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Abstract

The (Laplacian) spectral radius of a graph is the maximum eigen-
value of its adjacency matrix (Laplacian matrix, respectively). Let
% (n,k) be the set of bipartite graphs with n vertices and k blocks.
This paper gives a complete characterization for the extremal graph
with the maximum spectral radius (Laplacian spectral radius, re-
spectively) in ¥(n, k).
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1 Introduction

All graphs considered here are connected and simple. Denote by V(G) the
vertex set of a graph G and E(G) the edge set. For § C V(G), let G[9]
be the subgraph induced by S. The set of the neighbors of a vertex v is
denoted by Ng(v) or N(v). A block of a graph is a maximal 2-connected
induced subgraph.
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Let A(G) be the adjacency matrix of a graph G and D(G) be the di-
agonal matrix of vertex degrees. The matrix D(G) — A(G) is called the
Laplacian matrix of G. The spectral radii of A(G), D(G) — A(G) and
D(G) + A(G) are denoted by p(G), u(G) and o(G), respectively. The char-
acteristic polynomial of A(G) is denoted by Pg(z). It is known that A(G)
and D(G) + A(G) are both irreducible nonnegative for a connected graph
G, so from the Perron-Frobenius Theorem, there is a unique positive unit
eigenvector corresponding to p(G) and o(G), respectively, which is called
Perron vector.

In [2], R.A. Brualdi and E.S. Solheid posed the problem of maximizing
the spectral radius and determining the extremal graph for a given class of
graphs. Much attention has been paid to this question in the past decades
(see [1,4-6,9-13]). Specially, when the order and diameter is given, E.Dam
[9] determined general graphs with the maximum spectral radius; Zhai,
Shu, Liu and Lu [11, 12] characterized bipartite graphs with the maximum
spectral radius and general graphs with the maximum Laplacian spectral
radius. Zhang and Zhang [13] gave the graph with the maximum Laplacian
spectral radius among all bipartite graphs with n vertices and k cut edges.

This paper focuses on (Laplacian) spectral radii of bipartite graphs with
given number of blocks. Let ¥ (n, k) be the set of connected bipartite graphs
with n vertices and k blocks, and GX1, be the graph obtained from the
complete bipartite graph Ko, o, by adding k — 1 pendant edges to a vertex
of the first partition set. Section 2 determines all the extremal graphs with
the maximum spectral radii in ¢(n, k). Section 3 shows that G371, _, has
the maximum Laplacian spectral radius in ¢(n, k) for any 2 < k<n-3.

2 Maximizing the spectral radius in ¢ (n, k)

Denote by Gy, ;. the extremal graph with the maximum spectral radius in
9 (n, k). Now let us first consider two extremal cases. Clearly, 4(n,n—1) is
the set of all trees with n vertices. Since K 1 has the maximum spectral
radius among all trees with-n-vertices, G} ,,_; = Kjn—1. Also, note that
K)z)r31 €¥4(n,1) for n > 3 and K|3) 3] attains the maximum spectral
radius among all bipartite graphs with n vertices, Gy, ; = K| 3,13

Proposition 2.1 There is no connected bipartite graph with n vertices and
n — 2 blocks.
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Proof. Let G € 4(n,n—2). Note that any tree of order n has n—1 blocks.
Thus G has a cycle of length at least 4. And hence there are at most n — 4
vertices out of the cycle, which can lie in at most n — 4 distinct blocks.
Together with the cycle, we get at most n — 3 blocks, a contradiction. O

Proposition 2.1 implies that ¥(n,n — 2) is an empty set. Thus we next
only need consider the case 2 < k< n —3.

Lemma 2.2 ([10]) Let u, v be two vertices of a graph G and {v|i =

2,...,s} SN\ (N)U{u}). Let X = (z1,%2,...,Z,)" be the Perron
vector of A(G). Let G* be the graph obtained from G by deleting the edges
vv; and adding the edges wv; (1 < < s). If 2, > z,, then p(G*) > p(G).

Lemma 2.3 Each block of G* n.k induces a complete bipartite subgraph and
G, x has only one cut vertex.

Proof. It is known that [3] the increase of any element of an irreducible
non-negative matrix increases the spectral radius. Hence the first conclu-
sion holds. Let X = (z),Z3,...,Z,)" be the Perron vector to p(G? k)
where x; corresponds to vertex i. Now assume that G}, ;, has two cut ver-
tices © and v with z,, > z,. Denote by H the component of Gy, , — v that
contains the vertex u. By Lemma 2.2,

PG =p(Cri— D ww+ D uw)>p(Ghy)
weN@\V(H) weN@)\V(H)
Moreover, the resulted graph G* has the same number of blocks as Ghx 2
contradiction. O

A block is said to be trivial, if it is isomorphic to K} ;.
Lemma 2.4 G}, , has ezactly one non-trivial block.

Proof. Since k < n — 3, there are at least one non-trivial block in Gk
Now assume that G; and G5 are two non-trivial blocks in G;, k» then Gy
and G2 are both complete bipartite subgraphs. Let « be the unique cut
vertex connecting all blocks and u; be a vertex of G; that lies in the different
partition set from u (i = 1,2), then w; is adjacent to u and Ng, (u;)\ {u} #

0. Let X = (z1,2o,..., :cn)‘ be the Perron vector corresponding to p(G7, ).
Without loss of generahty, we may assume that z,,, > z,,. By Lemma 2, 2,
p(G*) = p(Gh i ~ Z uow + Z ww) > p(Gy, i)

wENG, (uz)\{u} wENG, (uz)\{u}
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To get a contradiction, it suffices to show that the resulted graph
G* € ¥Y(n,k). Clearly, G* is a connected bipartite graph. And G* has
G*[V(G1)UV(G3 — up)] and uugy as two blocks instead of G; and Gy. Now
we only need to show G*[V(G;)UV (G2 —ug)] contains no cut vertex. Since
G*[V(G2 —u2)U{u1}] is an isomorphism of G3 and G, contains no cut ver-
tex, G*[V (G2 — u2) U{x; }] has no cut vertex. Note that G, also has no cut
vertex and G, has two common vertices u,u; with G*[V(G3 — u2) U {u3 }],
G*[V(G1) U V(G2 — u3)] contains no cut vertex. O

By Lemmas 2.3 and 2.4, the extremal graph G;,k is an isomorphism of

G,;,:;{—k-*-l—a forsome2<a<n-k-1.

Lemma 2.5

Pgr-1 (x) = 2422485054 — (a1ap + k — 1) + (a1 — L)aa(k — 1)];

1
o G’;;;z = §[(a1a2 +k—1)+ v(a1a2 + k — 1)2 — 4(ay — 1)az(k — 1)].

Proof. When k=1, G¥~! is isomorphic to Kg, q,. And it is known that

a;,a82
(see [3]) Px,, o, (z) = aM1*92+3(2? — a;0,).

Now let k > 2, then G¥~! has k — 1 pendant edges. It is known that

(see [3]) Pg(x) = ng_u(axl)‘a: Pg_y—y(z) for any graph G with pendant
vertex u and its neighbor v. Thus

—l,a2 (z)zk_2

= oPora, (2) — 2Py 0y (202

PGk-l (:t) = zPGﬁI.%z (:B)—PK“

aj,an

z*1Pg, .. (2) = (k- 1)Px, _, . (x)z*2
= gateatk=Sizd _ (g1a09 + k — 1)2% + (a1 — 1)aa(k — 1)].

a

The following lemma is clear.
Lemma 2.6 Let P(x) and Q(z) be two monic polynomials with real roots.
And let p; (resp. gq;) be the i-th largest root of P(z) (resp. Q(z)). If

Q) < 0, then py < q1- In particular, if py > g2, then Q(p1) has the
same sign as p; — q .

Lemma 2.7 Let G}, , = G2 , where k > 2, then a; < a.
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Proof. Assume that a; > ap. By Lemma 2.5,

PGk (:z:) Gk -1 (w) =g tath=5(k _ 1)(gy — a)) < 0.
That is, PGk 1 (p(G{,ﬁl a2)) < 0. According to Lemma 2.6, p(GEL) <
p(Gaz ahd contradlctlon ]

By virtue of Lemma 2.7, we can denote the extremal graph G;‘,,k by
Gﬁ;_‘H, where 0 <t <n—k -3 and 2a+¢=n—k+ 1. For convenience,
we next use (p,q) to denote the set of integers in the interval [p, q].

Theorem 2.8 Let n,k be two fized positive integers with 2 < k < n — 3
and G}, ;. be the graph with the mazimum spectral radius in 9(n, k). Define

4t

—00 t<2
f(t) = GoDo—kte-ln-ktt+1) o <t<n-k-3,
+00 t>n—k-3.

(’)Iff(t)<k-1<f(t+2)forsomet€ On—k-3)andt=n—k+
1(mod2), then Gy, , = ~ Gk e, where o = nkfl=t,

(i) If k-1 = f(2) for some te(2,n—k—3) andt =n—k+ 1(mod2),
then G}, , is either GELL, or GET1 |\, |, where o = B=kil=t,

Proof. (i) By Lemma 2.7, Ga 2+s can not be the extremal graph for
any s < 0. Assume for a contradiction that Gr . & G§;+t, then there

exists i € (2 — a, | £])\{0} such that p(Gk7} tia _H_,) > p(Ga ). Now we
distinguish two cases.

Casel 7 > 1.

Now ¢ > 2. By Lemma 2.5, we can see ,o(Ga;1 a+t—i) is more than the sec-
ond largest eigenvalue of G¥ afH Thus by Lemma 2.6, PGk—l (p(G’a“ att—i))
2 0. That is,

PG::;L(:L‘) Pg- e [(z) = z20HHE54[(t — 4)a? — (t—i+1)(k-1)] >0

for z = (Ga +ia+t—i)- By direct computing, we get

t—i)a+t—i)at+t) (-1)(a+t—1)(a+?)
t—i+1 = t

k1< = f(2),

a contradiction.
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Case2 i < -1,

Now a > 3 and hence t < n — k — 5. By Lemma 2 5, we can see p(Gk;fH)
is more than the second largest elgenva.lue of GE71 +iatt—i- Thus by Lemma
.PGk L (@) - PGk 1 (z) = 220 +tHE-54[(t —§)a® — (L —i+1)(k—1)] >0

ati,aft—i
forz = p(Ga;_,_,). By direct computing, we get

t—i)e+t—i)att)  (t+1)a+t+1)(a+?)

(
—1>
k=12 t—i+1 = t+2

= f (t + 2)!
also a contradiction.

(i) If k — 1 = f(t) for some t € (2, n = k—3) andt._n k + 1(mod2),
then by Lemma 2.5, we can see p(G, a_“) = p(Ga_,,l a4t—1)- Assume
for a contradiction that there exists ¢ € (2 — a,|%])\{0,1} such that

_ (t=1)(a )(a )
p(Ga za+t—g) >p(Ga a+t) NOte that f(t) = +t ! A

If i > 2, we can likewise get

t—i)a+t—i)(a+t) < (t-2)(a+t-2)(a+t)

(
k-1<
1= t—i+1 = t—1

< f(t),

a contradiction.
If i < —1, we can get

k—1> (t—z‘)(a+f—z’)(a+t) > (t+1)(a+t+1)(a+?)
t—i+1 t+2

> f(t),

also a contradiction. O

Remark 2.9 We observe that Theorem 2.8 characterizes the extremal graph
G}y, for any given n and k € (2,n — 3). In fact, we can see

U [F(®), £t +2)] = (S00, +00),

te(0,n—k—3),t=n—k+1(mod2)

which implies that n and k always belong to one of the cases in Theorem
2.8. In addition, all cases in Theorem 2.8 indeed occur For example,

3415 = G, Ghiap & G, Gigar = G3% and G} o = G35 for all
n > 57. Besides, Theorem 2.8 ('n) implies that the e:r:tremal graphs are
not unique if k — 1 = f(t). For ezample, both G}% and G1% attain the
mazimum spectral radius in 4(18,11).
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The number of cut edges is an interesting parameter of graphs. In
[6], Liu, Lu and Tian determined the maximum spectral radius of general
graphs with given number of cut edges. Recently, Zhang and Zhang [13]
investigated the Laplacian spectral radius for bipartite graphs with given
number of cut edges.

Let G be a connected graph with cut edge uv, G; and G5 be two com-
ponents of G — uv with u € G; and v € G,. H is the graph obtained
from G by the following way: (i) contract edge uv, (ii) add a pendant edge
to the vertex u(v). Then by Lemma 2.2, p(G) < p(H) (see Fig.1). Let
J#(n, k) be the set of bipartite graphs with n vertices and k cut edges.
Similar to above, we can show the extremal graph with the maximal spec-
tral radius in £(n, k) (1 < k < n —4) is isomorphic to G& |, for some
a € (2,n — k — 2). Consequently, by Theorem 2.8, the extremal graphs for
H(n, k) are also determined.

ulv
G H
Fig.1

3 Maximizing the Laplacian spectral radius
in 9(n,k)

Lemma 3.1 ([7],[8]) For a connected graph G, u(G) < o(G), with equal-
ity if and only if G is bipartite.

Lemma 3.1 implies that x(G) = o(G) for any bipartite graph G. Hence
we can investigate D(G) + A(G) and its spectral radius ¢(G) instead of
D(G) - A(G) and u(G).

Let G}, , be the extremal graph with the maximum Laplacian spectral
radius in ¢(n, k). Clearly, G}, ,_; & K1,n-1. Note that the adding of any
edge increases the spectral radius of D + A, G}, , is a complete bipartite
graph. Note that u(K,p) = a + b for any complete bipartite graph K, 5,
all K;n—a (@ € (2,7 — 2)) are the only extremal graphs in ¥(n,1). Next
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we consider the case 2<k<n-3.

Lemma 3.2 ([5]) Let u, v be two vertices of a graph G and {v;|i =
1,2,...,8} S N(w)\(Nw)U{u}). Let X = (z1,Z2,...,%a)" be the Perron
vector of D(G) + A(G). Let G* be the graph obtained from G by deleting
the edges vv; and adding the edges vv; (1 < i < s). If x4 2 =z, then
o(G*) > o(G).

Similar to Lemma 2.2, Hong and Zhang gave the above result for the ma-
trix D(G)+ A(G). By Lemma 3.2 and similar analysis to Section 2, we con-
clude that the extremal graph Gj, ; is also an isomorphism of Ga n—ktl-a
for some a € {2,n— k —1).

Lemma 3.3 ([13]) Let a and k be integers witha > 2 and k > 1. Then

w(G§ ) > #(Ga am1) >0 > #(Gﬁ,z)-
Following from Lemma 3.3, we have

Theorem 3.4 Among all graphs in 9(n, k) (k € (2,n — 3)), GE7! om—k—1 18
the unique graph with the mazimum Laplacian spectral radius.
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