 1)-vertex y, and each A-vertex z €
N(z,w)\ {z,w} sends AT;Q to = via w. Note that A-vertices adjacent to w

sends at least (A —3) X A—;‘l to z in total.

(R3) If z is a 6-vertex and A = 8, then z receives 935— from each adjacent

7-vertex, % from each adjacent 8-vertex.

If z is a 7-vertex and A = 9, then x receives % from each adjacent 8-vertex,

9-:;-"’- from each adjacent 9-vertex.

(R4) Let = be a (< |g] — 1)-vertex. Let

e=lal ifk=A.

25 ifk=7A=8
02 fk=8A=09.

ak

Note that ¢(z) < 0, z receives k—":J% from each adjacent k-vertex y

for k£ > A — 1 where d(sml_l)(y) =j and d|4|(¥) = s-
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Let ¢/(x) be the new charge of each vertex.

(I) Claim that ¢/(z) > 0 if d(z) =

Let u,v € VA N N(z). By Lemma 2.2, each of u,v is adjacent to at
least (A — 2) A-vertices different from u,v. Therefore, by (R1), ¢/(z) >
c(z)+2x(A-g)+2x(A-2) x A-A_—‘Z > 0 where A = 8,9 respectively.

(II) Claim that ¢/(z) > 0 if d(z) + 81(z) = A + 2.

Let y be a vertex adjacent to z with d(z) + d(y) = A + 2. Assume
that z is a d-vertex with 3 < d < |g|. By Zhang’s Adjacency Lemma,
[N(z)NVa| = d—1 and each vertex in N(N(z))\{z,y} has degree > A—1.
Considering vertex y may have degree of < g and z,y may share some A-
neighbors, so z receives at least 553 from each adjacent A-vertex and
maz{d(y) — q,0} from y. Please note that 6;(z) is the minimum degree of
vertices adjacent to z. So by (R2),(R3),(R4), and lemma 2.3-2.7,

[ —35+2x15+05=0 if d(z) =3,81(z) =7, A =8.
(A-g)+3x(A-qg-d)y>0 ifd(z)=4,6(z)=A-2,A=8,9.
(5-q)+4x452>0 if d(z) = 5,6:1(z) = A —3, A=8,9.

d(z)2{ -05+5x% >0 if d(z) = 6,61(z) =4, A =8.

-42+2x184+08+5x L8 >0 ifd(z)=3,d(z)=8 A=9.

—l2+5x178>0 if d(z) = 6,8:(z) =5, A =9.

[ -02+6x%2>0 ifd(z) =T7,61(z) =4, A =09.

Now we assume that z is a (> |g])-vertex. By Lemma 2.2 and (R4), z
sends out at most d(z) — ¢ to its adjacent vertex y, so ¢/(z) > 0.

(IIT) Claim that ¢/(z) > 0 if d(z) + d1(z) = A + 3 and d(z) < |g].

First we consider that of d(x) = 3 and 4, (z) = A. By Lemma 2.3, there
are two A-vertices in N(z), each of them is adjacent to at least (A — 1)
(= A —1)-vertices. Then z receives at least 2 x 1.5 + 12 from adjacent
vertices if A = 8. So ¢/(z) > —3.5+ 3.75 > 0 for A = 8. Furthermore, by
(R2), z receives at least 2x 1.8+18 if A = 9. So, ¢/(z) > —4.24+3.64+0.9 >0
for A=09.
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Next we consider a vertex z with d(z) > 4 and d(z) + di1(z) = A + 3.
Let y be a vertex adjacent to = with d(z) + d(y) = A + 3. Assume that z
is a d-vertex with 4 < d < |g]. By Lemma 2.8[11] and Lemma 2.9, there
are at least d — 2 A-vertices in (N(z) \ {z,y}, each of them is adjacent to
all vertices of degree > A — 1. Be aware that vertex y may have degree < ¢
and z,y may share some A-neighbors, so = receives at least A—;‘l from each
adjacent A-vertex and maz{d(y) — ¢,0} from y. So by Lemma 2.9,2.5 and
2.7, (R3) and (R4), we have

((A—q)+2x(A—q)>0 ifdz)=4,8(z)=A—-1,A=809.
-15+3x L8>0 if d(x) = 5,81(z) =6, A = 8.
—054+4x2%E>0 if d(z) = 6,8,(z) =5, A =8.

(@) > 4 +4x 52> if d(z) 1(z)
-22+3x 12+ 1850 ifd(z)=5,0(zx)=7A4=09.
-12+4x % >0 if d(z) = 6,61(z) =6, A =09.

[ —02+6x%2>0 if d(z) = 7,01(z) =5, A=9.

From now on, by (II) and (III), we consider the cases of d(z)+d(z) > A+4,
and of d(z) > |g] if d(z) + 61 (z) = A + 3.

(IV) Claim that ¢(z) > 0 if d(z) = 4.

By discussion in previous paragraph, we have that ;(z) = A. There are
two cases may arise: either there is one A-vertex y € N(z) withd<a_2(y) =
3 and each of rest vertices 2 € N(z) has d<a—2(2) = 1, or there is at
least one A-vertex y € N(z) with dea_2(y) = 1 and there are at most
three vertices z € N(z) such that d<a_2(z) < 2. For former case, by
(R4), z receives at least —Asl‘l +3x(A-q) >250r32for A =28or
9 respectively, so ¢’(z) > 0. For later case, by (R4), z receives at least
3x A—;‘l + (A — q) > 2.5 or 3.2 from its adjacent vertices for A = 8 or 9

respectively. Hence, ¢/(z) > 0.

(V) Claim that ¢(z) > 0 if d(z) = 5.

If 8;(z) = A — 1, to avoid repetition, we consider the worst case, that is, =

is adjacent to two A-vertices and three (A — 1)-vertices. By Lemma 2.5(ii),
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there are two A-vertices in N(z) which incident with all vertices of degree
of > A — 2. Note that each adjacent (A — 1)-vertex sends at least —Alsl;‘l
to z. Hence, ¢'(z) >2(5—¢) +2x (A ~¢—3 x Qlalﬂl)+3x 9;};1!2 > 0if
hiz)=A-1,A=8,09.

If 6;(z) = A, by Lemma 2.5,

da) s | TIBFmIRAX 153X 4R 5x P} >0 ifA=8.
| -224min{ax183x32+185x 8150 fA=9.

(VI) Claim that ¢/(z) > 0 if d(z) =

If §1(z) = A - 2, = is adjacent to at least three A-vertices. Let w be
8, (z)-neighbor of z. By Lemma 2.7, we consider following three cases.

(a) d(w) = A — 2 with d<a_3(w) = 3 and each of remain vertices z €
N(z)\ {w} has d<a—s(z) = 1. So by (R3), z receives at least 3x %2 = 0.5
if A =8, and z receives at least 3 x 1.8 > 1.2 if A = 9. Hence, ¢/(z) > 0.

(b) d(w) = A — 2 with d<a—2(w) = 2 and each of rest vertices z €
N(z) \ {w} has dea—2(z) < 2. Then z receives at least 3 x &2 = 0.5 if
A=8,and 3x 12 > 1.2if A =9. Hence, ¢/(z) > 0.

(c) Each (A — 2)-neighbor w of z has d<a—2(w) = 1 and each A-
vertex z € N(z) has d<a—2(2) < 3. By Lemma 2.7 and (R4), z receives
3x 5 — 0.5 if A = 8, and z receives at least 3x 8 5 1.2if A = 9. Hence,

(:c) 2 0.

If 6;(z) = A — 1 or A, then z is adjacent to either two A-vertices and
four (A — 1)-vertices, or at least three A-vertices. By VAL, Lemma 2.7,
(R3) and (R4), we have

—0.5 + min{2(5%2) + 4(%2),3(0.5)} > 0 if81(z) =7, A=8.
C@) > -05+6(%8) >0 if S1(z) =8, A=8.
—-1.2 + min{2(1.8),2(%2) + 4(%2),2(38) + 4(0.8)} >0 if1(z) =8, A =0.
5(38)>0 if1(z) =9,A=09,

253



(VII) Claim ¢/(z) > 0 if d(z) =

Note that if A = 9, = sends noting out but receives charges. Since z
is adjacent to at least three 9-vertices, then by (R3), x receives at least
3 x %2 = 0.2 from its adjacent 9-vertices. ¢/(z) > 0. Next, we consider
A = 8. So z may send some charges out. By (II), 8:(z) > 4. By VAL,
(R3) and (R4), d(z) > -1+ (d1(z) —2) x ﬂ—)—- = 0 where d;(z) = 4,5,6
respectively and A = 8. Therefore, ¢/(z) > 0 if §;(z) = 4,5,6. Be aware
that = sends nothing out if 6;(z) > 7.

(VIII) Claim that ¢/(z) > 0 if d(z) =

If &, (z) = 3, then by (II), we consider A = 8 only. Either z is adjacent
to seven (> 7)-vertices and one 3-vertex, or is adjacent to siz A-vertices
and two (< 6)-vertices. By (R3) and (R4), = sends at most max{1.5,2x 13

out. Hence, ¢(z) > 0.
If 6,(z) = 4,5,6 or 7, by VAL, (R3) and (R4), z sends out at most

(15 if 51(z) = 4,5, A=8.
3x% =05 ifdi(z)=6A=8
{18 if 8 (z) = 4,5,6, A =0,
3x %2 =02 if6i(z)="7,A=09.
L 0 if1(x) =7,8, A=8and di(z) =8, A=0.

Hence ¢/(z) 2 0.

(IX) Claim that ¢/(z) 2 0 if d(z) =
Be aware that A = 9 only. If 3 < §;(z) < 7, there are at least (A —
61(z) + 1) A-vertices in N(z) by VAL. Let n* =number of (< 6)-vertices
in N(z), ny =number of 7-vertices in N(z). By (R3) and (R4), = sends out
at most
Matny<a{n® x 2T} =18 if 6i(c) =3,4,5,6,7,A=09.
{ 0 if 61(z) =8, A=09.

Hence ¢/(z) > 0.
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From (I)-(IX), ¢/(z) > 0 and therefore, Zmev(a) d(z) = 0. Since the
discharge rules only move charge around and do not change the sum, we
have 0 < ZzeV(G) d(z) = erv(c) ¢(x) < 0. This contradiction completes
the proof.

4 Class one graphs with cg = -1, —2.

Theorem 4.1. Let G be a simple graph that is embeddable in a surface
8 of characteristic cg = —1, or -2, then G is class one if A > 8, or 9
respectively.

Before we proceed our proof of the Theorem, we need following results

on critical graphs with small orders.

Lemma 4.2. (Beineke and Fiorini [1],Brinkmann and Steffen [2, 8, 4])
(i) There are no critical graphs of even order up to 14;
(ii) there are only two critical graphs of order 11, both of which are 3-
critical;
(iii) Petersen graph minus a vertex is the only non-trivial critical graph on
up to 10 vertices, which is 3-critical;
(IV) There are only three critical graphs of order 18, which are 3-critical.
Proof of Theorem 4.1. By Theorem 3.1 and Theorem 1.2, we only need
to prove it when A = 8,9 respectively. Let V and F be vertex set and
face set of G respectively. Suppose to the contrary, let G be the smallest
counterexample with respect to edges. Then G is A-critical where A = 8,9
respectively. By Eulor’s Formula, we have
{ Teev (@@) —6) + X,ep(d(f) —3) =6 ifes=—1, A=8.
Y zevid(z) —6) + ZIEF(d(f) -3)=12 ifes=-2,A=09
By Theorem 3.1, we have
05x|V|<6 ifcs=-1,A=8.
12x|V|<12 ifes=-2,A=09.
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Hence, |V| < 12 or |[V]| < 10 for A = 8 or 9 respectively. By Lemma 4.2,

we have contradictons.

Remark: The theorem 4.1 was proved in [8]. But the new lower bounds
in this paper imply the results in [8].
Authors thank Dr. Rong Luo for giving helpful suggestions during the

preparation of this paper.
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