A new lower bound on critical graphs with maximum degree of 8 and 9

Xuechao Li*

Division of Academic Enhancement, The University of Georgia, USA

Abstract

In this article, we give new lower bounds for the size of edge chromatic critical graphs with maximum degrees of 8, 9 respectively. Furthermore, it implies that if G is a graph embeddable in a surface S with characteristics $c_S = -1$ or -2, then G is class one if maximum degree $\Delta \geq 8$ or 9 respectively.

Key words: edge chromatic number, critical graph.

1 Introduction

A k-edge-coloring of a graph G is a function $\phi: E(G) \mapsto \{1, \dots, k\}$ such that any two adjacent edges receive different colors. The edge chromatic number, denoted by $\chi_e(G)$, of a graph G is the smallest integer k such that G has a k-edge-coloring. Vizing's Theorem [13] states that the edge chromatic number of a simple graph G is either Δ or $\Delta+1$, where Δ denotes the maximum vertex degree of G. A graph G is class one if $\chi_e(G) = \Delta$ and is class two otherwise. A class two graph G is critical if $\chi_e(G-e) < \chi_e(G)$ for each edge e of G. A critical graph G is Δ -critical if it has maximum

^{*}Email:xcli@uga.edu

degree Δ . The following conjecture was proposed by Vizing [14] concerning the sizes of critical graphs.

Conjecture 1.1. If G = (V, E) is a critical simple graph, then $|E| \ge$ $\frac{1}{2}(|V|(\Delta-1)+3).$

We list some results of critical graphs with small maximum degrees in the following.

Theorem 1.2. Let G be a critical graph with maximum degree Δ . Then,

(1) ([5])
$$|E| \ge \frac{\Delta+1}{3} |V|$$
 if $6 \le \Delta \le 8$.

(2) ([9])
$$|E| \ge \frac{10}{3} |V|$$
 if $\Delta \ge 9$.

$$(3)([15, 16]) |E| \ge \begin{cases} \frac{12}{7} |V|, \frac{15}{7} |V|, \frac{87}{35} |V|, \frac{31}{11} |V| & \text{if } \Delta = 4, 5, 6, 7 \text{ respectively.} \\ \frac{2(\Delta + 3)}{7} |V| & \text{if } 8 \le \Delta \le 17. \end{cases}$$

$$(4) ([7]) |E| \ge \begin{cases} 4|V|, \frac{17}{4} |V|, \frac{46}{10} |V| & \text{if } \Delta = 10, 11, 12 \text{ respectively.} \end{cases}$$

(4) ([7])
$$|E| \ge \begin{cases} 4|V|, \frac{17}{4}|V|, \frac{46}{10}|V| & \text{if } \Delta = 10, 11, 12 \text{ respectively.} \end{cases}$$

In section 3, we will present new lower bounds on the size of Δ -critical graphs: $|E(G)| \ge \frac{13}{4}|V(G)|$ if $\Delta = 8$, and $|E(G)| \ge 3.6|V(G)|$ if $\Delta = 9$. These bounds are better than those in [9] and [18] and are closer to Conjecture 1.1 for $\Delta = 8,9$. In section 4, by applying these results, we obtain that if G is a simple graph with maximum degree Δ that is embeddable in a surface S of characteristic $c_S = -1$, or -2, then G is class one if $\Delta \geq 8$ or 9 respectively.

Let V and E be the vertex set and edge set of a graph G, respectively. Let |V| and |E| be the cardinality of V and E of G, respectively. Two vertices are adjacent to each other if there is an edge of G connecting them. A k-vertex (or, $(\leq k)$ -vertex, $(\geq k)$ -vertex) is a vertex of degree k (or $\leq k, \geq k$, respectively). For a vertex $x \in V(G)$, let N(x) be the set of vertices adjacent to x. A vertex y is a neighbor of x if $y \in N(x)$. A kneighbor y of x is a neighbor of x having a degree of k. For $V' \subseteq V(G)$, let $N(V') = \bigcup_{x \in V'} N(x)$. V_k (or $V_{\geq k}$, $V_{\leq k}$) is the set of k-vertices (or, $(\geq k)$ -vertices, $(\leq k)$ -vertices, respectively). Let d(x) be the degree of the vertex x. We define $d_k(x)$ (or $d_{\geq k}(x)$, $d_{\leq k}(x)$) as the number of k-vertices (or $(\geq k)$ -vertices, $(\leq k)$ -vertices, respectively) adjacent to x in G.

2 Adjacency Lemmas

In this section, first we list some useful known adjacency Lemmas of critical graphs, later we give an improved adjacency Lemma. The following one belongs to Vizing [14], and we refer it as VAL.

Lemma 2.1. (VAL) If G is a Δ -critical graph and xy is an edge of G, then x is adjacent to at least $(\Delta - d(y) + 1) \Delta$ -vertices other than y, $d(x) + d(y) \geq \Delta + 2$ and every vertex is adjacent to at least two Δ -vertices.

Zhang ([17]) gave an adjacency lemma on two adjacent vertices whose sum of degrees is $\Delta + 2$, it was obtained independently by Sanders and Zhao [12]. But in this paper, it is referred as Zhang's Adjacency Lemma.

Lemma 2.2. (Zhang [17]) Let G be critical, $xy \in E(G)$ and $d(x) + d(y) = \Delta + 2$. The following hold:

(1) each neighbor of x, y is a Δ -vertex; (2) every vertex of $N(N(x, y)) \setminus \{x, y\}$ is of degree at least $\Delta - 1$; and (3) if $d(x), d(y) < \Delta$, then every vertex of $N(N(x, y)) \setminus \{x, y\}$ is a Δ -vertex.

For an edge e of a Δ -critical graph G, G-e has a Δ -edge-coloring. Given two colors j and k, the subgraph of G-e induced by the edges colored either j or k, call it G(j,k), has maximum degree two, and is thus the disjoint union of paths and cycles. A bi-colored (k,j)-path is a component of G(k,j) which is a path. Let $P_{k,j}(x)$ be a bi-colored (k,j)-path starting at x. A vertex v sees color j if v is adjacent to an edge colored by j. Given a vertex v in G that sees j and doesn't see k, swapping (k,j) along v means switching the colors j and k along the (j,k)-bi-colored path staring at v. If edge xy misses q, swapping xy to a color q means that swapping (j,q)

along x where xy colored by j. Let ϕ be a Δ -edge-coloring of G-e. Let $\phi(v)$ be the set of colors appearing on the edges adjacent to the vertex v.

For the purpose of simplicity, in this paper, let G be the Δ -critical graph with $7 \le \Delta \le 9$. Following lemmas summarize results in [6-11] which will be used to prove the main theorem.

Lemma 2.3. [10] Let x be a 3-vertex in G. Then

- (1) there are at least two Δ -vertices y in N(x) with $d_{\leq \Delta-2}(y) \leq 1$, and
- (2) x has a neighbor which is adjacent to at least $\Delta-6$ Δ -vertices z with $d_{\leq \Delta-3}(z)=0$.

Lemma 2.4. [10] Let x be a 4-vertex in G.

- (1) If x is adjacent to four Δ -vertices and one of its neighbors is adjacent to three $(\leq \Delta 2)$ -vertices, then each of the remain three neighbors of x is adjacent to only one $(\leq \Delta 2)$ -vertex, which is x;
- (2) If x is adjacent to a $(\Delta-1)$ -vertex, then there are at least two Δ -vertices in N(x) which are adjacent to at most two $(\leq \Delta-2)$ -vertices. Moreover, if x is adjacent to two $(\Delta-1)$ -vertices, then each of the two Δ -neighbors is adjacent to exactly one $(\leq \Delta-2)$ -vertex, which is x.

For the sake of convenience of discussion, we denote by $\delta_1(x)$ the minimum degree of vertices adjacent to x. The following three lemmas could be obtained by mimicking proofs of Lemma 2.5, lemma 2.7 in [7]and lemma 2.5 in [6] without restriction of $\Delta \geq 10$. To avoid repetition, we omit the proofs here.

Lemma 2.5. [7] Let x be a 5-vertex in G and w be a $\delta_1(x)$ -neighbor of x.

(i) If $d(w) = \Delta$ and it is adjacent to four $(\leq \Delta - 3)$ -vertices, then, the remain neighbors of x are all Δ -vertices and none of them is adjacent to any $(\leq \Delta - 3)$ -vertices other than x.

(ii)
$$d(w) = \Delta - 1$$
.

(ii-1) If w is adjacent to two $(\leq \Delta - 2)$ vertices other than x, then the remain four neighbors of x are all Δ -vertices and each of them is adjacent to all $(\geq \Delta - 1)$ -vertices other than x.

(ii-2) If w is adjacent to one $(\leq \Delta - 2)$ vertices other than x, then there are three $(\geq \Delta - 1)$ -neighbors y of x including at least one Δ -neighbor satisfying the following: if y is a Δ -vertex, then it is adjacent to at most two $(\leq \Delta - 1)$ -vertices; if y is a $(\Delta - 1)$ -vertex, then it is adjacent to only one $(\leq \Delta - 1)$ -vertex which is x.

(iii)
$$d(w) = \Delta - 2$$
.

(iii-1) If w is adjacent to one $(\leq \Delta - 2)$ -vertex other than x, then all other four neighbors of x are Δ -vertices and each of them is adjacent to $(\geq \Delta - 1)$ -vertices other than x.

(iii-2) If w is adjacent to only one $(\leq \Delta-2)$ -vertex which is x, then there are three $(\geq \Delta-1)$ -neighbors of x including at least two Δ -neighbors y satisfying the following: if it is a Δ -vertex, then it is adjacent to at most two $(\leq \Delta-2)$ -vertices; if it is a $(\Delta-1)$ -vertex, then it is adjacent to one $(\leq \Delta-2)$ -vertex which is x.

Lemma 2.6. [6] Let x be a 5-vertex of a Δ -critical graph G. $|V_{\Delta} \cap N(x)| = 2$ and $|V_{\Delta-1} \cap N(x)| = 3$, then $N(N(x) \cap V_{\Delta}) \subseteq V_{>\Delta-2}$.

Lemma 2.7. [7] Let x be a 6-vertex in G and w be a $\delta_1(x)$ -neighbor of x where $\delta_1(x) = \Delta - 2$, or $\Delta - 1$. Then we have following:

(i)
$$d(w) = \Delta - 2$$
.

(i-1) If w is adjacent to three $(\leq \Delta-2)$ -vertices, then each of the five neighbors of x other than w is Δ -vertex and is adjacent to all $(\geq \Delta-2)$ -vertices other than x.

- (i-2) If w is adjacent to two $(\leq \Delta-2)$ -vertices, then there are four $(\geq \Delta-1)$ -neighbors of x including at least two Δ -neighbors y satisfying: if y is a Δ -vertex, then it is adjacent to at most two $(\leq \Delta-2)$ -vertices; if y is a $(\Delta-1)$ -vertex, then it is adjacent to one $(\leq \Delta-2)$ -vertex which is x.
- (i-3) If (i-1) and (i-2) do not happen, then each $\Delta 2$ -neighbor of x is adjacent to one $(\leq \Delta 2)$ -vertex which is x, and each Δ -neighbor of x is adjacent to at most three $(\leq \Delta 2)$ -vertices.
- (ii) $d(w) = \Delta 1$.
- (ii-1) If w is adjacent to four $(\leq \Delta 3)$ -vertices, then each of the five neighbors of x other than w is Δ -vertex and is adjacent to all $(\geq \Delta 2)$ -vertices other than x.
- (ii-2) If (ii-1) does not happen, then each $(\Delta-1)$ -neighbor of w is adjacent to at most three $(\leq \Delta-3)$ -vertices.

Lemma 2.8. [11] Let x be a j-vertex of a Δ -critical graph which is adjacent to a k-vertex y. if $j < \Delta, k < \Delta$, then x is adjacent to at least $\Delta - k + 1$ vertices z satisfying the following: $z \neq y$; z is adjacent to at least $2\Delta - j - k$ vertices different from x of degree at least $2\Delta - j - k + 2$; and if z is not adjacent to y, then z is adjacent to at least $2\Delta - j - k + 1$ vertices different from x of degree at least $2\Delta - j - k + 2$.

Lemma 2.2 (L.Zhang [17]) gives some information on two adjacent vertices of a critical graph whose sum of degrees is $\Delta + 2$. Naturally, we ask that are there any similar results for two adjacent vertices of a critical graph whose sum of degrees is $\Delta + 3$? The following Lemma gives partial answer to the question.

Lemma 2.9. Let x be a j-vertex of a critical graph G which is adjacent to a vertex w such that $d(x) + d(w) = \Delta + 3$ and $|N(x) \cap V_{\leq \Delta - 1}| = 2$. Then

there are at least j-2 Δ -vertices $y \in N(x)$ satisfying: $y \neq w; y$ is adjacent to all vertices of degree at least $\Delta - 1$.

Figure 1: Δ -edge coloring ϕ of G-xw exhibited at $N(x) \cup N(w)$ in Lemma 2.9.

Proof. Since G is critical, G-xw has an edge Δ -coloring. Each color shows either at x or at w, or G has an edge Δ -coloring. Without loss of generality, the edges incident with x in G-xw are colored $1, \dots, j-1$, while those incident with w are colored $j-1, \dots, \Delta$ since $j+k=\Delta+3$ (See Figure 1).

By Lemma 2.2-2.4 in [?], we have following observation, that is, there are j-2 vertices z in $N(x)\setminus\{w\}$ with xz colored by a color in $\{1,\cdots,j-2\}$ so that each of them has degree at least $\Delta-1$ where $j+k=\Delta+3$. On the other hand, by VAL, x is adjacent to at least j-2 Δ -vertices. Thus it is sufficient to consider following **two cases** without loss of generality.

Case I: There is a Δ -vertex z in $N(x) \setminus \{w\}$ with xz colored by color j-1 and there is a $\leq (\Delta-1)$ -vertex y in $N(x) \setminus \{w\}$ with xy colored by a color in $\{1, \dots, j-2\}$.

Case II: There is a $(\leq \Delta - 1)$ -vertex $z \in N(x) \setminus \{w\}$ with xz colored by j-1, and there are j-2 Δ -vertices y in $N(x) \setminus \{w\}$ with xy colored by colors in $\{1, \dots, j-2\}$.

Since proof of Case I is not only similar to, but also harder than that of Case II, we are to give the proof of case I only.

We call a swapping (i, j) along a vertex u is a *nice* swapping if the swapping does not affect the colors of edges incident with vertices x and w.

Proof of Case I. Without loss of generality, we assume xy is colored 1. It is sufficient to show that z is adjacent to all vertices of degree at least $\Delta - 1$. We use C to denote the set of colors: $\{1, \dots, \Delta\}$.

- (1) We claim that y may miss one color j-1 only.
- (1-1) Claim that y sees each color in $\{j, \dots, \Delta\}$.

It is obvious since each path $P_{1,k}(x)$ must end at w for each $k \in \{j, \dots, \Delta\}$.

(1-2) Claim that y sees each color in $\{1, \dots, j-2\}$.

For a color $r \in \{2, \dots, j-2\}$, if y misses it, then we can do a *nice* swapping (r, Δ) along x. Under current edge coloring, y sees r but misses color Δ which contradicts (1-1). Hence y may miss color j-1 only since $d(y) \leq \Delta - 1$.

- (2) Consider a neighbor u of z such that zu is colored $r \in \{j, \dots, \Delta\}$. We claim that u must see each color in $\{1, \dots, \Delta\}$.
- (2-1) u sees j-1. Otherwise, we recolor zu, xz with j-1, r respectively. Under current coloring, y must see j-1 but r. A contradiction to (1).
- (2-2) u sees each color in $\{j, \dots, \Delta\}$.

Otherwise, assume that u misses $\ell \in \{j, \dots, \Delta\}$. Here, we use $P_{i,q}(v)_{\phi}$ to denote (i,q)-bi-colored path starting at v under edge coloring ϕ of G-xw. Consider $P_{j-1,\ell}(u)_{\phi}$. We do a nice swapping $(j-1,\ell)$ along u. Denote new edge coloring of G-xw by ϕ' .

If $P_{j-1,\ell}(u)_{\phi}$ ends at x, then it doesn't pass through y as y misses j-1. Note that colors of edges adjacent to y don't be affected under ϕ' . So, by using same argument as in (1), y must see j-1, but misses color ℓ . A contradiction.

If $P_{j-1,\ell}(u)_{\phi}$ ends at y, note that colors of edges adjacent to x and w haven't been affected under ϕ' . Now y sees j-1, but it misses ℓ , a contradiction rises again.

Now we consider the case that $P_{j-1,\ell}(u)_{\phi}$ doesn't end either at x or at y. Under ϕ' , we recolor zu, xz with j-1, r respectively. Denote current edge coloring of G-xw by ϕ'' . Please note that colors of edges adjacent to y haven't been affected. Under ϕ'' , by using same argument as in (1), y must see j-1, but misses color r which causes a contradiction.

(2-3) We claim that u sees each color in $\{1, \dots, j-2\}$.

Without loss of generality, we assume that u misses color 1. We do a nice swapping $(1, \Delta)$ along x. By mimicking the proof as in (2-1) and (2-2) under current edge coloring of G - xw, we have that u must see each color in $C \setminus \{\Delta, 2, \dots, j-1\}$ which implies that u sees color 1. A contradiction.

- (3) Consider a neighbor v of z such that zv is colored by a color $b \in \{1, \dots, j-2\}$, we are to show that v must see each color in $C \setminus \{j-1\}$.
- (3-1) Claim that v sees each color in $\{j, \dots, \Delta\}$.

Assume that v misses a color $p \in \{j, \dots, \Delta\}$. Note that v and x are not in the same component of G(b, p), and so as vertex v and w. Hence we do a nice swapping (b, p) along v. Now v sees p. By applying the same argument in (2), we have that v sees each color in C. A contradiction.

(3-2) Claim that v sees each color in $\{1, \dots, j-2\}$.

Assume that v misses a color $b' \in \{1, \dots, j-2\}$. We implement a nice swapping (b', Δ) along x. By (2), v sees each color in C, a contradiction. Hence, from (3-1) and (3-2), we obtain that $d(v) \geq \Delta - 1$. Thus, we finish our proof of Case I.

3 Main Results

Theorem 3.1. Let G be a Δ -critical graph with $7 \leq \Delta \leq 9$. Then $|E(G)| \geq \frac{|V(G)|}{2}q$ where q = 6.5 or 7.2 if $\Delta = 8$ or 9 respectively.

Proof. Suppose to the contrary, the Theorem is not true. Then $\sum_{x \in V} (d(x) - q) < 0$. We are to use charge-discharge method to get contradictions. We call c(x) = d(x) - q the *initial charge* of the vertex x and will assign a new charge to each vertex x according to the following rules.

(R1) Let x be a 2-vertex and $u, v \in N(x)$. x receives d(y) - q from each adjacent Δ -vertex y and each $z \in N(u) \setminus \{x, v\}$ sends $\frac{d(z)-q}{\Delta}$ to x via u and each $z \in N(v) \setminus \{x, u\}$ sends $\frac{d(z)-q}{\Delta}$ to x via v. Note that each Δ -vertex adjacent to both u and v sends $2 \times \frac{d(z)-q}{\Delta}$ to x in total.

(R2) Let x be a 3-vertex. Let $w \in N(x)$ with $d(w) = \Delta - 1$. x receives d(y) - q from each adjacent $(\geq \Delta - 1)$ -vertex y, and each Δ -vertex $z \in N(x,w) \setminus \{x,w\}$ sends $\frac{\Delta-q}{\Delta}$ to x via w. Note that Δ -vertices adjacent to w sends at least $(\Delta - 3) \times \frac{\Delta-q}{\Delta}$ to x in total.

(R3) If x is a 6-vertex and $\Delta = 8$, then x receives $\frac{0.5}{4}$ from each adjacent 7-vertex, $\frac{0.5}{3}$ from each adjacent 8-vertex.

If x is a 7-vertex and $\Delta = 9$, then x receives $\frac{0.2}{5}$ from each adjacent 8-vertex, $\frac{0.2}{3}$ from each adjacent 9-vertex.

(R4) Let x be a $(\leq \lfloor q \rfloor - 1)$ -vertex. Let

$$q_k = \begin{cases} \frac{q - |q|}{3} & \text{if } k = \Delta. \\ \frac{0.5}{4} & \text{if } k = 7, \Delta = 8. \\ \frac{0.2}{5} & \text{if } k = 8, \Delta = 9. \end{cases}$$

Note that c(x) < 0, x receives $\frac{k-q-s\times q_k}{j}$ from each adjacent k-vertex y for $k \ge \Delta - 1$ where $d_{(\le \lfloor q \rfloor - 1)}(y) = j$ and $d_{\lfloor q \rfloor}(y) = s$.

Let c'(x) be the new charge of each vertex.

(I) Claim that c'(x) > 0 if d(x) = 2.

Let $u, v \in V_{\Delta} \cap N(x)$. By Lemma 2.2, each of u, v is adjacent to at least $(\Delta - 2)$ Δ -vertices different from u, v. Therefore, by (R1), $c'(x) \ge c(x) + 2 \times (\Delta - q) + 2 \times (\Delta - 2) \times \frac{\Delta - q}{\Delta} > 0$ where $\Delta = 8, 9$ respectively.

(II) Claim that $c'(x) \geq 0$ if $d(x) + \delta_1(x) = \Delta + 2$.

Let y be a vertex adjacent to x with $d(x) + d(y) = \Delta + 2$. Assume that x is a d-vertex with $3 \le d \le \lfloor q \rfloor$. By Zhang's Adjacency Lemma, $|N(x) \cap V_{\Delta}| = d - 1$ and each vertex in $N(N(x)) \setminus \{x, y\}$ has degree $\ge \Delta - 1$. Considering vertex y may have degree of $\le q$ and x, y may share some Δ -neighbors, so x receives at least $\frac{\Delta - q}{2}$ from each adjacent Δ -vertex and $\max\{d(y) - q, 0\}$ from y. Please note that $\delta_1(x)$ is the minimum degree of vertices adjacent to x. So by (R2),(R3),(R4), and lemma 2.3-2.7,

$$c'(x) \geq \begin{cases} -3.5 + 2 \times 1.5 + 0.5 = 0 & \text{if } d(x) = 3, \delta_1(x) = 7, \ \Delta = 8. \\ (4 - q) + 3 \times (\Delta - q - \frac{q - \lfloor q \rfloor}{3}) > 0 & \text{if } d(x) = 4, \delta_1(x) = \Delta - 2, \ \Delta = 8, 9. \\ (5 - q) + 4 \times \frac{\Delta - q}{2} > 0 & \text{if } d(x) = 5, \delta_1(x) = \Delta - 3, \ \Delta = 8, 9. \\ -0.5 + 5 \times \frac{0.5}{3} > 0 & \text{if } d(x) = 6, \delta_1(x) = 4, \ \Delta = 8. \\ -4.2 + 2 \times 1.8 + 0.8 + 5 \times \frac{1.8}{9} > 0 & \text{if } d(x) = 3, \delta_1(x) = 8, \ \Delta = 9. \\ -1.2 + 5 \times \frac{1.8}{2} > 0 & \text{if } d(x) = 6, \delta_1(x) = 5, \ \Delta = 9. \\ -0.2 + 6 \times \frac{0.2}{3} > 0 & \text{if } d(x) = 7, \delta_1(x) = 4, \ \Delta = 9. \end{cases}$$

Now we assume that x is a $(> \lfloor q \rfloor)$ -vertex. By Lemma 2.2 and (R4), x sends out at most d(x) - q to its adjacent vertex y, so $c'(x) \ge 0$.

(III) Claim that $c'(x) \geq 0$ if $d(x) + \delta_1(x) = \Delta + 3$ and $d(x) \leq \lfloor q \rfloor$.

First we consider that of d(x)=3 and $\delta_1(x)=\Delta$. By Lemma 2.3, there are two Δ -vertices in N(x), each of them is adjacent to at least $(\Delta-1)$ ($\geq \Delta-1$)-vertices. Then x receives at least $2\times 1.5+\frac{1.5}{2}$ from adjacent vertices if $\Delta=8$. So $c'(x)\geq -3.5+3.75>0$ for $\Delta=8$. Furthermore, by (R2), x receives at least $2\times 1.8+\frac{1.8}{2}$ if $\Delta=9$. So, $c'(x)\geq -4.2+3.6+0.9>0$ for $\Delta=9$.

Next we consider a vertex x with $d(x) \geq 4$ and $d(x) + \delta_1(x) = \Delta + 3$. Let y be a vertex adjacent to x with $d(x) + d(y) = \Delta + 3$. Assume that x is a d-vertex with $4 \leq d \leq \lfloor q \rfloor$. By Lemma 2.8[11] and Lemma 2.9, there are at least d-2 Δ -vertices in $(N(x) \setminus \{x,y\}$, each of them is adjacent to all vertices of degree $\geq \Delta - 1$. Be aware that vertex y may have degree $\leq q$ and x,y may share some Δ -neighbors, so x receives at least $\frac{\Delta-q}{2}$ from each adjacent Δ -vertex and $\max\{d(y)-q,0\}$ from y. So by Lemma 2.9,2.5 and 2.7, (R3) and (R4), we have

$$c'(x) \ge \begin{cases} (4-q) + 2 \times (\Delta - q) > 0 & \text{if } d(x) = 4, \delta_1(x) = \Delta - 1, \ \Delta = 8, 9. \\ -1.5 + 3 \times \frac{1.5}{2} > 0 & \text{if } d(x) = 5, \delta_1(x) = 6, \ \Delta = 8. \\ -0.5 + 4 \times \frac{0.5}{3} > 0 & \text{if } d(x) = 6, \delta_1(x) = 5, \ \Delta = 8. \\ -2.2 + 3 \times \frac{1.8}{2} + \frac{1.8}{4} > 0 & \text{if } d(x) = 5, \delta_1(x) = 7, \ \Delta = 9. \\ -1.2 + 4 \times \frac{1.8}{2} > 0 & \text{if } d(x) = 6, \delta_1(x) = 6, \ \Delta = 9. \\ -0.2 + 6 \times \frac{0.2}{3} > 0 & \text{if } d(x) = 7, \delta_1(x) = 5, \ \Delta = 9. \end{cases}$$

From now on, by (II) and (III), we consider the cases of $d(x)+\delta_1(x) \ge \Delta+4$, and of d(x) > |q| if $d(x) + \delta_1(x) = \Delta+3$.

(IV) Claim that c'(x) > 0 if d(x) = 4.

By discussion in previous paragraph, we have that $\delta_1(x) = \Delta$. There are two cases may arise: either there is one Δ -vertex $y \in N(x)$ with $d_{\leq \Delta-2}(y) = 3$ and each of rest vertices $z \in N(x)$ has $d_{\leq \Delta-2}(z) = 1$, or there is at least one Δ -vertex $y \in N(x)$ with $d_{\leq \Delta-2}(y) = 1$ and there are at most three vertices $z \in N(x)$ such that $d_{\leq \Delta-2}(z) \leq 2$. For former case, by (R4), x receives at least $\frac{\Delta-q}{3} + 3 \times (\Delta-q) > 2.5$ or 3.2 for $\Delta=8$ or 9 respectively, so c'(x) > 0. For later case, by (R4), x receives at least $3 \times \frac{\Delta-q}{2} + (\Delta-q) > 2.5$ or 3.2 from its adjacent vertices for $\Delta=8$ or 9 respectively. Hence, $c'(x) \geq 0$.

(V) Claim that $c'(x) \ge 0$ if d(x) = 5.

If $\delta_1(x) = \Delta - 1$, to avoid repetition, we consider the worst case, that is, x is adjacent to $two \Delta$ -vertices and $three (\Delta - 1)$ -vertices. By Lemma 2.5(ii),

there are two Δ -vertices in N(x) which incident with all vertices of degree of $\geq \Delta - 2$. Note that each adjacent $(\Delta - 1)$ -vertex sends at least $\frac{\Delta - 1 - q}{3}$ to x. Hence, $c'(x) \geq (5 - q) + 2 \times (\Delta - q - 3 \times \frac{(q - \lfloor q \rfloor)}{3}) + 3 \times \frac{q - \lfloor q \rfloor}{3} > 0$ if $\delta_1(x) = \Delta - 1$, $\Delta = 8, 9$.

If $\delta_1(x) = \Delta$, by Lemma 2.5,

$$c'(x) \geq \left\{ \begin{array}{ll} -1.5 + \min\{4 \times 1.5, 3 \times \frac{1.5}{2} + \frac{1.5}{3}, 5 \times \frac{1.5}{3}\} > 0 & \text{if } \Delta = 8. \\ -2.2 + \min\{4 \times 1.8, 3 \times \frac{1.8}{2} + \frac{1.8}{3}, 5 \times \frac{1.8}{3}\} > 0 & \text{if } \Delta = 9. \end{array} \right.$$

(VI) Claim that $c'(x) \ge 0$ if d(x) = 6.

If $\delta_1(x) = \Delta - 2$, x is adjacent to at least three Δ -vertices. Let w be $\delta_1(x)$ -neighbor of x. By Lemma 2.7, we consider following three cases.

- (a) $d(w) = \Delta 2$ with $d_{\leq \Delta 3}(w) = 3$ and each of remain vertices $z \in N(x) \setminus \{w\}$ has $d_{\leq \Delta 2}(z) = 1$. So by (R3), x receives at least $3 \times \frac{0.5}{3} = 0.5$ if $\Delta = 8$, and x receives at least $3 \times 1.8 > 1.2$ if $\Delta = 9$. Hence, $c'(x) \geq 0$.
- (b) $d(w) = \Delta 2$ with $d_{\leq \Delta 2}(w) = 2$ and each of rest vertices $z \in N(x) \setminus \{w\}$ has $d_{\leq \Delta 2}(z) \leq 2$. Then x receives at least $3 \times \frac{0.5}{3} = 0.5$ if $\Delta = 8$, and $3 \times \frac{1.8}{2} > 1.2$ if $\Delta = 9$. Hence, $c'(x) \geq 0$.
- (c) Each $(\Delta 2)$ -neighbor w of x has $d_{\leq \Delta 2}(w) = 1$ and each Δ -vertex $z \in N(x)$ has $d_{\leq \Delta 2}(z) \leq 3$. By Lemma 2.7 and (R4), x receives $3 \times \frac{0.5}{3} = 0.5$ if $\Delta = 8$, and x receives at least $3 \times \frac{1.8}{3} > 1.2$ if $\Delta = 9$. Hence, $c'(x) \geq 0$.

If $\delta_1(x) = \Delta - 1$ or Δ , then x is adjacent to either two Δ -vertices and four $(\Delta - 1)$ -vertices, or at least three Δ -vertices. By VAL, Lemma 2.7, (R3) and (R4), we have

$$c'(x) \geq \begin{cases} -0.5 + \min\{2(\frac{0.5}{3}) + 4(\frac{0.5}{4}), 3(0.5)\} > 0 & \text{if } \delta_1(x) = 7, \ \Delta = 8. \\ -0.5 + 6(\frac{0.5}{3}) > 0 & \text{if } \delta_1(x) = 8, \ \Delta = 8. \\ -1.2 + \min\{2(1.8), 2(\frac{1.8}{5}) + 4(\frac{0.8}{2}), 2(\frac{1.8}{5}) + 4(0.8)\} > 0 & \text{if } \delta_1(x) = 8, \ \Delta = 9. \\ 5(\frac{1.8}{5}) > 0 & \text{if } \delta_1(x) = 9, \ \Delta = 9. \end{cases}$$

(VII) Claim $c'(x) \ge 0$ if d(x) = 7.

Note that if $\Delta=9$, x sends noting out but receives charges. Since x is adjacent to at least three 9-vertices, then by (R3), x receives at least $3 \times \frac{0.2}{3} = 0.2$ from its adjacent 9-vertices. $c'(x) \geq 0$. Next, we consider $\Delta=8$. So x may send some charges out. By (II), $\delta_1(x) \geq 4$. By VAL, (R3) and (R4), $c'(x) \geq -1 + (\delta_1(x) - 2) \times \frac{0.5}{\delta_1(x) - 2} = 0$ where $\delta_1(x) = 4, 5, 6$ respectively and $\Delta=8$. Therefore, $c'(x) \geq 0$ if $\delta_1(x) = 4, 5, 6$. Be aware that x sends nothing out if $\delta_1(x) \geq 7$.

(VIII) Claim that $c'(x) \ge 0$ if d(x) = 8.

If $\delta_1(x) = 3$, then by (II), we consider $\Delta = 8$ only. Either x is adjacent to seven (≥ 7) -vertices and one 3-vertex, or is adjacent to $six \Delta$ -vertices and $two (\leq 6)$ -vertices. By (R3) and (R4), x sends at most $\max\{1.5, 2 \times \frac{1.5}{2}\}$ out. Hence, $c'(x) \geq 0$.

If $\delta_1(x) = 4, 5, 6$ or 7, by VAL, (R3) and (R4), x sends out at most

$$\begin{cases} 1.5 & \text{if } \delta_1(x) = 4, 5, \, \Delta = 8. \\ 3 \times \frac{0.5}{3} = 0.5 & \text{if } \delta_1(x) = 6, \, \Delta = 8. \\ 1.8 & \text{if } \delta_1(x) = 4, 5, 6, \, \Delta = 9. \\ 3 \times \frac{0.2}{3} = 0.2 & \text{if } \delta_1(x) = 7, \, \Delta = 9. \\ 0 & \text{if } \delta_1(x) = 7, 8, \, \Delta = 8 \text{ and } \delta_1(x) = 8, \, \Delta = 9. \end{cases}$$

Hence $c'(x) \geq 0$.

(IX) Claim that $c'(x) \ge 0$ if d(x) = 9.

Be aware that $\Delta=9$ only. If $3 \leq \delta_1(x) \leq 7$, there are at least $(\Delta-\delta_1(x)+1)$ Δ -vertices in N(x) by VAL. Let n^* =number of (≤ 6) -vertices in N(x), n_7 =number of 7-vertices in N(x). By (R3) and (R4), x sends out at most

$$\begin{cases} \max_{n_7 \le 3} \{ n^* \times \frac{1.8 - n_7 \frac{0.2}{3}}{n^*} \} = 1.8 & \text{if } \delta_1(x) = 3, 4, 5, 6, 7, \, \Delta = 9. \\ 0 & \text{if } \delta_1(x) = 8, \, \Delta = 9. \end{cases}$$

Hence $c'(x) \geq 0$.

From (I)-(IX), $c'(x) \geq 0$ and therefore, $\sum_{x \in V(G)} c'(x) \geq 0$. Since the discharge rules only move charge around and do not change the sum, we have $0 \leq \sum_{x \in V(G)} c'(x) = \sum_{x \in V(G)} c(x) < 0$. This contradiction completes the proof.

4 Class one graphs with $c_S = -1, -2$.

Theorem 4.1. Let G be a simple graph that is embeddable in a surface S of characteristic $c_S = -1$, or -2, then G is class one if $\Delta \geq 8$, or 9 respectively.

Before we proceed our proof of the Theorem, we need following results on critical graphs with small orders.

Lemma 4.2. (Beineke and Fiorini [1], Brinkmann and Steffen [2, 3, 4])

- (i) There are no critical graphs of even order up to 14;
- (ii) there are only two critical graphs of order 11, both of which are 3-critical;
- (iii) Petersen graph minus a vertex is the only non-trivial critical graph on up to 10 vertices, which is 3-critical;
- (IV) There are only three critical graphs of order 13, which are 3-critical.

Proof of Theorem 4.1. By Theorem 3.1 and Theorem 1.2, we only need to prove it when $\Delta=8,9$ respectively. Let V and F be vertex set and face set of G respectively. Suppose to the contrary, let G be the smallest counterexample with respect to edges. Then G is Δ -critical where $\Delta=8,9$ respectively. By Eulor's Formula, we have

$$\begin{cases} \sum_{x \in V} (d(x) - 6) + \sum_{f \in F} (d(f) - 3) = 6 & \text{if } c_S = -1, \, \Delta = 8. \\ \sum_{x \in V} (d(x) - 6) + \sum_{f \in F} (d(f) - 3) = 12 & \text{if } c_S = -2, \, \Delta = 9. \end{cases}$$

By Theorem 3.1, we have

$$\begin{cases} 0.5 \times |V| \le 6 & \text{if } c_S = -1, \ \Delta = 8. \\ 1.2 \times |V| \le 12 & \text{if } c_S = -2, \ \Delta = 9. \end{cases}$$

Hence, $|V| \le 12$ or $|V| \le 10$ for $\Delta = 8$ or 9 respectively. By Lemma 4.2, we have contradictons.

Remark: The theorem 4.1 was proved in [8]. But the new lower bounds in this paper imply the results in [8].

Authors thank Dr. Rong Luo for giving helpful suggestions during the preparation of this paper.

References

- [1] L.W. Beineke, S. Fiorini, On small graphs critical with respect to edge-colourings, *Discrete Math.*, 16(1976), 109-121.
- [2] D. Bokal, G. Brinkmann and S. Grnewald, Chromatic-index-critical graphs of orders 13 and 14, *Discrete Math.*, , 300(2005), 16-29.
- [3] G. Brinkmann and E. Steffen, Chromatic-Index-Critical of Orders 11 and 12, Europ. J. Combinatorics, 19(1998), 889-900.
- [4] G. Brinkmann and E. Steffen, 3- and 4-critical graphs of small even order, Discrete Math., 169(1997), 193-197.
- [5] L. Clark and D. Haile, Remark on the size of critical edge chromatic graphs, Discrete Math., 171(1997), 287-293.
- [6] X. Li, Edge critical graphs with new lower bounds of average degree, submitted to Graphs and Combinatorics.
- [7] S. Li and X. Li, Edge coloring of graphs with small maximum degrees, Discrete Math., in press, available online August 2008.
- [8] R.Luo and Y.Zhao, Finding the exact bound of the maximum degrees of class two graphs embeddable in a surface of characteristic $\epsilon \in \{-1, -2, -3\}$, J. Combin. Theory Ser. B., 98(2008),707-720.
- [9] R. Luo and C.Q. Zhang, Edge coloring of graphs with small average degrees, Discrete Math., 275(2004),207-218.

- [10] R. Luo, L Miao and Y. Zhao, The size of edge chromatic critical graphs with maximum degrees six, *Journal of Graph Theory* 60(2009), 149-171.
- [11] D. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B., 83(2)(2001), 201-212.
- [12] D. Sanders and Y. Zhao, Coloring edges of graphs embedded in a surface of characteristic zero, J. Combin. Theory Ser. B., 87(2003),254-263.
- [13] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz, 3(1964), 25-30.
- [14] V. G. Vizing, Some unsolved problems in graph theory (in Russian), Uspekhi Mat. Nauk, 23(1968), 117-134; English translation in Russian Math. Surveys, 23 (1968) 125-141.
- [15] D. R. Woodall, The average degree of an edge-chromatic critical graph.II, J. Graph Theory, 56(2007),no. 3, 194-218.
- [16] D. R. Woodall, The average degree of an edge-chromatic critical graph, Discrete Math., 308(2008),no.5-6, 803-819.
- [17] L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs and Combinatorics, 16(4)(2000), 467-495.
- [18] Y. Zhao, New Lower Bounds for the size of edge chromatic critical graphs, Journal of Graphs Theory, 46(2004): 81-92.