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Abstract

Let G be a graph on n vertices with minimum degree . We show
that there exists a two-coloring of the vertices of G with colors, —1
and +1, such that all open neighborhoods contain more +1’s than
—1's, and altogether the number of +1’s does not exceed the number
of —1’'s by more than o(Z%)-
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1 Introduction

All graphs considered here are finite, undirected and simple. For standard
graph theory terminology is not given here we refer to [4]. Let G = (V, E)
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be a graph with verter set V and edge set E, v is a vertex in V. The order
of G is given by n = |V|, and 7 is the minimum degree among the vertices
of G. The open neighborhood of v is the set consisting of all of its neighbors,
denoted by N(v). N[v] = N(v) U {v} is the closed neighborhood of v.

Let x : V — Y be a function which assigns to each v € V 2 value in
Y, where Y is a subset of real numbers. For notation convenience, we let
x(S) = Y ues x(u) for any set SC V. We call x(V) the weight of x. The
function  is called a Y-dominating function if x(N(v]) > 1 for each vertex
v eV and Y is called the weight set of x. Many dominating functions have
been defined by changing the allowance weights in Y. These functional
variations of domination in graphs have been studied in, e.g., [5].

A signed domination function of G is a function x : V — {-1,+1}
such that for every vertex v € V(G), x(N[v]) > 0. The signed domination
number of G, 7,, is defined as

s = min{x(V) : x is a signed domination function of G}.

When we simply change N[v] in this definition of signed domination
function to N(v), we define a signed total domination function of G. The
same as signed domination number (2, 6, 8], the signed total domination
number of G, which is firstly studied by Zelinka [11], is defined as

~¢ = min{x(V) : X is a signed total domination function of G}.

For any graph G of order n with minimum degree , several researchers
have estimated s, the signed domination numbers of G. For example,
Fiiredi and Mubayi [3] showed 5 < (4:1/1gr/r+1/r) n; recently Matousek
[9] proved that v, = O(n//T) by a so-called partial coloring method from
combinatorial discrepancy theory [12]. For the signed total domination
number, we know v§(P,) = n,n 2> 2; ¥ (Kin-1) = 2 if n is even and 3
if n is odd [7]. Henning [7] also received other results on the signed total
domination number, and these results are the lower bound. In this paper,
we will prove that all graphs G of order n with minimum degree r have
signed total domination number O(n/ /1), i.e., % = O(n//7).

2 Preliminary results

In this section we firstly give some concepts and then give some lemmas to
prove the main result.
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Let a be a real number and suppose that S is a hypergraph with ver-
tex set V and edge set {S),S55,...,5,}. The function g defines an a-
dominating partition of the hypergraph S, if

9(8) = _g(a) > o,

a€S

for every edge S in S, dom,(S) := g(S).

min
9:5—{—1,4+1}, g is a-dominating

We denote dom, as dom. Clearly, we note that

Lemma 1 For any graph G = (V, E), v{(G) = dom(N(G)), where N is
the hypergraph on the vertez set V and its edges are the open neighborhoods
{N{w):veV}.

We need some lemmas for the proof of theorem.

Definition 1 ([9]) A partial coloring is a mapping x : X — {1,0,+1}.
Let substantial partial coloring be a partial coloring x with x(z) # 0 for at
least 3| X| points z € X.

Lemma 2 Let S be a system of m set on an n verter set X, m > n.
Then there exists a substantial partial coloring x : X — {—1,0,+1} with

x(X) = 0 and with
2m
XS < C- /151 2

for all S € S, where C is a sufficiently large constant.
Now we give two lemmas to prove Lemma 2.

Lemma 3 ([1]) Let X;,1 < i < n, be mutually independent random vari-
ables with 1
PT'{X,' = 1} = PT{Xi = —1} = 5,

and set, following the usual conversion, Sp, = X1 + Xo + -+ + X,. Let

a>0. Then
a2

Pr(S, >a] < e 2n.

Let us think of all colorings x : X — {—1,+1} as the hamming cube
{-1,+1}" and we define p(x,x’) = |{a : x(a) # x'(a)}|. For D C
{~1,41}", we define diam(D) = max{p(x, X'), forx, X' € D}.
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Lemma 4 ([10]) Let D C {-1,+1}", r < n/2, |D| > E]o(}). Then
diam(D) > 2r.

Proof of the Lemma 2. Label the sets of S by S;,S2,- -+, Sm for conve-
nience. Let
x: X —{-1,+1}
be random. For 1 < i < m, we define
o ox(5)

b; = nearest integer to ——————.
2C/[5i]y/In 22

Now we consider the probability of b; =1 and b; = -1

Pri=1 = Pr|1/2< X8 3 2}

T e yEl e

= Pr LX(s,-)<3o-\/|'sT| 1“7]
—Pr[x(S)<C ViSi ln—]
= Pr[x(S)>C’ VISi| ln—}

-Pr [x(S) >3C-/[Si| ln—]

and

Prlbj=-1 = Pr [-3/2 < X(5:) < —1/2]

NN
= Pr [x(S) <-C-VSi| ln—]

—Pr[x(.S‘)<—3O VIsi| ln—]
= Pr[—x(se)zC-\/Eﬁ ln%’"]
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—Pr [-x(s.-) > 3C - /5] 1n27m] .

So

Prb; = 1] Prlb; = -1]

pr [x(s,-) > C/[Si/In 2%"}

_02,3,'“[127"'-
< e 2n
2|8

G
n
C?|Si|
n
= (3m) >

Since C is sufficiently large, we may assume

A

Prlb; = 1) = Prjb; = -1] < (%)50 .

Now we bound the entropy H(b;) = 2};‘2 o — Pj - logo(p;), and p; =
Prlb; = j]. It is clearly that the infinite sum converges and it is dominated
by Prlb; = 1]. Then

H(b) <2 —(3%)% - logy(5%)3%°
2. (28)% g, (amy0
<2:27%0. & (2)71 - (50log, 2 +50)
< 100-279%0. L,

Note that y = 2 > 1, then (2)~%° . (50log, 2 + 50) < 50 is naturally.
Moreover, by the subadditivity of entropy, we have

H((blib% v )bﬂ't)) < 2:"=1H(bz) <en, €=100- 2_50'

If we assume a random variable Z has no value with probability greater
than 2%, then H(Z) > ¢. In contrapositive form, there exists a particular
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m-tuple (81,82, -, Sm). So that
P’I"[(b], b2)'° ° ,bm) = (31,32,' i :s'm)] Z 2_€n-

Probability space is composed of the 2" possible coloring x. Thus there
is a set C' consisting of at least 2(1=)" colorings x : X — {-1,+1}, and
all have the same value (by, b2, -+ ,bm). If we choose any x1, X2 € C', and
x1(X) # x2(X), we can only get C2 possibility. Because of 2(1=)n 5 it
is easily to find the colorings X1, X2 satisfy x1(X) = x2(X) in .

By Lemma 4, we put C' = D and get r = an, as long as a < % and
9H(e) < 21-¢ We can bound

2;1__1_&0 :1) < 2n.H(a) < 27;(1—5) = |CI|.

For z small, H(1/2—1z) ~ 1—(2/In2)2?, s0 z < (32 e)1/2=1.75%x10"",
then we can take & = 3(1 — 3.5 x 10~7). Thus C’ has diameter at least
(1-3.5 x 10~7)n.

Let x1,%2 € C' be p(x1,x2) > |X|/2 and satisfy x1(X) = x2(X), we
set x = (x1 — x2)/2 is a partial coloring of X. x(a) = 0 if and only if
x1(a) = x2(a) coordinate a, which occurs for n — p(x1, x2) < |X|/2. For
each 1 < i < n, the colorings x1,x2 yield the same value b;, which means

that x1(S:),x2(S:) lie on a common interval of length 2C - 1/|Si|In Zm,

Thus,
S;i) — x2(Si 2
O e EL T e

as desired. And we also have

We also need another definition and lemma.

Definition 2 ([9]) An l-transversal of hypergraphs (X, S) is a set TCX
such that |[TNS| > 1 forall S€S.

Lemma 5 ([3)) Let (X,S) be a hypergraph with n vertices and m edges,
such that all edges have size at least s, and let 1 < §. Then there erists an
I-transversal for (X,S) of size at most

21 l

—.n ——-m.
s +e’/4
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3 Main results

The following theorem 6 was posed by Fiiredi and Mubayi in [3]. Matousek
[9] proved a special case (m = n) of this result, which easily leads to his
conclusion v, = O( 7))

Theorem 6 For a hypergraph (X, S) with n vertices, m edges set and
every edge has at least T vertices, and r is sufficiently large, then

dom(H) < 70_; - (n+m).

Indeed, when both n and r are sufficiently large (otherwise, we can put
x(z) = 1for all z € X, then 7§ = 0(7";)), we can apply Theorem 6
and Lemma 1 to the open neighborhood hypergraph and get the following
obvious result.

Theorem 7 For any graph G on n vertices with minimum degree r, the
signed total domination number of G, 7§ = O(%)

Proof of the Theorem 6. We only need prove that there exists a mapping
x:V = {-1,+1} satisfying x(V) = & - (n+m) and x(S) := Tzesx(a) >
1.

We can define the coloring x by an iterative procedure. Let X; = X
and then execute the following step for ¢ = 1,2, until the coloring x is
fully defined. For it* step, we know X; € X and suppose that the values of
X have been defined on X\ X; and x(X\X;) satisfies the desired conditions,

ie.,

Cy
X(X\X;) < 7 (n+m),
where C} is constant.

We consider the following two cases

Case 1. |X;|=n; < % * (n 4+ m). We can define x(z) =1 for all z € X;,

th
en Cr+1

x(X) = x(X\X:) + x(X;) < =

’ (n+m))
C = C) + 1 is constant.

Case 2. |X;| =n; > % - (n+m).
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Firstly, we will outline the main ideas of this case and then we will
go to the details. Let S; be the set system S restricted to X;. For the
hypergraph (X;, S;), we firstly find a suitable small enough subset T; C Xi,
which intersects all large enough sets in S; in sufficient points, and we define
x(z) = 1 for all z € T;. Then we obtain the hypergraph (X!,8!),and X{ =
X\T;, S! is the set system S; restricted to the set X;. We apply Lemma 2
to (X!,S!), finding a substantial partial coloring xi, Xi X! — {-1,0,+1},
with x;(X!) = 0 and with |x;(S})| < C - V/15}| - In(2m’ /n}) for all Sies;,
where C is a sufficiently large constant and S; = m’ < m, o = |X]| < n..
Suppose Y; is the set of all points of X] where x;(z) # 0, and we define
x(z) = xi(z) for all z € Y;. If z ¢ Y;, put Xz = X{\Y;, then we go to the
next step.

In fact, because of the definition of substantial partial coloring, we can
find a integer g making the ¢ + 1 step remain at most 71; - (n + m) points.
And we can define the coloring of every point by +1's. After ¢+ 1 step, we
can obtain a fully coloring x : X — {-1,+1}.

Now, let us describe the choice of the transversal T; to finish the all
procedure. We put r; =724, 8;; =27 .73, j =1,2,---. Let

S.'j = {S €S;: 8ij < |S| < 28,'_7'}.

— n
Then r; =7- 3, so

1 n
n; > -ﬁ-(n+m)> 7‘;,
and
0 2™ < In2yF <2+ Llar,
n; 2
thus

2m
O.,/s,-,-lnE <C-yfsiy (m2+In7/2) < Ca - V55,

C, is sufficiently large. Let s = s;;,1 = li; = C2,/35,

Sij=2j"l'i=2j"'"ﬁZ2j'T'L=2"°\/;Z NZ
n va
and r is sufficiently large, we know that l;; < %31':5' From Lemma 5, it
follows that ol ]
|T‘J| = Sij ™t elii/4
Now we estimate this formula. Note that I;; = Ca2,/55; 2> Ca - 29/2 . p1/4,
One can know

m m
el‘j/4

< -
4 — 92 .p

(by Talyor series),



and

o, 9C. /55 . .
I ipy=22VTH 0 o 9, 2 =2C2..”_1/2
Sij Sij \/Sij 2i/2 . T;
N ¥ _ n
< 20, __2,1'/2 c—=20C- 2j/2 - \/;

Put T; = U;f_q Ti;. By the above formula, we have
ITif < 22|T31

< 520205 - (B +(1/4) - 2
=2027"$(1+\/§)+# -

where K = max{2C5(1 + \/_), 3\/-} Since x(Y;) = O for all 4, it will not
have an effect on the values of x(X), so we can estimate
Gy
X(X) = x(X:) + x(X\X;) < 77 tm BT

Kq+C
NG

< '(n+m)’

C = Kq+ C] is a constant.
Next we will demonstrate that x has another property, i.e.,
x(8) >0,
forall S€S. Let I ={1,2,3,.--g}. Then
X(8) 2 BiLISNT| - BL,x:(8NY:) = L, (1SN Ti| - x:(S N Y3)),
hence, we have |SF|T-| = |SI"|U°°_1 Tl > 1SN Ty| 2 Uy, and x:(SNY;) <

BA

5i; = lij, so x(8) > 0. |
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