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ABSTRACT: In this paper, we analyze the familiar straight insertion
sort algorithm and quantify the deviation of the output from the correct
sorted order if the outcomes of one or more comparisons are in error. The
disarray in the output sequence is quantified by six measures. For input
sequences whose length is large compared to the number of errors, a com-
parison is made between the robustness to errors of bubble sort and the
robustness to errors of straight insertion sort. In addition to analyzing the
behaviour of straight insertion sort, we review some inequalities among the
various measures of disarray, and prove some new ones.
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1 Introduction

A number of researchers have developed and analyzed variations of search
and sort algorithms to cope with possible errors in comparisons. By an
error, we mean the outcome of a binary comparison between two data
elements is “no” when factually it should be “yes”, and vice versa. Pelc [19)
provides a comprehensive survey of the literature in this field. In this paper,
we analyze the familiar straight insertion sort algorithm in a new light: if
the outcomes of one or more comparisons are in error, by how much will
the output deviate from the correct sorted order?

Islam and Lakshmanan [12] analyzed several sort algorithms under the
assumption that the outcome of exactly one comparison is in error. Had-
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jicostas and Lakshmanan [11} analyzed bubble sort under the assumption
that the outcomes of several comparisons are in error. In this paper, we per-
form a similar analysis for straight insertion sort. Fault-tolerant algorithms
for sorting with a worst-case upper bound on the number of erroneous com-
parisons have been studied, for example, by Bagchi [3] and Lakshmanan et
al. [15]). For a discussion of fault-tolerant sorting networks, we refer the
reader to the papers by Yao and Yao [20] and Leighton and Ma [16, 17].
For a probabilistic analysis of sorting when some comparisons are unreli-
able, see for example Alonso et al. {1]. For a more thorough review of the
literature, see the introduction in Hadjicostas and Lakshmanan (11].

Let @ = (a1,a2,...,as) be a list or finite sequence consisting of n
distinct integers. Assume that the correct order for sorting is the ascending
one. The degree of disorder of the list a can be quantified in a variety of
ways (e.g., see [5], [9], [10], [14] and [18]): by the number of runs in a; the
smallest number of elements in a that should be removed from a to leave
it sorted; the number of inversions in a; the smallest number of successive
exchanges of elements in a needed to sort a; the sum of squares of the
difference in the ranks between a and the sequence (1,2,...,n); and the
sum of the absolute values of the difference in the ranks between a and the
sequence (1,2,...,n).

By a run in @ we mean a non-descending sublist of consecutive ele-
ments in a, say (@;, @41, .- ., Gm), such that a; is not preceded by a smaller
number, and a,, is not followed by a larger number. For a sorted list a
the number of runs is 1, while for a list a with n elements in reverse order
the number of runs is n. The smallest number of integers that should be
removed from a list a of n elements to leave it sorted is 0 for a sorted list,
while this number equals 7 — 1 for a list @ in reverse order. By inversion
in a we mean a pair of integers in a in the wrong order. For a sorted list
a the number of inversions is 0, while for a sequence a in reverse order the
number of inversions is n(n — 1)/2.

It can be shown that the smallest number of successive exchanges of
elements in a needed to sort a is » minus the number of cycles in a (when
a is considered as a permutation of the first n positive integers). See, for
example, {14], Ex. 5.2.2-2, pp. 134 and 628. A sorted sequence has smallest
number of exchanges equal to 0, while a sequence in reverse order has
smallest number of exchanges equal to |n/2|. Thelista = (n,1,2,...,n~1)
has smallest number of exchanges equal to n — 1, which is the highest
possible.

For a sorted sequence of length n, the sum of squares of the difference in
the ranks between a and the sequence (1,2,...,n) is obviously zero, while
for a sequence in reverse ordering is (n® — n)/3 = n(n — 1)(n +1)/3 (e.g,
see Kendall [13, p. 9]). Similarly, for a sorted sequence of length 7, the sum

260



of absolute values of the difference in the ranks between a and the sequence
(1,2,...,n) is obviously zero, while for a sequence in reverse ordering is
[n2/2], where |z] is the greatest integer less than or equal to z (e.g., see
Kendall [13, p. 32)).

Section 2 gives some inequalities relating these six measures of disorder.
Some of these inequalities are useful in later sections, and some of them are
interesting in their own right. For a detailed treatment of measures of
disorder and their use in generating nearly sorted sequences (i.e., sequences
whose value of a given measure of disorder is bounded by a given number),
see the excellent paper by Estivill-Castro [8].

The organization of the other sections of the paper is as follows. In
Section 3 we briefly describe straight insertion sort, while in Section 4 we
introduce the basic notation of the paper, and give some preliminary results.
In Section 5 we give some complementarity results. In Sections 6-17 we give
results about the maxima and minima of the six measures of disorder for
the output sequences obtained when executions of straight insertion sort
(with erroneous comparisons) operate on lists of integers with a specified
length. Finally, Section 18 contains a comparison between bubble sort and
straight insertion sort. In addition, the section contains some suggested
future research topics.

2 Inequality relations among measures of disorder

Let IN = {0,1,2,...} be the set of nonnegative integers. For a finite set A,
let #A denote the number of elements of A. For each n € IN\{0, 1}, let A,
be the set of all lists with n distinct integers as elements.

For a list a € A,, let R(a) and I(a) be the number of runs and the
number of inversions, respectively, in a. Let also RM(a) be the smallest
number of integers that should be removed from a to leave it sorted, and
EX(a) be the smallest number of exchanges of elements in a to leave it
sorted.

If a € A, let ranks(a) = (r1,72,...,7) be the list of ranks of the ele-
ments of a, where the smallest number gets the smallest rank. In other
words, for 1 € 4 < m, r; is the rank of the i*" element of a. Obvi-
ously, ranks(a) is a permutation of the integers 1,2,...,n. Define D(a) =
Yim li—mil, 8Q(a) = o0 (i—ri)?, and V(a) = 3, o, i<, (5 —1)dij, where
di; =1 when j precedes 7 in the sequence (ry,...,7,), and zero otherwise.
Note that I(a) = 215i<j5n dij.

The previous six measures of disarray essentially compare the sequence
(1,2,...,n) to ranks(a) = (r1,...,7,) Wwhen a € A,. If one wants to
compare ranks(a) to ranks(b) for a,b € A,, he or she can consider right-
invariant metrics on the symmetric group Qy, i.e., the set of all permu-
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tations of the numbers 1,2,...,n equipped with the composition of per-
mutations. Diaconis and Graham [5] examine right-invariant metrics that
generalize I(-), EX(-), SQ(-), and D(-). We only comment about one of
the metrics. Define SQ* : Q, x 2, — R by 5Q*(7,0) = Z,_l(ﬂ, —-0;)?
for m,0 € Q,. Diaconis and Graham [5] state that SQ*(:,*) is a met-
ric on ,. Of course, that is not what they mean: If n = 4, 7 =
(2,1,4,3), 0 = (2,3,1,4), and idq = (1,2,3,4) is the identity in Q4, then
SQ*(m,idy) + SQ*(id4,0) = 4 + 6 = 10 < SQ*(w,0) = 14. To transform
SQ* into a metric one has to use +/5@*. For more details, see Estivill-
Castro (7).

In this section we give some inequalities among the various measures of
disarray. Some of them are useful in later sections, and some of them are
interesting in their own right. If a = (a;,...,a,) € A,, we say that a has a
8-inversion if there are three elements a;,ax,ajsuchthat 1 <i<k <j<n
and a; > ai > a;. The inequality in the following lemma is mentioned by
[18] and has an obvious proof. The rest of lemma. is a consequence of 14,
Ex. 5.2.2-1, pp. 134 and 628).

Lemma 2.1 Forn € IN\{0,1} and a € A,, we have
EX(a) < I(a).

If equality holds in the above inequality, then a has no 3-inversions. (For
each n > 4, there is a € A,, for which the converse of the last statement is
not true. The simplest example is the sequence a = (3,4,1,2).)

The following four inequalities are “classic” and they are related to
non-parametric statistics. Some of them are used in later sections of the

paper.

Lemma 2.2 For n € IN\\{0,1} and a € A,, we have
() —22=0E=2) < §5Q(a) — nI(a) < 0;
(b) SQ(a) = 2V (a) 2 $1(a) (1 + 122);
(c) I(a) + EX(a) < D(a) < 2I(a);
(d) 228 < D(a) < min[SQ(a), (n SQ(a))/?].

Proof: The first inequality is equivalent to an inequality due to
Daniels [4], while the second one is due to Durbin and Stuart [6]. The last
two inequalities are due to Diaconis and Graham [5]. (There is a minor
typo for inequality (d) in [5].) O

As Diaconis and Graham [5] note, in inequality (c) in the previous
lemma, D(a) = 2I(a) if and only if a has no 3-inversions. This gives another
proof of the fact that EX(a) = I(a) implies list a has no 3-inversions; see
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Lemma 2.1. (Due to space limitations we omit the proof of Diaconis and
Graham’s claim.)

Diaconis and Graham (5] also note (without proof) that for a € A,,
ranks(a) = (r1,...,7,), and n even, we have D(a) = n?/2 if and only if
ri >nf2fori=1,2,...,n/2. Since this result is needed later in the paper,
we prove a slightly more general result. First we state the following easy
lemma, whose proof is easy and hence is omitted.

Lemma 2.3 If max{i,a;} < min{j,a;}, then
|t - ail + |5 — aj| < }i = a;] + |j — as].

Lemma 2.4 For n € IN\{0,1}, a € Ay, and ranks(a) = (ry,...,m,), we
have:

(i) If n is even, D(a) = [n?/2] = n%/2 if and only if r; > n/2 for
1=1,2,...,n/2.

(i) If n is odd, D(a) = [n?/2] = (n® — 1)/2 if and only if, either r; >
(n+1)/2fori=1,...,(n-1)/2, orr; > (n+1)/2 fori=1,...,(n+1)/2.

Proof: We only prove the “only if” part for (ii). The proof of (i) and
the proof for the “if” part for (ii) are left to the reader. Assume = is odd.
Then n > 3. Without loss of generality, assume a € Q,, i.e., r; = a; for
i=1,...,n.

Assume that it is not the case that, either a; > (n + 1)/2 for i =
1,...,(n=1)/2,0ra; > (n+1)/2 fori =1,..., (n+1)/2. Therefore there is
41 €{1,...,(n—1)/2} such that a;, < (n+1)/2and i, € {1,2,...,(n+1)/2}
such that a;, < (n +1)/2. Since a;; < (n+1)/2 and i; < (n +1)/2, it
is impossible to have 1 < ax < (n+1)/2 for k = (n +1)/2,...,n. Hence
there is jo € {(n +1)/2,...,n} such that a;, > (n +1)/2. If it were true
that ip = (n +1)/2 = jo, then a;, < (n+1)/2 < aj,, a contradiction.
Hence either iz < (n+1)/2 or jo > (n+ 1)/2. This implies max(éz, a;,) <
min(jo, aj, ). Define b € Ay, by b = ay if k # 43, jo; bi, = ajo; and bj, = a;,.
By Lemma 2.3, D(b) > D(a), and so D(a) < (n? —1)/2. O

Lemma 2.5 Forn € IN\{0,1} and a € Ay,

RM(a) < [”—”’%J . (1)

Proof: Assume that the number of elements in each of the R(a) runs
of a is less than n/R(a). Then

n < R(a) (E?Ej) =n,
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a contradiction. Therefore, the number of elements in at least one run of
a, say run i (1 < i < R(a)), will be greater than or equal to n/R(a). If
we remove all the numbers from all the other runs, the list will be left
sorted. The total number of all the elements in all runs, except in run ¢,
is less than or equal to n — n/R(a) = n(R(a) — 1)/R(a) and so RM(a) <
[n(R(a) - 1)/R(a)]. D

Lemma 2.6 Forn € IN\{0,1} and a € Ay,

n’(R(a) - 1)
Clle-oalt

Proof: Assume that the R(a) runs of a have ki, k2, ..., k(o) elements,

respectively. Then ZR(") k; = n. No inversions can exist w1thm a run, and
50

2
Ra) b \" s B@ 2 5 R ;2
HOESEDY kikj=(z"‘ ’)2 =z %—1 ki
1<i<j<R(a)

It is not difficult to show that

R(a) R@) \?
R@)> kZ>{) k| =n%

i=1 t=1

Therefore,
2

1w < T PR -

2 "~ 2R(a)

from which the lemma follows. O

3 Straight insertion sort

for (i=1i<nji=i+1)
{ insertValue = a;41; 7 =13;
while (j > 1 and insertValue < a;)
j+1 = @355
i=i-L}
aj+1 = insertValue; }

Consider the straight insertion sort algorithm given above. The algo-

rithm consists of n — 1 passes, and pass ¢ (where 1 < i < n — 1) consists
of at most ¢ comparisons. If there are no errors in any of the comparisons,
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before pass i, the first ¢ integers of the intermediate output sequence have
been sorted. During pass i, the algorithm inserts the (i + 1)* integer in
the appropriate place by “shifting” it to the left. The “shifting” is done by
comparing the integer to be inserted to some of the first i integers (obtained
after pass i —1). (We assume that, during the first pass, the first two num-
bers of the input sequence are compared and placed in the correct order.)
The comparisons in pass i stop once the integer to be inserted is com-
pared to a smaller number. Note that straight insertion sort does at most
n(n —1)/2 comparisons in total. For example, for the sorted list 1,2, ...,n,
we need only n — 1 comparisons, while for the sequence n,n—1,...,2,1 (in
reverse order) we need n(n — 1)/2 comparisons.

4 Notation and some preliminary results

For each a € A,, let Sp(a) be the set of all executions of the straight
insertion sort algorithm that can sort list a (whose length is n), and can
make up to n(n — 1)/2 errors when making comparisons. This means that,
for each S € S,(a), the collection of comparisons where S is erring is
uniquely associated with S. For each pass ¢ of S (where 1 <i < n-1),
the comparisons stop when the (i + 1)*® integer is compared to a smaller
number and no error occurs, or is compared to a larger number and an
€ITOr OCCurs.

For a € A, and S € S,(a), denote by C(S) and E(S) the total number
of comparisons and the total number of errors S does, respectively, when
it operates on a. Obviously, E(S) < C(S) < n(n — 1)/2. Since straight
insertion sort has n — 1 passes and each pass has at least one comparison,
C(S)z2 n-1.

Let a,a’ € Ay, S € Sy(a), and §' € S,(a’). We write S = S’ if and
only if (a) for each pass i (where 1 <i <n—1), S and S’ make the same
number of comparisons; and (b) for each pass ¢ (where 1 <i < n—1), and
each comparison k of pass ¢ (where 1 < k < i), S errs if and only if S errs.
In such a case, C(S) = C(S’) and E(S) = E(S').

Lemma 4.1 Let n € IN\{0,1}, a € Ay, and S € S,(a) be given. If
E(S) = C(S), then the output list, b, from the operation of S on a has
ranks(b) = (n,n —1,...,2,1).

Proof: Since all the comparisons of the execution S are in error, it
follows that whenever there is a comparison, the larger number goes (or
stays) to the left, and the smaller number goes (or stays) to the right.
Therefore, after pass k (where 1 < k < n — 1), the first k + 1 integers of
the sequence obtained are sorted in reverse order (from largest to smallest).
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Thus, at the end of the last pass, the output sequence b is in reverse order,
i.e., ranks(b) = (n,n—1,...,2,1). O
Note that Lemma 4.1 follows also from Lemma 5.2.

Lemma 4.2 Letn € IN\{0,1} and e € IN be such that0 < e < n(n—1)/2.
Then:

A(n,e) :={(a,S): a € A,, S € Sp(a), E(S)=¢} #0. (2)

Proof: Let k(e) be the largest integer k such that k(k +1)/2 < e.
Let a = (1,2,...,n), and suppose execution S € S,(a) makes errors in all
the comparisons of passes 1,2,..., k(e), and in the first e — k(e)(k(e) +1)/2
comparisons of pass k(e) + 1. Note that S is well-defined for the following
reason: In pass i, where 1 < i < k(e), we have exactly i comparisons, and
at the end of the pass, the first i + 1 integers of the sequence obtained are
in reverse order (i.e., they are the numbers i + 1,4,7 — 1,...,2,1 in this
order). This means that the total number of comparisons in the first k(e)
passes is 1 +2+ ... + k(e) = k(e)(k(e) +1)/2 < e = E(S) < C(S). It is
easy to show that e — k(e)(k(e) + 1)/2 < k(e) + 1, and so it is possible
to make exactly e — k(e)(k(e) + 1)/2 errors in pass k(e) + 1. (Since e —
k(e)(k(e) +1)/2 < k(e) +1, pass k(e) + 1 of S terminates with comparison
1+ e — k(e)(k(e) + 1)/2.) Since S is well-defined and E(S) = e, it follows
that A(n,e) # 0.0

Lemma 4.2 allows us to state the following definitions. For each n €
IN\{0,1}, a € A,, and S € S,(a), let:

(2) R(a,S) be the number of runs in the output list after S operates
on a;

(b) RM (a, S) be the smallest number of integers that should be removed
from the output sequence, after S operates on a, to leave it sorted;

(¢) I(a, S) be the number of inversions in the output list after S operates
on a;

(d) EX(a,S) be the smallest number of successive exchanges needed
to sort the output list after S operates on a;

(e) SQ(a, S) be the the sum of squares of the difference in the ranks be-
tween the output sequence after S operates on a and the sequence (1,2,...,
n);

(f) D(a,S) be the sum of the absolute values of the difference in the
ranks between the output sequence after .S operates on a and the sequence

(1,2,...,n).
We then have the following inequalities:
(2) 1 £ R(a,S) <m; (b) 0 < RM(a,S)<n-—-1;

(c)0<I(a,S)<n(n-1)/2; (d)0LEX(a,S)<n-1;
(e) 0 < 5Q(a,S) < (n® —n)f3; (f) 0< D(a,S) < [n?/2).
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For the integers n and e withn > 2 and 0 < e < n(n — 1)/2, recall the
definition of A(n,e) from (2). We then define:

Mruns(n,e) = max{R(a,S): (a,S) € A(n,e)};
mruns(n,e) = min{R(a,S): (a,85) € A(n,e)};
Mrem(n,e) = max{RM(a,S): (a,S) € A(n,e)};
mrem(n,e) = min{RM(a,S): (a,5) € A(n,e)};
Minv(n,e) = max{I(a,S): (a,5) € A(n,e)};
minv(n,e) = min{l(a,S): (a,S) € A(n,e)};
Mexc(n,e) = max{EX(a,S): (a,S) € A(n,e)};
mexc(n,e) = min{EX(a,S): (a,S) € A(n,e)};
Msqr(n,e) = max{SQ(a,S): (a,S) € A(n,e)};
msqr(n, e) = min{5Q(a,S): (a, S) € A(n,e)};
Mabs(n,e) = max{D(a,5): (a,5) € A(n,e)};
mabs(n,e) = min{D(a,S): (a,5) € A(n,e)}.

For example, Mruns(n, €) and mruns(n, ) represent the worst and the best
case scenaria, respectively, for the number of runs in the output list obtained
when an execution of straight insertion sort with exactly e errors operates
on a list of integers with length n.

5 Complementarity results

Recall that, for n € IN\{0,1} and a € A,, ranks(a) = (r1,72,...,7s) is
the list of ranks of the elements of a, where the smallest number gets the
smallest rank. Not only ranks(a) is a permutation of the integers 1,2,...,n,
but also the list (n+1—7;,n+1-7r9,...,n+1~7r,) is a permutation of the
first n positive integers. Consider the list @ € A,, called the complement
of a, which is created by putting in the i*! position the element of @ whose
rank isn+1—7r;. Thenranks(@) = (n+1—-7r,n+1—ro,...,n+1—7,).
Kendall [13, p. 11] calls such sequences a and @ as conjugate. The following
lemma gives some complementarity results for the six measures of disarray
we study.

Lemma 5.1 (i) R(@) =n+1— R(a);

(#) I(@) = n(n — 1)/2 — I(a);

(iii) RM(@) > n — 1 — RM(a).

(iv) EX(a) > [n/2] — EX(a).

(v) SQ(@) = n(n - 1)(n+1)/3 — SQ(a).

(vi) D(@) > |n?/2] - D(a).
In (iii), (iv), and (vi), when ranks(a) = (1,2,...,n), the inequality holds
as equality.
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Proof: The proofs of parts (i) and (ii) are easy and hence are omitted.
(See also Lemma 4.1 in [11).) To prove part (iii), assume that we have
removed RM(a) elements from a and we are left with the numbers r, <
re9 < ... < Tk, where k = n — RM(a). (Without loss of generality we
may assume a is a permutation of the first n positive integers.) Then
n+l—r>n+1—ry>...>n+1—7 In the complement of a, the
latter numbers appear somewhere (not necessarily consecutively) but in the
order shown. In other words, n+ 1 —r; is to the left of n+ 1 — 79, which is
to the left of n + 1 — 73, etc. This means that in order to leave @ sorted we
must remove at least k—1 of the numbers n+1-—7ry,n+1—-7g,...,n+1-7.
Therefore, RM (@) > k — 1, from which the third part of the lemma follows.

To prove (iv), let 2, be the symmetric group, i.e., the set of all per-
mutations of the first n positive integers. Diaconis and Graham [5] define
the metric T on £, as follows: For 7,0 € Q,, let T(7, o) be the minimum
number of successive exchanges needed to bring (m,...,7,) into the or-
der (01,...,00). If id, = (1,...,n) is the identity of the group Qy, then
T(m,0) = T(idp,0n~1) = EX(on~!). Without loss of generality, assume
a € Q,. Then (since T is a metric):

EX(a) + EX(@) = T(a,id,) + T(ids, @) > T(a,a) = T(id,,aa™?).

Thus EX(a) + EX(a) > EX(@a™!). Since @ = (n,n ..,1)a, we have
aa~! = (n,n-1,n-2,...,1), which proves part (1v)
Part (v) is proven by Kenda.ll [13, p. 24]. To prove (vi), note that

D@ +D@ = Y (i-rl+k-(m+1-r))
i=1
> ) |2~ (n+1)
i=1

= D((n,n—-1,...,1)) = [n?/2].
The proof of the lemma is complete. O

Lemma 5.2 Let a € A, and S € Sy(a). Then there is an execution S of
straight insertion sort that belongs to S, (@) such that:

(a) In each pass i (where1 < i < n—1), S and S make the same
number of comparisons.

(b) In each comparison k of pass i, S makes an error if and only if S
does not make an error.

(c) E(S) + E(5) = C(5) = C(5).

(d) The output list we get when S operates on @ is the complement of
the output list we get when S operates on a.
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Proof: Without loss of generality we may assume that a is a permu-
tation of the first n positive integers. Let a(i, k) be the output sequence we
get after comparison k of pass ¢ when S operates on a. Let C; be the number
of comparisons during pass ¢ of S. Wehave 1 <i<n—-1and 1<k <C;.
Define a(1,0) = a and a(3,0) = a(i = 1,Ci—;) for i = 2,3,...,n—1. In
other words, let a(i,0) be the output sequence at the beginning of pass 1.

For each i € {1,2,...,n — 1} and k € {0,1,...,C;}, define b(i, k) =
a(s, k). Note that b(1, 0) =a(1,0) =G, and

b(’i,O) = a(i,O) = a(i - l,C’_l) = b(i - I,Ci_1)

for i = 2,3,...,n — 1. We define execution S of “sorting lists in A, with
errors” as follows: We assume that execution S has n — 1 “passes,” and
“pass” i has exactly C; “comparisons” (¢ = 1,...,n — 1). For each i €
{1,...,n—1} and &k € {1,..., C;}, we assume that the output sequence we
get after “comparison” k of “pass” i is b(, k). By “pass” of § we mean the
first 7 + 1 integers of b(4, k); by “comparison” k of “pass” i of § we mean
the pair consisting of the (i + 1 — k)*" and (i + 2 — k)* integers of b(i, k).
We say that an “error” has occurred during “comparison” k of “pass” i of
S if the (i +1— k)" integer of b(i, k) is greater than the (i+2— k)" integer
of b(i, k).

We will show inductively that 5 is well-defined (i.e., that S € S,(a)),
and that it satisfies properties (a)-(d) of the lemma. By definition, property
(a) holds. Since b(n — 1,C,_1) = a(n—1,Cn_;), property (d) is also
satisfied.

Since b(1,0) = @, S operates on @ at the beginning of the first “pass.”
Assume that after “comparison” k of “pass” i (wherel<i<n-land1l<
k < C;—1), the output sequence of the application S on @ is (p1,p2, - - - ,Pn),
i.e., assume b(i, k) = a(i, k) = (p1,p2,...,Pn). Note that after comparison
k of pass i of S, the output sequence is a(i,k) = (n+1—-p;,n+1—
P2,...,n+1 _p‘n)'

In pass i of S, the (i + 1) integer of a(i,0) = b(z,0) is shifted to the
left and is compared to some of the first 7 integers of a(i,0). In comparison
k+1 of pass i of S, integer n+ 1 — p; k41 is compared ton +1—p;_;. In
“comparison” &+ 1 of “pass” i of S, integer p;_r4 is “compared” to p;_y.
Note that p;_x41 < pi—x ifandonly if n+1—p;_pyp1 >n+1—-pit. If S
does not make an error in comparison k + 1 of pass i, then

a(z',k+ 1) = (n+1 - P+ 1 =pi g1,
min(n+1—pi—g,n+ 1 — pi_g41),
max(n+1—pi—g,n+ 1 — pi_g41),
n+1—pik+2,...,7+1~py),
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which implies

b(‘l, k + 1) = a(i: k + 1) = (Pl; ooy Pi—k=1, ma»X(Pi-k;Pi-k-i-l),
MIn(Piks Pimk41)s Pimk+2y - - - 1 Pn)-

In such a case, in sequence b(i, k + 1), integer max(p;—k,Pi—k+1) is to the
left of min(p;—k,Pi—k+1), and so S is in “error” during “comparison” k+ 1
of “pass” 4.

It can be similarly proven that, if S makes an error in comparison k+1
of pass i, then S does not make an “error” during “comparison” k + 1 of
“pass” i. It follows that property (b) is satisfied. Also, the total number
of “errors” of S is the total number of non-errors of S, and so property (c)
holds. The previous arguments show that indeed SeS,(a). D

Given a € A, and S € Sa(a), the execution § € Sn(a) is called the
complement of S. Combining Lemmas 5.1 and 5.2, we can prove the fol-
lowing result. It allows us to prove results about the minimum value of a
measure of disorder (given n and €) using results about the maximum value
of the measure. See Sections 7 and 9.

Corollary 5.3 Fora € A, and S € Sy(a):
(3) R(E’g) =n+1- R(a,5);
(i) I(z,S) = n(n — 1)/2 — I(a, S);
(iii) RM(@,S) >n—1— RM(a,S);
(iv) EX(3,S) > |n/2] — EX(a,5).
(i) $Q(@,5) = n(n - 1)(n+1)/3 - 5Q(a, 5);
(v) D(@,S) > |n?/2] - D(a,S).

6 Maximum number of runs

It was proven in [12] that Mruns(n, 1) = 2 for n € IN\{0, 1}. The following
theorem gives some more general results regarding Mruns(n, e).

Theorem 6.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:
(a) For 0 < e <n —1, Mruns(n,e) =e+1.
(b) Forn —1 < e < n(n — 1)/2, Mruns(n,e) = n.
Proof: (a) We first use finite induction on e to prove that
Mruns(n,e) < e+1 (3)

for e < n(n — 1)/2 (and thus for e < n — 2). If e = 0, then Mruns(n,¢) =
1=04+1. Ife = 1, then it follows from [12] that Mruns(n,e) =2=1+1.
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Let € be an integer with 2 < ¢ < n — 2, and assume that for any integer
e with 0 < e < ¢, we have Mruns(m, e) < e +1 for all m € IN\{0,1} with
e <m(m—1)/2. Let a € A, and S € S,(a) be such that E(S) = ¢ and
Mruns(n, €) = R(a, S). Assume that, when S operates on a, the last error
occurs during pass % of the algorithm, where 1 <7 < n—1. Since € > 2 and
since there is only one comparison in the first pass, it follows that i > 2.

For each integer k (where 1 < k¥ < n — 1), let B be the sequence
obtained after k passes of S operating on a, i.e.,

1st pass 2nd pass 3rd pass (n — 2)th pass
e — b/ fT— ... =8

(n — 1)th pass
n—2 — Br-1.

Note that fx is a permutation of a. For 1 < k < n —1, let ax be the
subsequence of B consisting of the first k + 1 integers of By, i.e.,

ar = (Bk1,- - - Br(k+1))-

Let also v, be the subsequence of a consisting of the first k + 1 integers of
a,i.e.,
Ye = (al, ey ak+1).

Because of the way straight insertion sort works, 4 is a permutation of ay.
In addition, let Sj. be the execution of straight insertion sort that consists
of the first k passes of S and operates on <;. Then ok, 1x € Ars1 and
Sk € Si+1(Yk). Also v,y =aand S,_; = S.

Since E(S;-1) < E(S;) = ¢, it follows from the induction hypothesis
that

R(%i-1,5i-1) £ Mruns(i, E(S;-1)) < E(S;-1)+1< (e—-1)+1=e

Consider the insertion of the (i + 1)* integer of 8;_; into a;_; (which
consists of the first ¢ integers of B;_1). We obtain B;, whose first 7 + 1
integers make up o;. No matter how many errors there are in pass i of S,
the insertion of the (i + 1)** integer of 8;_, into a;_; introduces at most
one extra run, so R(v;, S;) < R(vi—1,Si~1) + 1.

Consider now the insertion of the remaining n —{ — 1 integers of 3; into
a;. Since there are no further errors in comparisons, each new integer will
be shifted to the left to an appropriate place in either one of the R(v;, S;)
runs. No new runs are created by the insertion of the last n—i—1 integers of
B; into ;. In other words, for each integer k withi < k < n-—1, R(x, Si) =
R(7i, ;). Indeed, let j be an arbitrary integer such that i < j < n—2, and
let ¢ be the integer inserted in o; after pass j +1 (thus giving rise to ajq1).
The integer ¢ is inserted in one of the R(v;,S;) runs, in the appropriate
position, extending the length of that run by one, but creating no new runs.
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This means R(v, S;) = R(75,5;) = R(¥j+1,8541) = R(Yn-1,5s-1), and
s0

Mruns(n, e) = R(a, S) = R(%,5) < R(%i-1,8i-1) +1< e+ 1.

Inequality (3) has thus been proven.

To prove that equality holds in part (a) when 0 < e <n—1,let n =
(e+ 1)k + u, where k,u are integers with 0 < u < e. Then k = |n/(e+1)].
(Since e < n — 1, we have k > 1.) Let

a = (n—-k+1ln—-k+2,...,n,n—2k+1,n-2k+2,...,n-k,
n—-3k+1,...,n—-2k,...,n—(e—-1)k,1,2,...,n - (e+ 1)k,
n—(e+1)k+1,...,n—ek). (4)

In other words, a consists of the k largest integers between 1 and n (in
ascending order); the next k largest integer (in ascending order), etc. The
last part of a consists of the remaining n — ke integers 1,2,...,n — ke (in
ascending order). Let S € Sp(a) be the execution of insertion sort that
errs in the first comparison of each of the passes k, 2k,...,ek. (Note that
ek < n—1.) The output of the operation of S on a is identical to the input
sequence a. Then R(a,S) = e + 1, which completes the proof of part (a).

(b) By Lemma B.1 in Appendix B, there is a € A, and S € Su(a)
such that E(S) = 0 and C(S) = e. The output of the operation of S on
ais (1,2,...,n — 1,n). By Lemma 5.2, the complement S of S satisfies
S € 8u(@), C(8) = C(S) = ¢, and E(S) =C(S) - E(S) =e—0 =ce.
Also, the output of the operation of S on @ is (n,n — 1,...,2,1), and so
R(@,S) = n, which implies Mruns(n,e) =n. O

7 Minimum number of runs
The following theorem gives some results regarding mruns(n, e).

Theorem 7.1 Let n € IN\\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:

(a) mruns(n,0) = 1.

(b) If e > 1 then mruns(n,e) > 2.

(c) If1 < e<n-—1, then mruns(n,e) = 2.

(d) If n(n —1)/2 — (n—1) < e < n(n — 1)/2, then mruns(n,e) >
n+e—n(n—1)/2.

(e) Ifn(n—1)/2—e € {0,1,2}, then mruns(n,e) =n+e—n(n—1)/2.
(If n(n —1)/2 — e = 2, we need to assume n > 4.)
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Proof: (a) The proof of this part is obvious.

(b) If a € A, and S € S,(a) with E(S) = e > 1 and R(a,S) =
mruns(n, e), then the output of the operation of S on a contains at least
one inversion, and so mruns(n, e) = R(a,S) > 2.

(c) Assume 1 < e < n — 1. By part (b), mruns(n,e) > 2. To show
equality in this case, let a; = (1,2,...,n) and S} € S,(a;) be such that
it errs only in the first comparison of each of the passes 1,2,...,e. Then
E(S;) = e, and the output of the operation of S; on a; is (2,3,...,e +
1,1,e+2,...,n). (If e = n — 1, then the output is (2,3,...,n,1).) Then
R(ay,S1) = 2, which proves the equality mruns(n,e) = 2.

(d) Choose a € A, and S € S,(a) such that mruns(n,e) = R(a, S) and
E(S) = e. By Corollary 5.3,

mruns(n, e) = R(a,S) = n+ 1 — R(G,S) > n+ 1 — Mruns(n, C(S) — e).

However, C(S) — e < n(n —1)/2 —e < n— 1, and by Theorem 6.1(a),
Mruns(n, C(S) — e) = C(S) — e + 1. Hence,

mruns(n,e) >n—C(S)+e>2n+e—n(n—1)/2.

(e) If n(n—1)/2—e = 0, then n > mruns(n,e) > =, and so mruns(n, e) =
n.

If n(n ~ 1)/2 — e = 1, then mruns(n,e) > n—1. Let a = (1,2,...,n),
and S € S,(a) be an execution of straight insertion sort that errs in all
comparisons of all passes, except in the last comparison of the last pass.
Then the output is (n ~ 1,n,n — 2,7 —3,...,2,1) if n > 4, and (2,3,1) if
n = 3, which has n — 1 runs. Since E(S) = n(n —1)/2 — 1, we have shown
that mruns(n,e) =n — 1.

If n(n —1)/2 — e = 2 and n > 4, then mruns(n,e) > n — 2. Let
a=(1,2,...,n), and S € Sp(a) be an execution of straight insertion sort
that errs in all comparisons of all passes, except in the first comparison
of the first pass and in the last comparison of the last pass. Then the
output is (n — 1,n,n—2,n—3,...,3,1,2) if n > 5, and (3,4,1,2) if n = 4,
which has n — 2 runs. Since E(S) = n(n — 1)/2 — 2, we have shown that
mruns(n,e) =n—2. 0

8 Maximum number of inversions

In {12] it was proven that Minv(n,1) = |n2/4] for all n € IN\{0,1}. The
following theorem gives some more general results regarding Minv(n, e).

Theorem 8.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:
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(a) For0<e<n-1,

) o L] 2 s ]

(b) If either n =0(mod e+ 1) orn=1(mode+1), and0<e<n—1,
then

n2e

Minv(n,e) = [%"‘_I)J .

(c) Forn—1<e< n(n—1)/2, Minv(n,e) =n(n —1)/2.

Proof: (a) The right inequality follows from Lemma 2.6 and Theo-
rem 6.1(a). To prove the left inequality, define a € A, and § € Sy(a) as
in the second part of the proof of part (a) of Theorem 6.1 (see (4)). The
output of the operation of S on a is identical to the input sequence a. Then

I(a,8) = k(n— k) + k(n — 2k) + ... + k(n — ek) = k [ne—k"’(L;i)]
with k = |n/(e + 1), which proves the left inequality of (a).
(b) It follows from part (a) of this theorem.
(c) It follows from Theorem 6.1(b). O

9 Minimum number of inversions
The following theorem gives some results regarding minv(n, e).

Theorem 9.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:

(e) minv(n,0) = 0.

(b) minv(n,e) > e.

(c) If0 < e < n—1, then minv(n,e) =e.

(@) Ifn(n—-1)/2 - (n—1) L e < n(n—1)/2, then

. n(n —1) n?{n(n - 1) — 2¢}
minv(n,e) 2 ——5— - l2{n(n —1) -2+ 2}J :

Proof: (a) The proof of this part is obvious.

(b) We use induction on e. For e = 0 or e = 1, the inequality is obvious.
Let € > 2 be an integer and assume that minv(n,e) > e for all integers e
and n with 0 < e < ¢ n > 2, and e < n(n — 1)/2. Let m be an integer
such that m > 3 and ¢ < m(m — 1)/2. By definition, there is ap € A
and Sy € Sp(ao) with E(Sp) = e such that minv(m,e) = I(ap, So). Write
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ao = (ao1,a02,---,a0m)- Let j be the pass where the last error of Sy occurs.
Since € > 2, we have j > 2. Let b = (ao1,a02,...,a0;) and S, be the part
of S that consists of the first j — 1 passes of §. Then b € A;, Sy € S;(b),
and E(Sy) < e. Obviously, E(S;) < j(5 — 1)/2.

By the induction hypothesis, I(b,Sy) > minv(j, E(Ss)) > E(S;). In
pass j, we have € — E(Sp) > 1 errors. If a is the number in position
J+1in list ap at the beginning of pass j, then for the first ¢ — E(S)) — 1
erroneous comparisons, & has moved to the left bypassing smaller numbers
at least ¢ — E(S,) — 1 times. During the final erroneous comparison of
pass j, an inversion was created no matter whether @ moved one position
to the left. Therefore, during pass j at least ¢ — E(S,) inversions were
created, and no inversions from the previous passes have been destroyed.
At the end of pass n — 1, the other n — j — 1 numbers of aq (if there are
any) will be placed somewhere in the list, but no previous inversions will
be destroyed (even though some new ones may be created). Therefore,
minv(m, €) = I(ag, So) > I(b, Sp) + € — E(Sp) > E(S;) +€— E(Sp) = €. The
induction step is complete.

(c) Assume 0 < e < n—1. By part (b) of this theorem, minv(n,e) > e.
To prove equality, consider list a; = (1,2,...,n) and execution S; € Sy(a;)
of the example in the proof of Theorem 7.1, part (c). Then E(S;) = e and
the output of the operation of Sj on a; is (2,3,...,e+1,1,e +2,...,n),
and so I(a;,S)) =e.

(d) Choose a € A, and S € S,(a) such that minv(n,e) = I(a,S) and
E(S) = e. By Corollary 5.3,

minv(n, e) = I(a,§) = n(n-1)/2-1(a, S) > n(n—1)/2—Minv(n, C(S)—e).
However, C(S) —e < n(n—1)/2 — e < n — 1, and by Theorem 8.1,

n?(C(S) — e) J .

Minv(n, C(S) — €) < [2(7(5’)—e_+1)

Hence,

minv(n, e)

v

n(n—1) n%(C(S) —e)
2 l2(C(S) —e+ 1)J

n(n—1) "‘2{"&22__12_6}
2 2{ﬂ"2—_ll—e+l} ’

v

from which the result follows. O
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10 Maximum number of smallest number of removals

It was proven in [12] that Mrem(n,1) = |n/2]| for n € IN\{0,1}. The
following theorem gives some more general results regarding Mrem(n, €).

Theorem 10.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n -
1)/2. Then:
(a) For0<e<n-1,

n ne
< < .
e LH_ lJ < Mrem(n, e) < le+ lJ

(b) If either n = 0(mod e+ 1) orn =1(mode+1), and0<e <n—-2,
then

Mrem(n, €) = [e’f J .

(c) Forn—1<e< n(n—-1)/2, Mrem(n,e) =n—1.

Proof: (a) The right inequality follows from Lemma 2.5 and Theo-
rem 6.1(a). To prove the left inequality, let @ and S € S,(a) be defined
as in the proof of the second part of part (a) of Theorem 6.1. Since the
output of the operation of S on a is again a (see equation (4)), it is easy to
see that RM(a, S) = ek = e|n/(e + 1)], which proves the left inequality.

(b) It follows from part (a) of this theorem.

(c) It follows from Theorem 6.1(b). O

11 Minimum number of smallest number of removals

The following theorem gives some results regarding mrem(n, e).

Theorem 11.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:

(a) mrems(n,0) = 0.

(b) For e > 1, mrem(n,e) > 1.

(c) For1<e<n-—1, mrem(n,e) =1.

Proof: (a) The proof of the first part of the theorem is obvious.

(b) Let e > 1. Choose a € A, and S € S,(a) such that E(S) = e and
RM(a,S) = mrem(n,e). By Theorem 7.1(b), R(a,S) > mruns(n,e) > 2,
i.e., the output of the operation of S on a contains at least two runs, and
so mrem(n,e) = RM(a,S) > 1.

(c) Assume 1 < e < n—1. By part (b) of this theorem, mruns(n,e) > 1.
To show equality, let a; = (1,2,...,n) and assume S; € S, is the same as
in the proof of part (c) in Theorem 7.1. Then E(S;) = e, and the output
of the operation of $; ona is (2,3,...,e+1,1,e+2,...,n), which implies
that RM(al,Sl) =1.0
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12 Maximum number of smallest number of successive exchanges
The following theorem gives some inequalities regarding Mexc(n, e).

Theorem 12.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:

(a) Mexc(n,0) = 0.

(b) If1<e<n-1, then Mexc(n,e) =n—1.

(c) If e = n(n — 1)/2, then Mexc(n, e) = |n/2|.

Proof: (a) The proof of this part is obvious.

(b) Assume 1 <e<n-1,andleta=(1,2,...,e,n,e+1,...,n~1). (If
e =n—1, then n is the last element of a.) Let S € §,(a) be the execution
of straight insertion sort that errs in all the comparisons of pass e (only).
Then the output of the operation of S on a is (n,1,2,...,n—1), which has
only one cycle. Thus Mexc(n,e) =n — 1.

(c) Define A(n,e) as in the statement of Lemma 4.2. For each (a,S) €
A(n,e) with e = n(n — 1)/2, we have E(S) = n(n — 1)/2 = C(S), and
by Lemma 4.1, the ranks of the output of the application of S on a is
(n,n—1,...,2,1). This means Mexc(n,n(n — 1)/2) = |n/2|. O

13 Minimum number of smallest number of successive exchanges
The following theorem gives some inequalities regarding mexc(n, e).

Theorem 13.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:

(a) mexc(n,0) = 0.

(b) mexc(n + 1,e) < mexc(n, e).

(c) If e > 1, then mexc(n,e) > 1. _

(d) If 1+ 8e is a perfect square (i.e., e = m(m + 1)/2 for some non-
negative integer m) and n > b@ , then

1+\/1+86J
1 .

mexc(n, e) < [

(e) f 1< e<n—1, then mexc(n,e) < |(e+1)/2].
(f) mexc(n,1) = 1 for n > 2, and mexc(n,2) = mexc(n,3) = 1 for
n>3.

Proof: (a) The proof of this part is obvious.

(b) Choose a € Ay, and S € S, (a) such that E(S) = e and mexc(n,e) =
EX(a,S). Without loss of generality we may assume that a is a permutation
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of the first n positive integers. Let b be the output sequence of the operation
of Son a. Let @’ = (a,n+ 1), and let &’ € Sp+1(a’) be the execution of
straight insertion sort operating on a’ that consists of S followed by a single
error-free comparison (in the last pass). Then E(S') = E(S) = e, and the
output sequence is (b,n +1). It is easy then to check that the number of
cycles in (b,n + 1) is the number of cycles in b plus one. Therefore,

mexc(n + 1,e) < EX(a',S') = EX(a,S) = mexc(n, ).
(c) Assume e > 1. Choose a € A, and S € Sy(a) with E(S)

e and EX(a,S) = mexc(n,e). By Theorem 7.1, part (b), R(a,S) 2>
mruns(n,e) > 2, and so ¢ # (1,2,...,n), which means mexc(n,e) =
EX(a,S) 2 1.

(d) It follows from part (b) of this theorem and Theorem 12.1(c).

(e) Assume 1 <e<n-1,andlet a = (e+1,e,e—1,...,1) € At
and S € S.+1(a) be the execution of straight insertion sort that errs in the
first (and only) comparison of each of the e passes. Then E(S) = e, and
the output of the operation of S on a is again a, and so mexc(e + 1,¢) <
EX(a,S) = |(e +1)/2]. Since n > e + 1, it follows from part (b) of this
theorem that mexc(n,e) < mexc(e + 1,€) < |(e+1)/2].

(f) Equality mexc(n,1) = 1 for n > 2 follows from parts (c) and (d) of
this theorem. By part (c), mexc(n,2) > 1 for n > 3. By part (e) of this
theorem mexc(n,2) < [(2+1)/2] =1 for n > 3, and so mexc(n,2) = 1.
By part (c), mexc(n,3) > 1 for n > 3. By part (d) of this theorem,
mexc(n, 3) < |6/4] =1 for n > (1++/1 + 8(3))/2 = 3. Thus, mexc(n,3) =
1.0

14 Maximum value of the sum of squares
The following theorem gives some results regarding Msqr(n, €).

Theorem 14.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1}/2. Then:

(a) Msqr(n,0) = 0.

(b) Msar(n, 1) = n|n/2] (n — |n/2]) = n|n?/4].

(c) Msqr(n,e) > n I_"TQJ +2 foree {2,3} andn > 5.

(d) f0<e<n-—1, then

Msqr(n, e) > 2(2e — 1) — 3n(e? — 1) — 2(e + 1))

= i
Bern)”

(e) Forn—1 < e < n(n —1)/2, Msqr(n, ) = (n® —n)/3.
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Proof: (a) The proof of the first equality is trivial.

(b) Choose (a,S) such that a € A,, S € S,(a), E(S) = 1, and
5Q(a, S} = Msqr(n,1). From Lemma 2.2, part (a), we have SQ(a, S) <
nl(a,S) (an inequality due to Daniels [4]). From Theorem 8.1 we have
I(a,S) < Minv(n,1) < |n?/4]. Therefore

Msqr(n,1) = SQ(a,S) <n [:;J .

To prove equality, let m = |n/2], and let a = (n—m + 1,n —m +
2,...,mL2,...,n=m)ifn>2and a=(2,1) if n = 2. Let S € S,(a) be
the execution of straight insertion sort that errs in the first comparison of
pass m. Then the output of the operation of S on a is again a, and then it
is easy to show that §Q(a,S) = n|n/2] (n — |n/2]), thus proving part (b)
of the theorem.

(c) To prove the inequality for e = 2, assume n > 5, and let m = |n/2|
anda=(n-m+1,n-m+2,...,n,2,1,3,...,n—m). Let S € S,(a) be
the execution of straight insertion sort that errs only in the first comparison
of passes m and m+ 1. Then the output of the operation of S on a is again
a, and then it is easy to show that SQ(a, S) = n|n?/4] + 2.

To prove the inequality for e = 3, assume n > 5, and let a = (n — m +
Ln-m+2,...,n,1,2,3,..., n —m). Let S € S,(a) be the execution of
straight insertion sort that errs only in the first comparison of pass m and
the first two comparisons of pass m + 1. Then the output of the operation
of Sonais

n-m+ln-m+2,...,n,2,1,3,...,n —m).

It is then easy to show that SQ(a, S) = n|n?/4] + 2.
(d) Assume 0 < e < n— 1. Choose (a,S) such that a € A,, S € Sy(a),
E(S) = e, and I(a, S) = Minv(n, e). By Daniels’ inequality, Lemma 2.2(a),

n(n—-1)(n-2) .

2 )

Msqr(n,e) > SQ(a,S) > nl(a,S) —

By Theorem 8.1(a),

I(a,8) = Minv(n,e) > LTZTJ {ne_ [e_z_lJ e(e_2+12 }
(-5 ©

Combining inequalities (5) and (6), we can prove the inequality in part (e)

of the theorem.
(e) It follows from Theorem 6.1(b). O
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15 Minimum value of the sum of squares

The following theorem gives some results regarding msqr(n, e). (The nota-
tion [z] denotes the smallest integer greater than or equal to z.)

Theorem 15.1 Let n € IN\\{0,1} and e be an integer with 0 < e < n(n -
1)/2. Then:

(a) msqr(n,0) = 0.

(b) msqr(n,e) > [4e (1 + £)].

(c) If n > 2e, then msqr(n,e) < 2e.

(d) If0 < e <n-—1, then msqr(n,e) < e(e +1).

(e) msqr(n,1) = 2 and msqr(n,2) = 4. (For the last equality we need
to assume that n > 4 because msqr(3,2) =6.)

Proof: (a) The proof of this part is obvious.

(b) It follows from the Durbin-Stuart inequality (see Lemma 2.2(b))
and Theorem 9.1(b).

(c) If e = 0, the inequality is obviously true (for n > 2). Assume
n>2 > 2 and a = (1,2,...,n) and assume S € S,(a) errs in the first
comparisons of passes 1,3,...,2e — 1 only. Then E(S) = e and the output
of the operation of Son a is (2,1,4,3,...,2¢,2e — 1,2e +1,...,n). Hence
msqr(n, e) < SQ(a, S) = 2e.

(d) For e = 0 the inequality is obvious. Assume 1 < e < n—1. Let
a; = (1,2,...,n) and assume S; € Sy(a;) is the same as in the proof of
part (c) in Theorem 7.1. Then E(S,;) = e, and the output of the operation
of Syonais(2,3,...,e+1,1,e+2,...,n), which implies that msqr(n,e) <
SQ(al, S]) = e(e + 1)

(e) The equality msqr(n,1) = 2 follows from parts (b) and (c) of this
theorem. The inequality msqr(n,2) < 4 for n > 4 follows from part (c) of
this theorem. By part (b), msqr(n,2) > 3. To prove msqr(n,2) =4 for n >
4, we show that it is impossible for a € A, and S € S,(a) to have E(S) =2
and SQ(a,S) = 3. Assume otherwise. Assume without loss of generality
that @ is a permutation of (1,2,...,n). Write a = (a1,02,...,a,). Since
SQ(a,S) = 3, there are integers 4,3,k such that 1 <¢ < j <k <, and
(ai,a;,a) is a permutation of (3,4, k) with a, # s and (s — a,)? = 1 for
s =1,7,k. It is very easy to show that this is impossible. O

16 Maximum value of the sum of absolute values
In this section we give some results regarding Mabs(n, e).

Theorem 16.1 Let n € IN\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:
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(a) Mabs(n,0) = 0.

(b) Mabs(n,e) = |n?/2) ife=1 or 2.

(c) Ifn>3 and3<e< LEIURITY 4 3 then Mabs(n, e) = |n2/2).
(d) If n — 1 < e < n(n—1)/2, then Mabs(n,e) = |n2/2].

Proof: (a) The proof of this part is obvious.

(b) It is clear that Mabs(n, e) < |n?/2], because the maximum value of
D(a,S) for a € A, and S € S,(a) is |[n?/2). To prove equality when e = 1,
letm=|n/2f,andleta=(n~-m+1,n-m+2,...,n,1,2,...,n—m) if
n>2,and a = (2,1) if n = 2. Let S € S,(a) be the execution of straight
insertion sort that errs in the first comparison of pass m. Then the output
of the operation of S on a is again a, and then D(a, S) = |n%/2].

To prove equality for e = 2, assume n > 3, and let a = (n —m +
lL,n-m+2,...,n,2,138,...,n—-m)ifn>4,a=(3,4,21) if n =4, and
a=(3,2,1) if n =3. Let S € S,(a) be the execution of straight insertion
sort that errs only in the first comparison of passes m and m+ 1. Then the
output of the operation of S on a is again a, and then D(a, S) = |n?/2].

(¢) As in part (b), Mabs(n,e) < |n?/2]. To prove equality, let m =
[n/2]. Since 0 < e — 3 < m(m —1)/2, by Lemma 4.2 there is a; € A, and
S1 € Sm(ay) such that E(S;) = e — 3. Define

a=(an+n-map+n—m,...,a1m+n-m,1,2,...,n-m).

Note that ranks(a,) = ranks(a;; + n —m,e12 +n —m,...,81m + n —~m).
Let S € S,(a) be the execution of straight insertion sort that consists of
S) during its first m — 1 passes; followed by a single erroneous comparison
in pass m; two erroneous comparisons in pass m + 1, and no erroneous
comparisons thereafter.

Note that E(S) = (e — 3) + 1 + 2 = e. The output of the operation
of S on a is a permutation of the numbers n ~m +1,n —m+2,...,n
followed by the sequence (2,1,3,...,n—m) if n > 5, and (2,1) if n = 3
or 4. By Lemma 2.4, D(a,S) = |n?/2}, and part (c) of the theorem has
been proven.

(d) It follows from Theorem 6.1(b). O

17 Minimum value of the sum of absolute values
In this section we give some results regarding mabs(n, e).

Theorem 17.1 Let n € IN\\{0,1} and e be an integer with 0 < e < n(n —
1)/2. Then:

(a) mabs(n,0) = 0.

(b) If e > 1, then mabs(n,e) > e+ 1.
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(c) If 0 < e < n—1, then mabs(n,e) < 2e.
(d) mabs(n,1) = 2.

Proof: (a) The proof of the first part is obvious.

(b) It follows from the Diaconis-Graham inequality (Lemma 2.2, part
(¢)), Theorem 9.1(b), and Theorem 13.1(c).

(c) The proof of this part is similar to the proof of Theorem 15.1(d), or
to the proof of Theorem 7.1(c).

(d) It follows from parts (b) and (c) of this theorem. O

The following example shows that when n = 4 and e = 3, we have
4=e+1=mabs(4,3) < 2e = 6. Let a = (1,2,3,4) and let S € S4(a) be
the execution of straight insertion sort that errs in all the comparisons of
passes 1 and 2 (but not in pass 3). Then the output of the operation of S
on ais (3,2,1,4), and so mabs(4,3) < D(a,S) = 4. By Theorem 17.1(b),
mabs(4,3) > 3 + 1 = 4. This proves our claim.

18 Concluding remarks and future research

From Theorems 6.1, 8.1, 10.1, 12.1, 14.1, and 16.1 of the paper, we can
easily deduce the following corollary about the asymptotic behaviour of
straight insertion sort when the number of errors is small compared to the
length of the input list:

Corollary 18.1 Let e be a fized nonnegative integer. Then
(a) limp—,0o Mruns(n,e) = e+ 1;
(b) lim, o —-.S—lM'“:" me) — ety
(c) limg oo Mremlme) — e,
(d) limp_oo MmE) — 3 (e > 1).
(e) limsup,, . Meofre) > 2eod fife > 1).

(F) limp oo M2BmE) — L fife > 1).

Table 1 gives an asymptotic comparison (i.e., for large n) of the worst
case scenario for bubble sort (with no boolean flag) with the worst case for
straight insertion sort for a fixed number of errors e > 1. The six measures
of disarray are compared. For bubble sort, the results for Mruns, Minv, and
Mrem have been proven in Hadjicostas and Lakshmanan (2005), whereas
the results for Mexc, Msqr, and Mabs are proven in Appendix A of this
paper.

Table 2 gives an asymptotic comparison of the best case scenaria for
bubble sort and straight insertion sort for a fixed number of errors e > 1.
The six measures of disarray are compared. The results for bubble sort
follow from Theorem A.3 in Appendix A.
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Table 1: Worst case scenario for bubble and straight insertion sort
(large n with fixed e > 1)

Algorithm | Mruns Minv | Mrem
Bubble sort e+1 ne + O(1) e
Straight insertion sort | e+1 .z':,_—"l)- + O(n) =1 T o)

Algorithm Mexc Msgr Mabs
Bubble sort n—1 ne + O(n) 2en + O(1)
Straight insertion sort | n—1 | > %}2 + O(n?) -'l;-

Table 2: Best case scenario for bubble and straight insertion sort
(large n with fixed e > 1)

Algorithm mruns | minv | mrem | mexc | msqr mabs
Bubble sort 1 0 0 0 0 0
Straight insertion sort 2 e 1 >1 |2 [335] >e+1

Tables 1 and 2 indicate that bubble sort is perhaps more robust to
errors than straight insertion sort for sufficiently large n, but very small
e (which is not a function of n). However, bubble sort is known to be
inefficient requiring a lot more comparisons even for a reasonably sorted
input, i.e., bubble sort lacks adaptability to pre-sortedness. It is perhaps
this redundancy in the number of comparisons performed that manifests
itself in lower disorder due to errors in the output. The anonymous referee
for this paper has suggested that it will be interesting to propose and study
a measure of robustness of sorting algorithms taking into account the extent
of disarray left in the output per error relative to the number of comparisons
performed. We leave this direction of study for future work.

A Appendix

In this appendix, we state and prove some more results related to bubble
sort (when some comparisons are erroneous) that did not appear in Had-
jicostas and Lakshmanan [11). We are dealing with bubble sort with no
boolean flag:

for (i=1;i<mn;i=i+1)
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for(j=n;j>4j=7-1)
if (a,-_l > aj)
swap a;_1 and a;

During bubble sort, if there are no errors in comparisons, at the be-
ginning of the i** pass, the smallest i — 1 integers occupy their correct
positions. During the i** pass over the input list a, the algorithm “bub-
bles” the it* smallest element in a to the i** position (from the left) in the
output sequence. The algorithm makes n— 1 passes over the input list, with
n — i comparisons during the ** pass. Hence it does exactly n(n — 1)/2
comparisons in total.

For each n € IN\{0, 1}, let B,, be the set of all executions of the bubble
sort algorithm, B : A, — A,, that can sort lists of length n, and can make
up to n(n — 1)/2 errors when making comparisons. This means that, for
each B € B,, the collection of comparisons where B is erring is uniquely
associated with B. Let also E(B) be the total number of errors B does.

For each n € IN\{0,1}, a € A,, and B € B,, define R(a, B), I(a, B),
RM(a, B), EX(a,B), SQ(a,B), and D(a, B) in a way similar to that in
Section 4 of this paper. Similarly, for integers e with 0 < e < n(n—1)/2, one
can define Mexc(n, e), Msqr(n,e), Mabs(n, ), mrem(n, ), mexc(n, e) etc.
For example, Msqr(n, ¢) = max{SQ(a,B) : a € A,, B € B,, E(B) =e€}.

Theorem A.1 Let n € IN\{0,1}. Then for bubble sort:
(a) Mexc(n,0) = 0.
(b) If e is an integer with 1 < e < n — 1, then Mexc(n,e) =n — 1.

Proof: (a) The proof of this part is obvious.

(b) Assume 1 <e<n-1,andlet a =(1,2,...,e—1,n,e,...,n—1).
(If e = 1, then n is the first element of a.) Let B € B, be the execution of
bubble sort that errs only in the last e comparisons of the first pass. Then
the output of the operation of B on a is (n,1,2,...,n — 1), which has only
one cycle. Thus Mexc(n,e) =n—1. 0

Theorem A.2 Let n € IN\\{0,1} and e € IN be such that e < n(n — 1)/2.
Then for bubble sort,

(a) max{ne(n — e),0} < Msqr(n,e) < n(en — 2e + 1).

(b) max{2e(n — e),0} < Mabs(n,e) < 2(en ~2e + 1).

Proof: (i) By Theorem 6.1, part (c), in Hadjicostas and Lakshmanan
(2005), we know that for bubble sort, Minv(n,e) < e(n — 2) + 1. For all
a € A, and B € B, let I(a, B) be the number of inversions in the output
sequence after execution B of bubble sort operates on a. By Lemma 2.2,
parts (a) and (c), of this paper we have SQ(a, B) < nI(a, B) < nMinv(n,e)
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and D(a,B) < 21(a,B) < 2Minv(n,e) for all a € A, and B € B, with
E(B) =e. Thus

Msqr(n,e) < nMinv(n,e) < n(en — 2¢e + 1),

and
Mabs(n,e) < 2Minv(n,e) < 2(en — 2e + 1).

(ii) The left inequalities obviously hold for e = 0 or e > n. To prove
them for thecase 1 < e < n—1,letag = (n,n-1,...,n—e+1,1,2,...,n—¢),
and By be the execution of bubble sort that errs in comparison n — e
of pass i for i = 1,2,...,e. Then the output list is (n —e+1,...,n —
1,n,1,2,...,n — €), and so Msqr(n,e) > SQ(ap,By) = n(n — €)e and
Mabs(n, e) > D(ag, By) = 2¢(n — €). This concludes the proof of the theo-
rem. O

The following theorem deals with the best case scenarios for all six
measures of disarray in the case of bubble sort with erroneous comparisons.

Theorem A.3 Assumen € IN\{0,1} and e is an integer with0 < e < n-—
2. Then for bubble sort, mruns(n,e) = 1, and minv(n, e) = mrem(n,e) =
mexc(n, e) = msqr(n, e) = mabs(n,e) = 0.

Proof: Leta = (1,2,...,n) and assume B € B, is such that all errors
occur in the first n — 2 comparisons of the first pass. (This is possible since
e < n—2) At the end of the first pass, number 1 has been placed in
position 1. Since there are no further errors, the output of the execution of
B on a is again a, and the theorem follows immediately. O

B Appendix

In this appendix we prove an auxiliary result about insertion sort when all
the comparisons are error-free. Recall that A(n,e) is defined by equation
(2) in the statement of Lemma 4.2. This lemma is used in the proof of
Theorem 6.1(b).

Lemma B.1 Let n € IN\{0,1}. Given an integer c with n — 1 < ¢ <
n(n — 1)/2, there is (a,S) € A(n,e = 0) such that C(S) =c.

Proof: We proceed by finite induction on n. For n = 2, the claim of
the lemma is obviously true. Let m be a positive integer such that m > 3,
and assume the claim of the lemma is true for all integers n such that
2<n<m.
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Let c be an integer such that m—1 < ¢ < m(m~—1)/2. We consider two
cases: (a) m—1< c< (m—-1)(m—-2)/2+1; and (b) (m—1)(m—2)/2+2 <
c<m(m-1}/2.

(a) Assumem—1<c<(m—-1)(m=-2)/24+1 Thenm-2<c-1<
(m—1)(m—2)/2. By assumption, we may choose (a, S) € A(m —1,0) such
that C(S) = c—1. Then (ranks(a), S) € A(m-1,0). It follows that ranks(a)
is a permutation of the first m — 1 positive integers and S € S,,—1(a). Let
b be the output list after S operates on ranks(a). Let ' = (ranks(a),m)
and define S’ € Sp,(a’) to be S followed by a comparison of m with the
last integer of b with no error occuring. Then E(S') = E(S) =0, C(5') =
C(S)+1=c¢, and (a’,5) € A(m,0).

(b) Assume (m — 1)(m —2)/2+2 < ¢ < m(m —1)/2. Then

m—-2<(m?-5m+8)/2<c—(m—-1) < (m—-1)(m—2)/2.

By assumption, we may choose (a;,5) € A(m — 1,0) such that C(S,) =
¢ — (m —1). Then (ranks(a;), S1) € A(m - 1,0). It follows that ranks(a,)
is a permutation of the first m — 1 positive integers and S; € Sp,—1(a;). For
each integer ¢ with 1 < ¢ < m —2, let b; be the output obtained after pass i
of S; operating on ranks(a,;). Let a] = (m,ranks(e,)), and let S| € S;,(a})
with E(S]) = 0 be defined as follows: In the single comparison of the first
pass of 57, the first element of ranks(a;) (which is the second element of af)
is compared to m, and m goes to the second position. For 2 < j <m -1,
we assume that the output of the operation of S] on a} after pass j is the
list obtained after inserting m on the (j + 1)*® position of b;_1. It is easy
to show that S} is well-defined, (a},5]) € A(m,0), and C(S’) =c.

Puting the two cases together, we conclude that the claim of the lemma
is true forn =m. O
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