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Abstract
P. Erdds and T. Gallai gave necessary and sufficient conditions for a sequence
of non-negative integers to be graphic. Here,their result is generalized to multi-
graphs with a specified multiplicity. This both generalizes and provides a new
proof of a result in the literature by Chungphaisan [2].

1 Introduction

A sequence 7 of non-negative integers is said to be graphic if it can be realized by a
simple graph with degree sequence . Similarly, 7 is said to be multigraphic if it can
be realized by a multigraph where multiple edges between two vertices are allowed. In
1960, P. Erd8s and T. Gallai gave necessary and sufficient conditions for a sequence of
non-negative integers to be graphic, proving the following theorem.

Theorem 1.1 ([1]) A sequence m = (d1,dz,...,dp) of non-negative integers with
dy > dy > --- > dy, is graphic if and only if

(1) 3°F_, d; is even, and

(2) Zf___l di < k(k~1)+ 3%, min{d;, k}, foreveryk, 1 < k < p.

Several other proofs have been given to this theorem since then. In 1969, F. Harary
[4] gave a lengthy direct proof, while in 1973, C. Berge [6] gave a shorter proof using
network flows. Later in 1986, S.A. Choudum [7] gave a simple direct proof by induc-
tion on the sum of the sequence. Here we provide another proof in a more general
setting that uses Tutte’s f-factor theorem.

A multigraph is said to have multiplicity (or index ) A, or said to be A-multigraphic
if the maximum number of edges joining each pair of vertices is A. In 1974, Chung-
phaisan gave necessary and sufficient conditions for sequences to be at most A-multigra-
phic, proving the following result.
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Theorem 1.2 ([2]) A sequence m = (di,dz,...,dp) of non-negative integers with
dy 2 dy 2 -+ 2 dp is multigraphic with multiplicity at most X if and only if

(1) 3%, di is even, and
2) F  di < Ak(k-1) + St k1 min{di, Ak}, foreveryk, 1 < k < p.

But this theorem does not guarantee to have a realization of the sequence with a
graph with multiplicity exactly A. Multiplicity of the realization graph may be A or
less than A.

In this paper, this result will be modified to generalize it for multigraphs with ex-
act specified multiplicity. Also, another proof for Theorem 1.2 using Tutte’s f-factor
theorem is given.

Before stating Tutte’s f-factor Theorem, let’s give some necessary definitions. To
assist the reader, Tutte’s notation [9] is adopted throughout this paper.

The valency of a vertex z in a graph G is the degree of z in G and is denoted
by val(G,z). If f is a function from the vertex set V'(G) into the set of integers,
define another function f’ by the rule f/(z) = val(G,z) — f(z) for each vertex « of
G. Given such a function f, an f-facfor is a spanning subgraph F' of G satisfying
val(F,z) = f(z) for each vertex z of G.

A G-triple is an ordered triple (S, T, U) where {S, T, U} partitions V(G). For any
subset S of V(G), f(8) = 3, es f(v). For any disjoint subsets S and T of V(G),
m(S, T) denotes the number of edges of G joining vertices in S to vertices in T'.

If B = (S,T,U) is a G-triple and C is any component of G[U] in G, then define

J(B,f,C) = f(C) + m(V(C),T).

C is an ODD component if J(B, f,C) is an odd integer. Note that capital letters are
used to distinguish it from “odd component”, the usual terminology used to represent
a component with an odd number of vertices. The number of ODD components of U
in G with respect to B and f is denoted by h(B, f). The deficiency §(B, f) of the
G-triple B = (S, T, U) with respect to f is defined as follows:

8(B, f) = h(B, f) - f(8) - f(T) + m(S,T).
An f-barrier of G is a G-triple B = (S, T, U) such that §(B, f) > 0.
I can now state Tutte’s f-factor Theorem.
Theorem 1.3 ([9]) Given G and f, exactly one of the following statements is true:
(1) G has an f-factor.
(2) G has an f-barrier.

In other words, if we let f be a vertex-function of a graph G, then G has an f-factor or
there exists a G-triple B = (S, T, U) of G with §(B, f) > 0, but not both.

Now let’s give one last definition. A sequence 7 = (d, dy, ..., dp) of non-negative
integers with dy > dp > --- 2> dp is A-admissible if they satisfy the conditions of
Theorem 1.2, namely,
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(1) 3P, d; is even, and

=1

@) iy di < Me(k — 1) + Y0, min{d;, Ak}, forevery k, 1 < k < p.

2 Preliminary Results

Lemma 2.1 A sequence 7 = (dy,dy, ..., dp) of non-negative integers withdy > dy >
-++ > dy and even sum is A-admissible if and only if for all G-triples (S, T, U) we have

m(S,T) < d(S) + AMp - 1|T| - d(T)
where G = K, and d(S) = 3, ¢ di for d(v;) = d;.

Proof. Assume 7 is A-admissible. Since the vertices in T" are not ordered according to
their degrees, we have ZW erdi < 21?__11 d;, hence

IT| P
DY GSNTI(TI-1)+ Y min{d, NT|}
vjET . i=1 ‘=|T'+1

by A-admissibility. It is also clear that

AITITI-1) = Xp—DIT| - AS|IT| - NT||U|
= Ap-DIT|-m(S,T) - NT}|U|
We also have
hmmin{di, AT} < d(S)+ 2, ev min{d;, AT}
< d(S) + AT

Hence, we get

ZjeT d; < ZE_-L d; < AT|T|-1)+ Zf=|'r|+1 min{d;, AT}
< AMp- [T =m(S,T) - AIT||U| + d(S) + AU|IT|
= Alp - DIT| - m(S,T) + d(S)

proving m(S, T) < d(S) + A(p — 1)|T| — d(T).

Now assume m(S, T') < d(S)+A(p—1)|T|—d(T’) holds for all G-triples (S, T, U).
NowletT = {v; : 1 <i<k},S={v; :di < Mcandi > k},and U = {v; : d; >
Ak and i > k}.

Then we have

m(5,T) < d(S)+ Mp - 1)[T| ~ d(T)
ASIITI < d(S) + MIT| = DIT] + AlS||T| + A|U||T| — (T)
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implying d(T) < Ak(k — 1) + d(S) + Ak|U|. By the choice of S and U, d(S) =

Yovies min{d;, Ak}, and MU||T| = 3=, oy min{d;, Ak}. So,

dT) < Xe(k—1)+ 3, cgmin{di, Ak} + 3=, cp min{d;, Ak}
= Mk(k~1)+ TE,,  min{di, Ak} |

showing 3°5_, di < Mk(k — 1) + Y0, min{d;, Ak}. Thus 7 is A-admissible. O
Before stating the main theorem, let’s prove two results which are analogous to
Havel - Hakimi ({5], [3]) conditions.

Lemma 2.2 If = (dy,ds,...,dp) withdy, > da > -+ > dy is a degree sequence of
a A-multigraph, we can find a realization of 7 with the largest multiplicity (which is \)
occurring between the two vertices of the largest degree.

Proof. Let G be a A-multigraph with degree sequence 7 = (d,ds, . . .,dp), v1 and v
be the vertices of the largest degrees, and let m(xz, y) represent the number of edges
between the vertices z and .
Case 1: m(v;,v) # A and m(ve,v) # A forany v € V(G). Now let v; and v; be two
vertices in V(G) such that dg(v;) = di, dg(v;) = d;, and m(v;,v;) = A. The first
step of the algorithm will result in a graph with m(vs,v;) = A, and after the second
step we’ll have a new graph with m(v1, v2) = A that still has 7 as the degree sequence.
Step 1: Let g(v) = m(vs, v) — m(v;,v). Obviously, g(v;) < 0 since m(ve,v;) <
A. Also, g(v;) + g(v2) =0and 3°, .y (g) 9(v) = d2 — d;j 2 0. So,

Svevic) 9W) ) — g(v)
~-g(v:)

PoveV(G)—{uawiws} IV) = EEUEV(G) g(v)g - g(v:) — 9(v;) — g(v2)

vl

Hence, for each v € V(G) — {v2,v;,v;}, we can choose an integer ¢(v) such that
0 < ¢(v) < g(v) and Ty ey () {ua 005} H¥) = —g(vi)- Now , foreach v € V(G) -
{v2, v, v;}, we can remove £(v) edges joining v to v and add ¢(v) edges between v to
v;, then remove ¢(v) edges joining v; and v; and add ¢(v) edges between v; to v3. So,
D veV(G)—{vawiwy} H) = —g(vi) edges are added between vp and v; in total. This
produces a new graph with the same degree sequence where m(vz, v;) = A.

Step 2: Replace vy, 2, and v; for vg, v;, and v; respectively in the above algorithm
to get m(vy,v2) = A
Case 2: Assume that m(vy, vx) = X or m(vg,vx) = A for some v € V(G). Now we
can directly apply Step 2 for {vy,va, vk }.

The following is an obvious corollary of the previous lemma. If 7 = (d;,d2, . .. ,dp)
is a sequence of non-negative integers with dy > dp > - -+ > dp, letw’ = (d},d5,d5. . .,
d;,) be a rearrangement (if necessary) of {dy — A, d2— A, ds, ... ,dp} sothatd} > dj >
dy 2 ---2>d,

Corollary 2.3 If a sequence n = (d1,ds,...,dyp) of non-negative integers with d, >
dy > --- > dp is X multigraphic, then ' is at most A-multigraphic.
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Proof. Assume that 7 = (d;,ds,...,dp) withdy > dp > ..+ > d, is multigraphic
with exact multiplicity A. By the Lemma 2.2, there exists a multigraph G such that
mg(v1,v2) = A By removing these A edges, we have a new graph with degree
sequence 7’. Since the new graph may or may not have multiplicity A. 7’ is at most
A-multigraphic.
0
Note that the converse is not necessarily true unless 7 is A-admissible.

3 Main Theorem

Now, let me state the main theorem which is a generalization of the Erdés-Gallai The-
orem. This result is not only of interest in its own right, but has also been very useful
in the study of maximal sets of Hamilton cycles in multipartite graphs [8].

Theorem 3.1 A sequence m = (d1,dy, ..., dp) of non-negative integers with d; >
dy 2 -+ 2 dp is multigraphic with exact multiplicity X if and only if

(i) m is A-admissible, and

(ii) © = (d},dy,dj. .. +dp) is A-admissible where ' is a rearrangement (if neces-
sary) of {dy — A\,d2 — M\, da,...,dp} sothatdy > dp > dy > .- > dy,

Proof. First assume that the sequence © = (dy,d2,...,dp) of non-negative integers
with d) > dp > --- > d, is multigraphic with multiplicity ), and let G be a graph
realizing this degree sequence. Then for any set Q of k vertices in G, the total degree
of the vertices in @ is equal to the twice the number of edges in @ plus the number of
edges between the sets Q and G — Q. The maximum number of edges in Q is A(¥)
and the maximum number of edges between Q and G — Q is 3 F_, +1 min{d;, Ak}.
Hence, Z:-;l di < Mk(k— 1)+ 37, ., min{d;, Ak} follows forevery k, 1 < k <
p. Clearly, }%_, d; is even since it counts each edge twice. So, 7 is A-admissible.
By Corollary 2.3, 7’ is at most A-multigraphic. By the above reasoning and since
P2 di =37, d; —2\iseven, 7’ is A-admissible as well.

Now, assume that 7 and 7' are A-admissible. We need to show that if G = AK,,
H = G - Glu,v] has an f-factor with f(v;) = d! for all v; € H where u and v are
vertices with f(u) = d; — A and f(v) = d2 — A. We will use Tutte's f-factor Theorem
and show that 6(B, f) < 0 for all B = (S,T,U), where {S,T,U} is a partition of
V(H). By Lemma 2.1, for any G-triples (.S, T, U) we have

ma(S5,T) < f(S) + Mp - DIT| - f(T) ()

ma(S,T) < fo(S) + Alp — DI|T| - fo(T), G3)

where f is described as above and fo(v;) = d; if v; € {u, v} and fo(u) = d1, fo(v) =
da.
Let my(S,T) = m(S, T). Note that when

m(S,T) < f(S)+ f(T) %)
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holds, we have § = h(B, f) — f(S) — f/(T) + m(S,T) < h(B, f). When G[U] has
at most one ODD component, it means that & < 0, since § = ) F_, d; (mod 2) by
[9), and 3°7_, d is even. So, showing (x+) is enough to show § < 0 when U # K for
K = {u,v}.

Also, m(S,T) = mg(S,T) — e\, wherea = 1if |[SNK| = TN K| =1, and

a = 0 otherwise.

Casel: a=0and U # K.
If |S N K| = 0, we need to show

AISIIT] < £(8) + Mp = DIT| - AT N K| = £(T).
By (i), we have

MSITI < fo(S) + Mp — DIT| = fo(T)
= J(S)+Mp-1)|T| - NTN K| - fo(T) + AT N K|
= f(5)+Ap-1)|T| - NT N K| - £(T).

If |T N K| = 0, we need to show A|S||T| < £(S) + Alp — 1)IT| — f(T'), which
actually follows directly from (z).
Thus we have m(S,T) < f(S) + f'(T) and 6 < 0by (x) whena =0.

Case2: a = 1.
We need to show A|S||T| — A £ £(S) + AM(p — DIT| — A — f(T) which is same as
AS|IT| € £(S) + Mp — 1)|T| — f(T), which is direct from (z).

Case3: U = K.
In this case, G[U] has two components.
By (3), m(S,T) < £(S) + Alp — VIT| - f(T) = f(S) + §(T)- So,

8 = h(B, f) - f(S) = f'(T) + m(S,T) < h(B, f)-
Since § = Y_F_, d; (mod 2), by [9] either § = 0 or § = 2, and § = 2 when G(U] has

two ODD cor;lp:ments and m(S,T) = f(S) + f/(T).

Assume h = 2, and m(So, Tp) = f(So) + f'(To) for some (Sp, Tp) that partitions
V(H) — K. Since h = 2, both J(B, f,u) = f(u) + m(u,To) = f(u) + A|To}, and
f(v) + \|Tp| are odd. This implies f(u) = f(v) (mod 2). Since a = 0 in this case,
m(So, To) = f(So) + f'(To) implies

m(So, To) = f(So) + A(p ~ D)ITo| - f(To) (%)
Now let T = Tg U {u}, S = S, and U = {v}. Since a = 0, in Case 1, it is shown

that
: m(S,T) < £(5)+f(T)
F(5) + Ap — )|T| = A= £(T)

A
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which implies A[So|[To + 1| < £(So) + A(p — 1)[To + 1| = A — f(To) — f(u). By
(), we have A|So||To| = f(So) + Mp — 1)|To] — f(To).Thus, .

MSollTo+1] < f(So)+AMp—-1)|To+1|- A
—f(To) — f(u)
F(So) + Alp — 1)|To| — f(To) + MlSel < F(So)+Mp—1)|To+1] - A
—-f(To) — f(u)
fw) < Ap—|So|-2)
= AT

Similarly we can show f(v) < A|To| which implies f(u) + f(v) = f(K) < 2MTo).

But by (), we can also write f(To) as f(To) = A|To|(|To — 1|) + £(So) + 2| To},
which implies f(K') > 2A|Ty|. So, we must have f(K) = 2A|Tp| with f(u) = f(v) =
ATo).

S0, J(B, f,u) = f(u) + m(u, To) = A|Tol + ATo| = 2A[To}, and J(B, f,v) =
2)|Tp| are both even, implying h = 0 when m(So, To) = f(So) + f'(To).

Thus, when U = K and h = 2, there is no G-triple (So, To, U) such that m(S,, Tp)
= f(So) + f'(To). Hence & < 0 in this last case as well.

In each case, it is shown that § < 0. Therefore, for G = AK,, H = G — G[u,v]
has an f-factor where f(v;) = d; forall v; € H,and f(u) = d; — A, f(v) = dy — A
as required. Clearly, this f-factor is a multigraph with multiplicity at most X that has
n’ as degree sequence. In this f-factor, there are no edges between the vertices  and
v with f(u) = d; — Aand f(v) = da — A. So, by adding X edges between u and v, we
obtain a new graph which accepts  as the degree sequence and has exact multiplicity
A ]

4 Concluding Remarks

If we assume only the first condition of Theorem 3.1, namely 7 = (d;,dy, ..., dp)
is A-admissible, we can similarly show that the graph G = AK), has an f-factor with
f(v;) = d; as follows.

By Lemma 2.1, A-admissibility implies m(S,T) < f(S) + Mn = 1)[T| - £(T).
And since A(p — 1)|T| — f(T) = f(T) in this case, we have

6 = h(B, f} - f(8) - f'(T) + m(S,T) < h(B, f).
For G = AK,, G[U] has only one component for any G-triple, so § < 1. But, by [9],
d =37, d; (mod 2), implying § < 0.

This provides a very short new proof to Theorem 1.2; Chungphaisan’s result, and
also to the Erdds-Gallai Inequality when we let A = 1.
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