On the (Laplacian) spectral radius of bipartite graphs with given number of blocks

Mingqing Zhai a,b* Ruifang Liu b Jinlong Shu b†

Abstract

The (Laplacian) spectral radius of a graph is the maximum eigenvalue of its adjacency matrix (Laplacian matrix, respectively). Let $\mathcal{G}(n,k)$ be the set of bipartite graphs with n vertices and k blocks. This paper gives a complete characterization for the extremal graph with the maximum spectral radius (Laplacian spectral radius, respectively) in $\mathcal{G}(n,k)$.

AMS Classification: 05C50

Keywords: Bipartite graph; Block; Spectral radius; Laplacian spectral radius

1 Introduction

All graphs considered here are connected and simple. Denote by V(G) the vertex set of a graph G and E(G) the edge set. For $S \subseteq V(G)$, let G[S] be the subgraph induced by S. The set of the neighbors of a vertex v is denoted by $N_G(v)$ or N(v). A block of a graph is a maximal 2-connected induced subgraph.

^b Department of Mathematics, Chuzhou University, Anhui, Chuzhou, 239012, China ^aDepartment of Mathematics, East China Normal University, Shanghai, 200241, China

^{*}Supported by the NSF of Education Ministry of Anhui Province (No.KJ2010B138) and the Foundation for the Excellent Young Talents of Anhui Province (No.2010SQRL136ZD).

[†]Corresponding author: Supported by the NNSF of China (No.11071078, 11075057).

Let A(G) be the adjacency matrix of a graph G and D(G) be the diagonal matrix of vertex degrees. The matrix D(G) - A(G) is called the Laplacian matrix of G. The spectral radii of A(G), D(G) - A(G) and D(G) + A(G) are denoted by P(G), P(G) and P(G), respectively. The characteristic polynomial of P(G) is denoted by P(G). It is known that P(G) and P(G) + P(G) are both irreducible nonnegative for a connected graph P(G), so from the Perron-Frobenius Theorem, there is a unique positive unit eigenvector corresponding to P(G) and P(G), respectively, which is called Perron vector.

In [2], R.A. Brualdi and E.S. Solheid posed the problem of maximizing the spectral radius and determining the extremal graph for a given class of graphs. Much attention has been paid to this question in the past decades (see [1,4-6,9-13]). Specially, when the order and diameter is given, E.Dam [9] determined general graphs with the maximum spectral radius; Zhai, Shu, Liu and Lu [11, 12] characterized bipartite graphs with the maximum spectral radius and general graphs with the maximum Laplacian spectral radius. Zhang and Zhang [13] gave the graph with the maximum Laplacian spectral radius among all bipartite graphs with n vertices and k cut edges.

This paper focuses on (Laplacian) spectral radii of bipartite graphs with given number of blocks. Let $\mathcal{G}(n,k)$ be the set of connected bipartite graphs with n vertices and k blocks, and G_{a_1,a_2}^{k-1} be the graph obtained from the complete bipartite graph K_{a_1,a_2} by adding k-1 pendant edges to a vertex of the first partition set. Section 2 determines all the extremal graphs with the maximum spectral radii in $\mathcal{G}(n,k)$. Section 3 shows that $G_{2,n-k-1}^{k-1}$ has the maximum Laplacian spectral radius in $\mathcal{G}(n,k)$ for any $2 \le k \le n-3$.

2 Maximizing the spectral radius in $\mathcal{G}(n,k)$

Denote by $G_{n,k}^{\star}$ the extremal graph with the maximum spectral radius in $\mathscr{G}(n,k)$. Now let us first consider two extremal cases. Clearly, $\mathscr{G}(n,n-1)$ is the set of all trees with n vertices. Since $K_{1,n-1}$ has the maximum spectral radius among all trees with n vertices, $G_{n,n-1}^{\star} \cong K_{1,n-1}$. Also, note that $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil} \in \mathscr{G}(n,1)$ for n>3 and $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ attains the maximum spectral radius among all bipartite graphs with n vertices, $G_{n,1}^{\star} \cong K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

Proposition 2.1 There is no connected bipartite graph with n vertices and n-2 blocks.

Proof. Let $G \in \mathcal{G}(n, n-2)$. Note that any tree of order n has n-1 blocks. Thus G has a cycle of length at least 4. And hence there are at most n-4 vertices out of the cycle, which can lie in at most n-4 distinct blocks. Together with the cycle, we get at most n-3 blocks, a contradiction. \square

Proposition 2.1 implies that $\mathcal{G}(n, n-2)$ is an empty set. Thus we next only need consider the case $2 \le k \le n-3$.

Lemma 2.2 ([10]) Let u, v be two vertices of a graph G and $\{v_i|i=1,2,\ldots,s\}\subseteq N(v)\setminus (N(u)\cup \{u\})$. Let $X=(x_1,x_2,\ldots,x_n)^t$ be the Perron vector of A(G). Let G^* be the graph obtained from G by deleting the edges vv_i and adding the edges vv_i ($1 \le i \le s$). If $x_u \ge x_v$, then $\rho(G^*) > \rho(G)$.

Lemma 2.3 Each block of $G_{n,k}^{\star}$ induces a complete bipartite subgraph and $G_{n,k}^{\star}$ has only one cut vertex.

Proof. It is known that [3] the increase of any element of an irreducible non-negative matrix increases the spectral radius. Hence the first conclusion holds. Let $X = (x_1, x_2, \ldots, x_n)^t$ be the Perron vector to $\rho(G_{n,k}^*)$, where x_i corresponds to vertex i. Now assume that $G_{n,k}^*$ has two cut vertices u and v with $x_u \geq x_v$. Denote by H the component of $G_{n,k}^* - v$ that contains the vertex u. By Lemma 2.2,

$$\rho(G^\star) = \rho(G^\star_{n,k} - \sum_{w \in N(v) \backslash V(H)} vw + \sum_{w \in N(v) \backslash V(H)} uw) > \rho(G^\star_{n,k}).$$

Moreover, the resulted graph G^* has the same number of blocks as $G_{n,k}^*$, a contradiction. \square

A block is said to be trivial, if it is isomorphic to $K_{1,1}$.

Lemma 2.4 $G_{n,k}^{\star}$ has exactly one non-trivial block.

Proof. Since $k \leq n-3$, there are at least one non-trivial block in $G_{n,k}^*$. Now assume that G_1 and G_2 are two non-trivial blocks in $G_{n,k}^*$, then G_1 and G_2 are both complete bipartite subgraphs. Let u be the unique cut vertex connecting all blocks and u_i be a vertex of G_i that lies in the different partition set from u (i = 1, 2), then u_i is adjacent to u and $N_{G_i}(u_i) \setminus \{u\} \neq \emptyset$. Let $X = (x_1, x_2, \ldots, x_n)^t$ be the Perron vector corresponding to $\rho(G_{n,k}^*)$. Without loss of generality, we may assume that $x_{u_1} \geq x_{u_2}$. By Lemma 2.2,

$$\rho(G^{\star}) = \rho(G_{n,k}^{\star} - \sum_{w \in N_{G_2}(u_2) \setminus \{u\}} u_2 w + \sum_{w \in N_{G_2}(u_2) \setminus \{u\}} u_1 w) > \rho(G_{n,k}^{\star}).$$

To get a contradiction, it suffices to show that the resulted graph $G^* \in \mathcal{G}(n,k)$. Clearly, G^* is a connected bipartite graph. And G^* has $G^*[V(G_1) \cup V(G_2 - u_2)]$ and uu_2 as two blocks instead of G_1 and G_2 . Now we only need to show $G^*[V(G_1) \cup V(G_2 - u_2)]$ contains no cut vertex. Since $G^*[V(G_2 - u_2) \cup \{u_1\}]$ is an isomorphism of G_2 and G_2 contains no cut vertex, $G^*[V(G_2 - u_2) \cup \{u_1\}]$ has no cut vertex. Note that G_1 also has no cut vertex and G_1 has two common vertices u, u_1 with $G^*[V(G_2 - u_2) \cup \{u_1\}]$, $G^*[V(G_1) \cup V(G_2 - u_2)]$ contains no cut vertex. \square

By Lemmas 2.3 and 2.4, the extremal graph $G_{n,k}^{\star}$ is an isomorphism of $G_{a,n-k+1-a}^{k-1}$ for some $2 \le a \le n-k-1$.

Lemma 2.5

$$\begin{split} P_{G_{a_1,a_2}^{k-1}}(x) &= x^{a_1+a_2+k-5}[x^4-(a_1a_2+k-1)x^2+(a_1-1)a_2(k-1)];\\ \rho^2(G_{a_1,a_2}^{k-1}) &= \frac{1}{2}[(a_1a_2+k-1)+\sqrt{(a_1a_2+k-1)^2-4(a_1-1)a_2(k-1)}]. \end{split}$$

Proof. When k=1, G_{a_1,a_2}^{k-1} is isomorphic to K_{a_1,a_2} . And it is known that (see [3]) $P_{K_{a_1,a_2}}(x) = x^{a_1+a_2+k-3}(x^2-a_1a_2)$.

Now let $k \geq 2$, then G_{a_1,a_2}^{k-1} has k-1 pendant edges. It is known that (see [3]) $P_G(x) = xP_{G-u}(x) - P_{G-u-v}(x)$ for any graph G with pendant vertex u and its neighbor v. Thus

$$\begin{split} P_{G_{a_1,a_2}^{k-1}}(x) &= x P_{G_{a_1,a_2}^{k-2}}(x) - P_{K_{a_1-1,a_2}}(x) x^{k-2} \\ &= x^2 P_{G_{a_1,a_2}^{k-3}}(x) - 2 P_{K_{a_1-1,a_2}}(x) x^{k-2} \\ &= \cdots \\ &= x^{k-1} P_{K_{a_1,a_2}}(x) - (k-1) P_{K_{a_1-1,a_2}}(x) x^{k-2} \\ &= x^{a_1+a_2+k-5} [x^4 - (a_1a_2+k-1)x^2 + (a_1-1)a_2(k-1)]. \end{split}$$

The following lemma is clear.

Lemma 2.6 Let P(x) and Q(x) be two monic polynomials with real roots. And let p_i (resp. q_i) be the i-th largest root of P(x) (resp. Q(x)). If $Q(p_1) < 0$, then $p_1 < q_1$. In particular, if $p_1 > q_2$, then $Q(p_1)$ has the same sign as $p_1 - q_1$.

Lemma 2.7 Let $G_{n,k}^* \cong G_{a_1,a_2}^{k-1}$, where $k \geq 2$, then $a_1 \leq a_2$.

Proof. Assume that $a_1 > a_2$. By Lemma 2.5,

$$P_{G_{a_2,a_1}^{k-1}}(x) - P_{G_{a_1,a_2}^{k-1}}(x) = x^{a_1+a_2+k-5}(k-1)(a_2-a_1) < 0.$$

That is, $P_{G_{a_2,a_1}^{k-1}}(\rho(G_{a_1,a_2}^{k-1}))<0$. According to Lemma 2.6, $\rho(G_{a_1,a_2}^{k-1})<\rho(G_{a_2,a_1}^{k-1})$, a contradiction. \square

By virtue of Lemma 2.7, we can denote the extremal graph $G_{n,k}^{\star}$ by $G_{a,a+t}^{k-1}$, where $0 \leq t \leq n-k-3$ and 2a+t=n-k+1. For convenience, we next use $\langle p,q \rangle$ to denote the set of integers in the interval [p,q].

Theorem 2.8 Let n, k be two fixed positive integers with $2 \le k \le n-3$ and $G_{n,k}^*$ be the graph with the maximum spectral radius in $\mathcal{G}(n,k)$. Define

$$f(t) = \begin{cases} -\infty & t < 2, \\ \frac{(t-1)(n-k+t-1)(n-k+t+1)}{4t} & 2 \le t \le n-k-3, \\ +\infty & t > n-k-3. \end{cases}$$

(i) If f(t) < k-1 < f(t+2) for some $t \in (0, n-k-3)$ and $t \equiv n-k+1 \pmod{2}$, then $G_{n,k}^{\star} \cong G_{a,a+t}^{k-1}$, where $a = \frac{n-k+1-t}{2}$;

(ii) If k-1=f(t) for some $t\in \langle 2,n-k-3\rangle$ and $t\equiv n-k+1 \pmod 2$, then $G_{n,k}^\star$ is either $G_{a,a+t}^{k-1}$ or $G_{a+1,a+t-1}^{k-1}$, where $a=\frac{n-k+1-t}{2}$.

Proof. (i) By Lemma 2.7, $G_{a,a+s}^{k-1}$ can not be the extremal graph for any s < 0. Assume for a contradiction that $G_{n,k}^* \ncong G_{a,a+t}^{k-1}$, then there exists $i \in \langle 2-a, \lfloor \frac{t}{2} \rfloor \rangle \backslash \{0\}$ such that $\rho(G_{a+i,a+t-i}^{k-1}) \ge \rho(G_{a,a+t}^{k-1})$. Now we distinguish two cases.

Case $i \ge 1$.

Now $t \geq 2$. By Lemma 2.5, we can see $\rho(G_{a+i,a+t-i}^{k-1})$ is more than the second largest eigenvalue of $G_{a,a+t}^{k-1}$. Thus by Lemma 2.6, $P_{G_{a,a+t}^{k-1}}(\rho(G_{a+i,a+t-i}^{k-1})) \geq 0$. That is,

$$P_{G_{a,a+t}^{k-1}}(x) - P_{G_{a+i,a+t-i}^{k-1}}(x) = x^{2a+t+k-5}i[(t-i)x^2 - (t-i+1)(k-1)] \geq 0$$

for $x = \rho(G_{a+i,a+t-i}^{k-1})$. By direct computing, we get

$$k-1 \le \frac{(t-i)(a+t-i)(a+t)}{t-i+1} \le \frac{(t-1)(a+t-1)(a+t)}{t} = f(t),$$

a contradiction.

Case $i \leq -1$.

Now $a \geq 3$ and hence $t \leq n-k-5$. By Lemma 2.5, we can see $\rho(G_{a,a+t}^{k-1})$ is more than the second largest eigenvalue of $G_{a+i,a+t-i}^{k-1}$. Thus by Lemma 2.6, $P_{G_{a+i}^{k-1}}(\rho(G_{a,a+t}^{k-1})) \leq 0$. That is,

$$P_{G_{a,a+t}^{k-1}}(x) - P_{G_{a+i,a+t-i}^{k-1}}(x) = x^{2a+t+k-5}i[(t-i)x^2 - (t-i+1)(k-1)] \ge 0$$

for $x = \rho(G_{a,a+t}^{k-1})$. By direct computing, we get

$$k-1 \ge \frac{(t-i)(a+t-i)(a+t)}{t-i+1} \ge \frac{(t+1)(a+t+1)(a+t)}{t+2} = f(t+2),$$

also a contradiction.

(ii) If k-1=f(t) for some $t\in \langle 2,n-k-3\rangle$ and $t\equiv n-k+1 (mod2)$, then by Lemma 2.5, we can see $\rho(G_{a,a+t}^{k-1})=\rho(G_{a+1,a+t-1}^{k-1})$. Assume for a contradiction that there exists $i\in \langle 2-a,\lfloor \frac{t}{2}\rfloor\rangle\backslash\{0,1\}$ such that $\rho(G_{a+i,a+t-i}^{k-1})\geq \rho(G_{a,a+t}^{k-1})$. Note that $f(t)=\frac{(t-1)(a+t-1)(a+t)}{t}$.

If $i \geq 2$, we can likewise get

$$k-1 \le \frac{(t-i)(a+t-i)(a+t)}{t-i+1} \le \frac{(t-2)(a+t-2)(a+t)}{t-1} < f(t),$$

a contradiction.

If $i \leq -1$, we can get

$$k-1 \ge \frac{(t-i)(a+t-i)(a+t)}{t-i+1} \ge \frac{(t+1)(a+t+1)(a+t)}{t+2} > f(t),$$

also a contradiction.

Remark 2.9 We observe that Theorem 2.8 characterizes the extremal graph $G_{n,k}^{\star}$ for any given n and $k \in (2, n-3)$. In fact, we can see

$$\bigcup_{t\in \langle 0,n-k-3\rangle, t\equiv n-k+1 (mod 2)} [f(t),f(t+2)]=(-\infty,+\infty),$$

which implies that n and k always belong to one of the cases in Theorem 2.8. In addition, all cases in Theorem 2.8 indeed occur. For example, $G_{24,15}^* \cong G_{5,5}^{14}$, $G_{41,32}^* \cong G_{4,6}^{31}$, $G_{56,47}^* \cong G_{3,7}^{46}$ and $G_{n,n-9}^* \cong G_{2,8}^{n-10}$ for all $n \geq 57$. Besides, Theorem 2.8 (ii) implies that the extremal graphs are not unique if k-1=f(t). For example, both $G_{3,5}^{10}$ and $G_{4,4}^{10}$ attain the maximum spectral radius in $\mathcal{G}(18,11)$.

The number of cut edges is an interesting parameter of graphs. In [6], Liu, Lu and Tian determined the maximum spectral radius of general graphs with given number of cut edges. Recently, Zhang and Zhang [13] investigated the Laplacian spectral radius for bipartite graphs with given number of cut edges.

Let G be a connected graph with cut edge uv, G_1 and G_2 be two components of G-uv with $u\in G_1$ and $v\in G_2$. H is the graph obtained from G by the following way: (i) contract edge uv, (ii) add a pendant edge to the vertex u(v). Then by Lemma 2.2, $\rho(G)<\rho(H)$ (see Fig.1). Let $\mathscr{H}(n,k)$ be the set of bipartite graphs with n vertices and k cut edges. Similar to above, we can show the extremal graph with the maximal spectral radius in $\mathscr{H}(n,k)$ $(1\leq k\leq n-4)$ is isomorphic to $G_{a,n-k-a}^k$ for some $a\in \langle 2,n-k-2\rangle$. Consequently, by Theorem 2.8, the extremal graphs for $\mathscr{H}(n,k)$ are also determined.

Fig.1

3 Maximizing the Laplacian spectral radius in $\mathcal{G}(n,k)$

Lemma 3.1 ([7],[8]) For a connected graph G, $\mu(G) \leq \sigma(G)$, with equality if and only if G is bipartite.

Lemma 3.1 implies that $\mu(G) = \sigma(G)$ for any bipartite graph G. Hence we can investigate D(G) + A(G) and its spectral radius $\sigma(G)$ instead of D(G) - A(G) and $\mu(G)$.

Let $G_{n,k}^*$ be the extremal graph with the maximum Laplacian spectral radius in $\mathscr{G}(n,k)$. Clearly, $G_{n,n-1}^* \cong K_{1,n-1}$. Note that the adding of any edge increases the spectral radius of D+A, $G_{n,1}^*$ is a complete bipartite graph. Note that $\mu(K_{a,b}) = a+b$ for any complete bipartite graph $K_{a,b}$, all $K_{a,n-a}$ $(a \in \langle 2, n-2 \rangle)$ are the only extremal graphs in $\mathscr{G}(n,1)$. Next

we consider the case $2 \le k \le n-3$.

Lemma 3.2 ([5]) Let u, v be two vertices of a graph G and $\{v_i|i=1,2,\ldots,s\}\subseteq N(v)\setminus (N(u)\cup\{u\})$. Let $X=(x_1,x_2,\ldots,x_n)^t$ be the Perron vector of D(G)+A(G). Let G^* be the graph obtained from G by deleting the edges vv_i and adding the edges uv_i $(1 \le i \le s)$. If $x_u \ge x_v$, then $\sigma(G^*)>\sigma(G)$.

Similar to Lemma 2.2, Hong and Zhang gave the above result for the matrix D(G) + A(G). By Lemma 3.2 and similar analysis to Section 2, we conclude that the extremal graph $G_{n,k}^*$ is also an isomorphism of $G_{a,n-k+1-a}^{k-1}$ for some $a \in \langle 2, n-k-1 \rangle$.

Lemma 3.3 ([13]) Let a and k be integers with $a \ge 2$ and $k \ge 1$. Then

$$\mu(G_{2,a}^k) > \mu(G_{3,a-1}^k) > \cdots > \mu(G_{a,2}^k).$$

Following from Lemma 3.3, we have

Theorem 3.4 Among all graphs in $\mathcal{G}(n,k)$ $(k \in \langle 2, n-3 \rangle)$, $G_{2,n-k-1}^{k-1}$ is the unique graph with the maximum Laplacian spectral radius.

Acknowledgment Thanks to the referees for their useful comments and suggestions, which have considerably improved the paper.

References

- A. Berman, X.D. Zhang, On the spectral radius of graphs with cut verticies,
 J. Combin. Theory Ser. B 83(2001)233-240.
- [2] R.A. Brualdi, E.S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones, SIAM J. Algebra. Discrete Method 7(1986)265-272.
- [3] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, third ed., Johann Ambrosius Barth Verlag, 1995.
- [4] S.G. Guo, The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl. 408(2005)78-85.
- [5] Y. Hong, X.D. Zhang, Sharp upper and lower bounds for the largest eigenvalue of the Laplacian matrices of trees, Discrete Math. 296(2005)187-197.

- [6] H.Q. Liu, M. Lu, F. Tian, On the spectral radius of graphs with cut edges, Linear Algebra Appl. 389(2004)139-145.
- [7] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198(1994)143-176.
- [8] J.L. Shu, Y. Hong, K. Wenren, A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl. 347(2002)123-129.
- [9] E.R. Van Dam, Graphs with given diameter maximizing the spectral radius, Linear Algebra Appl. 426(2007)454-457.
- [10] B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra Appl. 395(2005)343-349.
- [11] M.Q. Zhai, R.F. Liu, J.L. Shu, On the spectral radius of bipartite graphs with given diameter, Linear Algebra Appl. 430(2009)1165-1170.
- [12] M.Q. Zhai, J.L. Shu Z.H. Lu, Maximizing the laplacian spectral radius of graphs with given diameter, Linear Algebra Appl. Linear Algebra and its Applications 430 (2009)1897-1905.
- [13] X.L. Zhang, H.P. Zhang, The Laplacian spectral radius of some bipartite graphs, Linear Algebra Appl. 428(2008)1610-1619.