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Abstract

In this paper, we show that among all connected graphs of order
n with diameter D, the graph G* has maximal spectral radius, where
G" is obtained from Kn—p \/ K2 by attaching two paths of order I
and I5 to the two vertices u, v in Kg, respectively, and {; +l, = D—2,
Jh-] <1,
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1 Introduction

In this paper, we consider only simple connected graphs. Let G be a simple
graph with vertex set V(G) and edge set E(G). The adjacency matriz of
G is A(G) = (a;;) where a;; = 1 if two vertices i and j are adjacent in G
and 0 otherwise. The characteristic polynomial of G is just det(zl — A(G)).
The eigenvalues of G are the eigenvalues of its adjacency matrix A(G). The
largest eigenvalue of A(G) is called the spectral radius of G and denoted
by p(G). Since A(G) is symmetric nonnegative and irreducible, from the
well-known Perron-Frobenius theorem, there is a unique unit positive eigen-
vector corresponding to p(G), we call this vector the Perron vector. Note
that when edges are added to G, the spectral radius of G increases strictly.
We refer the reader to [5] [6] for more details in spectral graph theory.
For two vertices u and v of a connected graph G, the distance between
u and v, denoted by d(u,v), is the length of a shortest path joining u and
v in G. The diameter of G, denoted by D(G) (or just D for short), is
the maximum distance over all pairs of vertices in G. The diameter is
one of the graph invariants that are not only theoretical interests but also
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have many practical applications such as in communication networks. Let
G1 = (W, Ey) and G, = (Vs, E2) be two graphs. The union G; U G, is
defined to be G; UG = (Vi U V,, By U Ey). The join G, \/ G; of G; and
G, is obtained from G; U G by joining each vertex of G} to each vertex
of G;. Let K; be the empty graph on ¢ vertices. When we say contracting
an edge e = uv € G, we mean first to delete the edge then coincide the two
vertices u, v. For other notations in graph theory, we follow [2].

Suppose G is a k-regular graph on n vertices, A is the second largest
eigenvalue (in absolute value) of G. Alon and Milman [1] showed that
D(G) < 2[\/2k/(k — A)log, n]. Chung [3] further improved this bound to
get D(G) < [log(n — 1)/log(k/A)). There are also many other bounds on
D(G) by using the so called ”Laplacian eigenvalues” of G, see for example
[4], [7], (8], [11]). But sharpness of these bounds is not determined. In [9],
Fallat and Kirkland determined the tree of order n with maximal algebraic
connectivity and given diameter.

In this paper, we study the set G of connected graphs of order n with
given diameter D, and determine the extremal graph that has the maximal
spectral radius.

2 Lemmas and results

If D =1, then we can easily get that X, has the maximal spectral radius,
so in the following discussions, we always assume D > 2. First, we need
some lemmas.

Lemma 2.1 [12] Let u,v be two vertices of the connected graph G and d,
be the degree of v, suppose vy, ve, -+ ,v, € N(v) \ N(u)(1 £ s < d,), where
v, Y2, -,V are different from u, let X = (z,,22,---,%,) be the Perron
vector of A(G), where x; corresponds to v;,(1 < i < n). Let H be the
graph obtained from G by deleting the edges (v,v;) and adding the edges
(u,%:),1< i< s. Ifzy >z, then p(G) < p(H).

Now, we consider the graph G, obtained from the connected graph G
by subdividing the edge uv, that is, by replacing uv with edges uw, vw where
w is an additional vertex. We call the following two types of paths internal
paths : (a) a sequence of vertices vg,v1, - - vg41(k > 2) where vo, vy, - v
are distinct, vx41 = vp of degree at least 3, d,,, =2fori=1,---,k, and v;_,
and v; (i = 1,---,k + 1) are adjacent. (b) A sequence of distinct vertices
0,1, - Vk+1{k > 0) such that v;_; and v; (i =1,---,k + 1) are adjacent,
dy, >3, dy,,, >3 and d,, = 2 whenever 1 <i < k.
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Fig 1. The tree Wy, (n > 7)

Lemma 2.2 [6/(10] If uv lies on an internal path of the connected graph
G and G # W, then p(Guy) < p(G).

Let u,v be two vertices in K. Suppose n— 2D +1 > 0, G, is obtained
from K,_ap+1V K2 by first adding an edge uv, then subdividing the edge
uv by inserting 2D — 3 vertices. Gj is obtained from K,_p\/ K2 by at-
taching two paths of order l; and l; at u and v respectively, l; +ly = D ~2.
As shown in Fig.2. It is easy to see that G; and G, have diameters D.

G1Z

>

Kn—D

Kn_2pt1
Fig 2. G, and G,.

Lemma 2.3 Let G € G be a connected graph of order n with diameter
D > 2. If G has the mazimal spectral radius, then G is of the form like G
as in Fig 2.

Proof. Let u and v be two vertices of G at distance D. We discuss in the
following two cases.

If v and v lie in a cycle, then there exists a shortest cycle C containing
u, v which has 2D or 2D + 1 vertices. Let U = N(C), the set of neighbors
of C. Let W =V —U —C. Note that any vertex not in C has at most three
consecutive neighbors on C, and note that for any two vertices in C, say
€1,C2, T, > T, OF Ty < T, holds, where .,z correspond to vertices
c1, ¢2, respectively, in the Perron vector. So by repeated use of Lemma 2.1,
we can make all vertices in U be adjacent to at most three vertices in C,
after adding some edges, we have, if C has 2D vertices, then p(G) < p(G,).
If C has 2D + 1 vertices, by repeating the above steps, and contracting an
edge on the internal path, then adding a vertex in W, by Lemma 2.2, we
also have p(G) < p(G,).

If w and v does not lie in a cycle C, then as above by Lemma 2.1, G
must have the form like Gs.

305



For G1, p(G1) < A(G1) = n— 2D +2. For Gy, since G has an induced
subgraph K,_p\/ K2, so p(G2) > 8(Kn-pV K2) = n — D. Hence for
D > 2, we have p(Gz) > p(G1). Thus we complete the proof. ll

Lemma 2.4 [5] If H is a proper spanning subgraph of the graph G, then
the characteristic polynomials satisfy
Pg(z) < Py(z),
for all z > p(G). Moreover p(H) < p(G).
Lemma 2.5 [5] Let e = uv be a cut edge of G , then
Pg(z) = Pg—e(z) — Po-u—v(Z).

Rewrite G(l1,l2) = Ga, Iy + lp = D — 2. We want to show that when
11,12 are almost equal, the graph G(I1,/2) has the maximal spectral radius.
Without loss of generality, in the following, we assume 0 < ) <lp < D -2
and I, - l; > 2.

Lemma 2.6 For G(ly,l;) described as above, we have
p(G(l,12)) < p(Gl + 1,12 — 1)).
Proof. By Lemma 2.5, we have
Ps, 15)(x) = 2Paq, ta-1) (%) = Poqy 1,-2)(2),
when I > 3; and
Pogy+1,12-1)(®) = 2Paq, 1,-1)(Z) — Pog,-1,1,-1)(®)-

It follows that for Is > {; > 1,

Poi, 1)(®) — Py +15-1)(x) = Pagy-1,1,-1)(%) — Pog, 13-2)(7)
PG(1,13—1.+1)($) - P G(2.lz—lx)("’)
= Pgo-1)(T) — Pe@ts-1,-1)(2)-
Since
PG(O.lz—lx)(“") = :L'PG(O,;,_“-Q (1?) - PG(O,I;—!;—Z) (z))
Po(1,13-1,-1)(®) = 2Pe(o,15-1,-1)(2) = Pu(z),

where H = K "_"l',‘;ll is obtained by adding an edge joining a pendent vertex

n

of a path on lp —I; — 1 vertices and a vertex of the complete graph Kn_p.1.
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Hence
Pa(t, 12) (%) = Po,+1,,-1)(2) = Pa(z) — Po,i;-1,-2)(z)-
Note that H is a proper subgraph of G(0,l; — {; — 2) and G(0,l; — {; ~ 2)
is a subgraph of G({; + 1,1, — 1), so
p(H) < p(G(0,12 — 1 = 2)) < p(C(L + 1,1 — 1))
By Lemma 2.4, we have
PH((L‘) - PG(O,!g—l;—‘Z)(m) >0 for 2> p(G(O, -1 - 2))
and hence
Po(iy 12)(Z) = Py 41,1,-1)() >0 for z 2> p(G(h + 1,1 —1)).

So we conclude that Pg,1,)(z) > 0 for z = p(G(lh + 1,2 — 1)).
That is p(G(l1,12)) < p(G(l1 + 1,12 — 1)), as stated in the lemma. Hl

By the Lemma 2.6, we get the following main result of this paper.

Theorem 2.7 Let G € G be a connected graph of order n with diameter
D, then p(G) < p(G*), where G* is of the form like Gy and Iy — ) < 1.
Equality holds if and only if G = G*.

At last, we estimate the spectral radius of G*.

Theorem 2.8 The spectral radius of G* satisfies

%(n—D—1+ VE-D-1F+8r-D) ) < p(G") <n-D+1.

The left equality holds if and only if G* = K,_p \/ Ka.
Proof. For the right hand, first joining the two pendent vertices in G*
and then by Lemma 2.2, contracting the internal path, we have p(G*) <

P(Kn-D+2)- —

For the left hand, it is obvious that G* contains H} = K,,_p\/ Kz as a
subgraph, so p(G*) > p(H,) . For Hy, by symmetry, we can suppose the
eigencomponents corresponding to the vertices in X,,_p and K3 are z; and
T, respectively. So the spectral radius of Hjy, p(H,), satisfies

p(Hh)zy = (n—D - 1)z + 2z9;

p(Hy)zes = (n— D)x;.
Simplifying the above equations, we have p(H;)? —(n—D —1)p(H,)—2(n—
D) =0. So we get the right hand and complete the proof.
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