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A maximum packing of triples (or simply a maximum packing) of order
v and index A, denoted by M PT(v, ), is a pair (V, B) where V is a v-set
and B is a collection of 3-subsets (called blocks or triples) of V' such that
(1) each 2-subset of V' is contained in at most A triples, and (2) if C is any
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Let MPT(v,)\) denote a maximum packing of triples of order
v with index A. For A > 1 and v > 3, it is proved in this paper
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Introduction

collection of 3-subsets satisfying (1) then |B| > |C|.

Let (V, B) be an MPT (v, A), the leave of (V, B), denoted by L(v, A),
is a multigraph (V, E) where an edge {z,y} € E with multiplicity m if
and only if the corresponding 2-subset {z,y} is contained in exactly A —m
triples of B. It is well-known (Hanani [3]) that the leave of an M PT (v, ))
is empty if and only if A(v — 1) = 0(mod 2) and Av(v — 1) = 0(mod 6). In
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this case, the M PT'(v, A) is called a triple system and denoted by T'S(v, A).
For fixed A, if there exists a T'S(v, A), then v is called A-admissible. Triple
systems with A = 1 are also known as Steiner triple systems and a T'S(v, A)
is also denoted by ST'S(v).

For v > 3, by Mendelsohn, Shalaby and Shen [7], the only graphs which
can be leaves are shown in Table 1 (where v and A are reduced modulo 6)
with the following abbreviations, where E4 and 06 refer to the families of
graphs listed next to them and the notations are from [7].

Graphs of odd degrees
1F a matching on v vertices
1FY a matching on v — 4 vertices and a tree on 4 vertices with

one vertex of degree 3

06 (a) 1IFH a matching on v — 6 vertices and a graph induced by
AB, BC, BD, DF, DG
(b) 1Fs a matching on v — 6 vertices and a tree on 6 vertices
with one vertex of degree 5
(¢) 1IFYY  a matching on v — 8 vertices and two vertex-disjoint
trees each on 4 vertices with one vertex of degree 3

(d) 1F3 a matching on v — 2 vertices and a triple edge AB,
AB, AB
(e) 1F_o— a matching on v — 4 vertices and a graph induced

by AB, BC, BC, CD

Graphs of even degrees

2 a double edge AB, AB
E4 (a) Cy a 4-cycle
(b) 4 a quadruple edge AB, AB, AB, AB

(c) 22 2 double edges AB, AB, CD, CD
(d)o  AB, AB, BC, BC

A\v " 0|1 2 3 4 5
0 010 0 (0] © [}
1 1IF| 0| 1F |0 | 1FY | B4
2 o [0 2 [0 0 2
3 1F | @ 06 OPl1FY | O
4 0 |0 Ea [D] O | E,
5 1F|QO|1FY |D | 1FY | 2

Table 1. leaves of maximum packings
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Now let (X,A) be an MPT(v,A). (X,A) is said to be embedded in
(Y, B) (MPT(u,))) provided that X C Y and A C B. We also say that
(X, A) is a subdesign of (Y,B). The embedding problem is one of the
fundamental problems in design theory. In 1979, Stern proved the following
result:

Theorem 1.1 (Stern [10]) Suppose both v and v are A-admissible, and
let v>3. Then a TS(v,\) can be embedded in a TS(u, ) if and only if
u>2v+1.

For the embedding of maximum packings of triples with A = 1, we have
the following results:

Theorem 1.2 (Fu, Lindner and Rodger [2]; Hartman [4]; Hartman, Mendel-
sohn and Rosa [5]; Mendelsohn and Rosa [6]) Let w > v > 3. Any
MPT(v,1) can be embedded in an M PT(u,1) if and only if

(1) if v € {3,4,5} then u > v,

(2) ifv="=6 thenu="7 or u> 10,

(3) ifv>6 and v is even thenu=v +1 or u > 2v, and

(4) if v > 6 and v is odd then u > 2v.

An M PT(v, M) is called simple if it contains no repeated triples. In 1995,
Milici, Quattrocchi and Shen [8] proved that for v > 3 and any even A, a
simple MPT (v, ) can be embedded in a simple M PT(u, ) if and only if
u 2> 2v+1. As a consequence of this result, we have the following theorem:

Theorem 1.3 (Milici, Quattrocchi and Shen [8]) Letv > 4 and A = 0(mod
2). An MPT(v,)) can be embedded in an M PT(u,]) if and only if u >
2v+1.

For the embedding of maximum packings of triples with A > 1, Su, Fu
and Shen [11] have recently proved the following theorem:

Theorem 1.4 (Su, Fu and Shen [11]) Let u> v > 6 and A > 1. Then an
MPT (v, X) can be embedded in a TS(u, ) if and only if A(u — 1) = 0(mod
2), Mu(u —1) =0(mod 6) and v > 2v + 1.

In general, for which v and u can any M PT(v,) be embedded in an
MPT(u,A) with A > 1? The main purpose of the present paper is to
complete the solution to the embedding problem of maximum packings of
triples for all A. First, we prove the following necessary condition:

Lemma 1.5 Letu >v > 3 and A > 1. If (X, A) is an MPT(v, \) embed-
ded in an MPT(u,)) (Y, B), then u > 2v+ 1.
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Proof: Let L(v,\) denote the leave of (X, A), and L(u,A) the leave of
(Y, B). Suppose there are exactly s edges of L(v, A) such that each of them
is one edge of some triple in B. Suppose there are exactly ¢ edges {z,y}
of vertices z € X, ye€ Y\X such that each of these edges is one edge of
L(u, A). Let n =2s + t. Then we must have the following inequality:

Av(u —v) —maz(n) < Mu - v)(u—-v-—1).

Checking cases one by one, it can be seen that for any choice of the
parameters u,v and A, this inequality does not hold for v > 3,A > 1 and
2v > u. This completes the proof.

Suppose that « > v > 3 and A > 1. In this paper, we will show that the
necessary condition of Lemma 1.5 for embedding of an MPT (v, A) in an
MPT(u, A) is also sufficient.

2 Preliminary results

Let A7 + Ay + --- 4+ A, denote the union of multisets A;, Az, -+, An
(so if e occurs k; times in A; for each ¢ where 1 < ¢ < n, then it occurs
ki+ko+  -+kytimesin Ay +As+- +A,). A =A== A, =4,
then let nA denote A; + Az + --- + An. Let MK, denote the multigraph
on n vertices in which each pair of vertices is joined by exactly A edges.
Let V(G) denote the vertex set of a multigraph G, and E(G) denote the
collection of edges in G.

Given two multigraphs G and H, the union G U H is the graph with
V(GUH) = V(G)UV(H) and E(GU H) = E(G) + E(H). If V(G)n
V(H) = 0, then the join G\ H is the graph with V(G H) = V(G)UV (H)
and E(GV H) = E(G) + E(H) + {{z,y}lzr € V(G),y € V(H)}. If G is
a multigraph, then let A\G denote the graph with V(AG) = V(G) and
E(AG) = AE(G). In addition, let K, denote the graph on v vertices with
E(K,)=0.

The following construction is essentially the same as Construction 2.1 in
[11].

Construction 2.1 Letu > v, X be a v-set, Y be a u-set and X C Y. Sup-
pose (X, A1) is an M PT (v, \;) with leave L(v, A1) and can be embedded in
(Y, B1), an M PT(u, \) with leave L(u, A1); (X, Az) is an M PT (v, A) with
leave L(v,\2) and can be embedded in (Y, Bz), an M PT(u, As) with leave
L{u, A2). If L{v, ;) U L(v,A2) is a L(v, A1 + X2), and L(u,A;) U L(x, A2)
can be partitioned into a L(u, A1 +A2) and triples, then an MPT (v, A+ A2)
with leave L(v, \1 + A2) can be embedded in an M PT(u, A1 + A2) with leave
L('u,, A+ )\2).
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By Theorems 1.1-1.4 and Construction 2.1, we have the following theo-
rem:

Theorem 2.2 Suppose u, v and A are positive integers and v > 4. If
u > 2v + 1, then an MPT(v,\) can be embedded in an MPT (u,)) with
the following possible exceptions:

(1) v=2(mod 3), u = 0(mod 2) and A = 3(mod 6),

(2) v=2(mod 6), u=0,2,4,5(mod 6) and A = 5(mod 6),

(3) v=>5(mod 6), u=0(mod 2), A\ =1,5(mod 6) and X > 1.

In this paper, we eliminate all of these possible exceptions. In fact, by
Construction 2.1, we only need to embed an M PT'(v, ) in an M PT(u, \)
for A = 3,5 or 7, and all © > 2v + 1. In addition, the following two lemmas
are also useful.

Lemma 2.3 (Fu, Lindner and Rodger [2]) Let v =6h+5 > 11, u > v,
X={a;0<i<6h+4} andY =XUZ,_,.

(1) Ifu=6t+6h+7,¢t>2andu > 2v+1, then any MPT(v,1)
(X, A) with leave {{ag, a1}, {a1, a2}, {a2, a3}, {ao,as}} can be embedded in
an STS(u) (Y, B) such that {{0, ag, a1}, {1, a0,a3}, {1,a1,a2}, {3, a2,a3}} C
B

(2) Ifu=6t+6h+9,t2>2andu > 2v+1, then any MPT(v,1)
(X, A) with leave {{ao,a1},{a1, a2}, {a2,as},{ao,as}} can be embedded in
an STS(u) (Y, B) such that {{0, a9, a1}, {1,a0,a3}, {1,a1,a2}, {2,a2,a3}} C
B.

Lemma 2.4 (Chetwynd and Hilton [1]) A regular graph with an even num-
bern of vertices and high degree (at least (v/T—1)n/2) has a 1-factorization.

3 The case A =3

Let D(n, A) be the following multiset with elements from Z,.

D(n,\) = { {A-d1<d< (n-1)/2}, if n = 1(mod2),
’ {A-dl1<d<(n-2)/2}+{)2-n/2}, if n=0(mod2).
The elements of D(n, X) are called differences. The symbol A - d means
that the difference d appears A times. We remark that we also use n — d
to represent the difference d.
Let a,b,c € D(n, ), if a + b + ¢ = 0(mod n) or one is the sum of the
others, say, a + b = c¢(mod n), then D = (a,b,¢) is called a difference
triple, and let (D) denote the block set {{0,a,a + b} +i|0 < i < n -1}
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or {{0,b,a + b} + 4|0 < i £ n — 1}, and we say that (D) is induced by
the difference triple D. If n = O(mod 3), and @ = b = ¢ = n/3, then
{{0,7/3,2n/3}+:|0 < i <n/3—1} can form a 2-regular spanning subgraph
of K, on the vertex set Z,. In this case, the difference n/3 is used once.
Otherwise the block set induced by the difference triple (a, b, c) can form a
6-regular spanning subgraph of K,,.

Suppose m and n are positive integers and A > 2. let Z be an n-set.
A collection F of 2-subsets (called pairs) of Z is called an m-factor if each
vertex of Z is contained in exactly m pairs of F. If F' is an m-factor and
a € Z, then let a * F denote the multiset {{a,z,y}|{z,y} € F}.

In the following two sections, we always suppose u > v, X = {a;|0 <
i<v—-1}L Y =XUZy, V(K,) =V(K,) = X and V(Ky—y) = Zy—s.

Lemma 3.1 Let v = 5(mod 6) and u = O(mod 6). Ifu > 2v+1, then a
TS(v,3) can be embedded in an M PT(u,3).

Proof: Write v =6h+ 5 and u — v = 6t + 1. Since v > 2v + 1, we must
have 2 < h+1 < t. Let (X, A) be a TS(v,3).
Case 1.1<h+1=t.

For each i where 0 < i < 6h + 3, let F; = {{i,6h + 5},{3h + i +
3,6h+6}}U{{6h+i—j+4,i+j+2}|0 <j < 3h}, where 3h+i+3,
6h+i—j+4and i+ 7+ 2 are reduced modulo 6h + 5. Let Fgpig =

6h+4
{{6h—i+4,4}0 <i <3h+1}U{{3h+2,6h+6}}, Bi = U (ai* i),

i=0

By ={{1,3,5} +6i[0 <i < h} and B3 = {{0,1,2} + %[0 < i < 3h+2}. It
can be checked that G = 3Ken7 — (32 + B3 + {{0, 6h + 6}} + R+ A+
«+++ Fgpyq) is a (12h + 10)-regular spanning subgraph of 3Kgp+7 on the
vertex set Zgn47. So G can be partitioned into 6k + 5 2-factors F(®), (1)
vor, F6RT) Lot By = ag * FO 4 a; # F(D) ... 4 agpyq » FOE4) and
By, = A+ B, + Bz + B3 + B,. Then (Y, B) is an MPT(12h + 12, 3) with
leave {{a;,i + 1}|0 < i < 6h +4} U {{0,6h + 6}} and contains (X, A) as a
subdesign. The conclusion follows.

Case 2. 1<h+1<t.

Let Z = Y U {oo}. By Lemma 2.3, an MPT(v,1) (X, A;) with leave
{{ao, a1}, {a1, a2}, {az, as}, {ap, aa}} can be embedded in an ST'S(6t+6h+
7) (Z, C1) such that Co = {{0, ap, a1}, {l,ao, as}, {1,a1, as}, {3,a2,a3}} C
Ci. Let Cp = {{o0,z,y}{o0,z,y} € Cl} and C3 = Cy — (Co + C2 + Ay).
Choose differences of D(6t + 1,2) to form the following collection T' of
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difference triples:

{(11 2i3)); (3) 4, 6)}) if t= 2,
{(1,2,3,);(4,5,9); (4,5,9); (3,8,8)}, if t=3,
{(1,2,3);(t+ 2,2t - 3,3t — 1);

(2¢,3t,t +1);(t, 2t — 1,3t — 1); (¢ — 1,2t — 1,3t — 2);

(26,3t —4,3t—i+1):3<i<t-1;
(2i-Lt+4,t—-i+1):3<i<t-2,t>5}, ift>4.

Choose 2t—2h—3 difference triples Dy, Da, - - -, Dos—op_3 from \{(1,2,3)}.
Let By = (D1)+(D2)+- - -+ (Dze-2n-3), Bz = {{4,5,6}+3i|0 < i < 2t—2},
Bs = {{0, l,ao}, {0, l,al}, {1, 3,0,2}, {1,3,&3}} and B4 = {{0, 1,3} +’i|1 <
i <6t}U{{0,2,3}}. Then it can be checked that G = 2K,_, — (B + Bs +
Bs+{{0,1},{0,1},{1,3},{1,3}}) is a (12h+10)-regular spanning subgraph
of 2K,_, on the vertex set Z,_,. So G can be partitioned into 6h + 5 2-
factors Fy, Fy,- - ,Fsh+4. Let Bs = ap * Fy + a *xFy+--- 4 Qgh+q * F6h+4
and B=A+ B + By + B3+ By + B5 + C3. Then (Y, B) is an MPT(u,3)
with leave {{z, y}|{co, z,y} € C1} and contains (X, A) as a subdesign. The
conclusion follows.

Lemma 3.2 Let v = 5(mod 6) and u = 2(mod 6). Then a T'S(v,3) can be
embedded in an M PT(u,3) if u > 2v+ 1.

Proof: Suppose v=6h+5,u—v=6t+3and1<h+1<t
Case 1. t =1,

In this case, b = 0 and u = 14. Let (X, A) be a T'S(5,3), B, = {{ao, 2i+
1,2i+2}0 < i <3} 4 {{a1,2:,2i + 1}|1 < 4 < 4} + {{a2,2i + 1,26 + 2}1<
1< 4} + {{a3: 6) 7}, {GS)O’B}, {0,3, 1’ 2}} + {{a“h 0; 1}) {a4) 2’ 3}) {a'4’41 5}};
B, = 2{{0,3,6} +il0 < i < 3} + {{0,1,3} + ili € Zo}. Then G =
3K9—(B2+2{{0,1}+i|i € Zg}) is a 10-regular spanning subgraph of 3K on
the vertex set Zg. So G can be partitioned into five 2-factors F; : 0 < i <d.
Let By =ap*xFo+a1xFi+---+as*Fyand B= A+ B, + Bs + B3. Then
(Y, B) is an M PT(14,3) with leave 1FYY of type 06 and contains (X,A)
as a subdesign. The conclusion follows.

Case 2. t > 2.

Let (X,A) be a TS(v,3), and Z = Y U {o0}. By Lemma 2.3, any
MPT(v,1) (X, A1) with leave {{ao, a1}, {a1, a2}, {az, a3}, {ao,as}} can be
embedded in an ST'S(6t + 6h + 9) (Z,C,;) such that Cp = {{0, ao,a1},
{1,@0,03}, {1,a1,02},{2,a2,a3}} C C1. Let Cy = C) — (Co + Cs + Ay),
where C3 = {{o0, z,y}| {0, 2,3} € C1}. Choose differences of D(6t+3,2)
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to form the following collection T of difference triples:

{(21 4,6); (3, 4)7)}: ift=2,
{(4,6,10); (4,6, 10); (5,8,8); (3,9,9)}, ift=3,
{(2t,t + 1,3t + 1); (¢, 2¢, 3t);

(2t+2,2t+2,2t — 1); (2t + 1,t +2,¢ — 1);

(26,3t —i+1,3t—i+2):3<i<t—2,t>5
(Qi—1,t+it—i+1):3<i<t—1}, if t> 4.

Choose 2t—2h—2 difference triples Dy, Do, -+, Doy_op—o from T'. Let By =
(D1)+(D2)+-- ‘+(D2t—2h-2), By = {{O) 2, 3}’ {3: 4, 6}7 {6? 7, 8}1 {5: 7, 8}}U
{{9,10,11} + 6ij0 < i < ¢t — 2} U {{9,10,12} + 6i[0 < i < t — 2} U
{{12,13,14} + 64)0 < i < t — 2} U {{11,13,14} +6i[0 < i < t — 2}, By =
{{0,1},{0,1},{1,2},{1,2},{4,5},{4,5}} and By = {{0,2t + 1,4t + 2} +
|0 < i < 2t}}. It can be checked that G = 2K, _,—(B1+B2+B3+B,) isa
(12h + 10)-regular spanning subgraph of 2K,,_,, on the vertex set Z,_,,. So
G can be partitioned into 6h + 5 2-factors Fp, Fy,- -+, Fsn+4. Let Bs = ag *
Fota1+Fy+- - +asha*Fonta, Be = {{0,1,a0},{0,1,01},{1,2,02},{1,2,a3
}} and B = A+ By + By + By+ Bs+ Bs+C,. Then (Y, B) is an M PT(u, 3)
with leave 1F_g_ or 1F; of type 06 and contains (X, A) as a subdesign.
The conclusion follows.

Lemma 3.3 Let v = 5(mod 6) and u = 4(mod 6). Then a TS(v,3) can be
embedded in an MPT(u,3) if u>2v+1.

Proof: Suppose v =6h+5, u—v=6t+5and 1 < h+1<t Let
(X, A) be a TS(,3), V(K,) = X, and V(Ky—vt+1) = Zer4s U {0} By
[2], the graph (X, ,, + K, »41) can be pa.rtltloned into a collection B’ of
triples. Let B, = B' — {{oo, a:,y}l{oo, z,y} € B'}. It is easy to see that
there exist 4 dlﬂ'erent vertices 7,5, k,l € Zgt45 such that {{¢,3}, {k,1}} C
{{z,y}|{c0,,y} € B'}. Choose differences of D(6t + 5,2) to form the
following collection T of difference triples:

{(214)5)}1 ift=1,
{(4,6,7);(2,3,5) (4,5,8)}, ift=2,
{(2t,2t +2,2t +3); (t + 1, £ +2, 2t + 3);

(3,2t — 2,2t + 1); (2t,2¢ + 1, 2t + 4);

(26,3t —i+2,3t—i+3):1<i<t—2
(2i-1,t+i+1,t—i+2):2<i<t—2,t>4}, ift>3.

Choose 2t — 2h — 1 difference triples Dy, Ds,:--,Do;_op—1 from T. Let
= (D]_) + (Dz) 4ot (D2t—2h—1), B; = {{2, 3,4} + 3i|0 i< 2t} U
{{8,4,5} + 3i|0 < i < 2t} and B, = {{0,1},{0,1},{1,2},{1,2}}. Then
= 2K, — (B2 + B3 + By) is a (12h + 10)-regular spanning subgraph of
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2K, on the vertex set Z,_,. So G can be partitioned into 6h+5 2-factors
Fo,Fy, -+, Fgpi4. Clearly there exists a permutation o of Zg;44 such that
o(1) = 1,0(3) = j, 0(0) = kand 0(2) = I. Let Bs = ag*a(Fp)+ay*a(Fy)+
<o+ Gphtd ¥ O’(Fsh+4) and B=A+B, + O‘(Bg) +0(Bs3)+ Bs + {{’L, k, l}}
Then (Y, B) is an MPT(u,3) and contains (X, A) as a subdesign. The
conclusion follows.

Lemma 3.4 Let v = 2(mod 6), v > 8 and u = 2(mod 6). Then an
MPT(v,3) can be embedded in an MPT(u,3) if u > 2v+1.

Proof: Write v = 6h 4+ 2 and v — v = 6¢. Since an MPT(6h + 2,3) can
be embedded in an M PT(12h + 5,3) and an M PT(12h + 5,3) can be em-
bedded in an M PT(24h + 14, 3), we can suppose 2 < h+1< ¢t < 3h+1.
Let (X, A) be an MPT(v,3). Choose differences of D(6t,3) to form the
following collection T of difference triples:

(112!3);
(2,8t —i,3t—i): 1 <i<t—1;
(2i-1,t+4,t—i4+1):1<i<t.

Choose 3t — 3h — 2 difference triples Dy, Dy, -+, D3;_3p,—2 from T'. Let
B; = (D1)+(D2)+: - ++(D3t—3n—2) and By = {{0,2¢t,4t}+il0<i < 2t—1}.
Then G = 3K, —, — (B1 + By) is a (18h + 7)-regular spanning subgraph of
3K._, on the vertex set Zg;. Since 18h+7 > 36t/7 > 3t(v/7—1), by Lemma
2.4, G can be partitioned into 18k + 7 1-factors F, Fg, Fy,-- -, Figh+s. Let
B3 =B + B} +--- 4 BS"1 where B} = a; * F3; +a; * Faip1 + a; * Faiyo
forany 0 < i < 6h+1. Set B=A+ B, + By + B3. Then (Y,B) is an
M PT(u,3) with leave of type 06 and contains (X, A) as a subdesign. This
completes the proof.

Lemma 3.5 Let v = 2(mod 6), v > 8 and u = 4(mod 6). Then an
MPT(v,3) can be embedded in an M PT(u,3) if u > 2v + 1.

Proof: Write v = 6h + 2 and u — v = 6t + 2. We can suppose 2 <
h+1 < t. Let (X,A) be an MPT(v,3) with leave L(v,3) of type 06.
If L(v,3) is 1F3 or 1F_g_, then the conclusion follows from Construc-
tion 2.1 with (A = 1) + (A2 = 2). If L(v,3) is 1FH, 1F; or 1FYY,
we prove the lemma for the case L(v,3) = 1FH, the other two cases
can be dealt with in a similar way. Now suppose L(v,3) = 1FH =
{{a2i, a2i+l}l3 i< 3h} U {{0'01 al}) {GO) a2}; {ao, 0.3}, {03,0.4}, {0.3,0.5}}.
Let H; = {{0,2},{1,2}, {2,3}}u{{2¢,2i+1}|2 < i < 3t}. By [2], the graph
G = (K, Ky—v) — Hy can be partitioned into a collection A; of triples.
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Let Hy = {{Ov aO}, {laaﬂ_}v {1:0'0}’ {0) 3}: {la 2}’ {0, 0.2}, {0,&1}, {17 0.1}, {37
az},{2,a0}}. By (8], 2(KyV Ku-v) — H2 can be partitioned into a col-
lection A of triples. Let Az = {{0,2,3}, {0, ap, a2}, {1,a0,a1},{1,2,a0}}.
Set B = A+ A; + Az + Az. Then (Y, B) is an M PT(u,3) with leave
{{0'01 a3}a {a'31a4}) {0.3, (15}} U {{Oaal},{1a2}y {3) a2}} U {{27') 2%+ 1}|2 <
i < 3t} U {{a2:,a2i+1}|3 < i < 3h} and contains (X, A) as a subdesign.
This completes the proof.

Lemma 3.6 Let v = 2(mod 6), v > 8 and u = O(mod 6). Then an
MPT(v,3) can be embedded in an MPT(u,3) if u>2v+ 1.

Proof: Writev=6h+2and u —v =6t +4. We must have 1 < h < t.
Let (X, A) be an M PT (v, 3) with leave L(v, 3) of type 06.
Case 1. L(v,3) =1F3 or 1F__.

The conclusion follows from Construction 2.1 with (A; = 1) + (A2 = 2).
Case 2. L(v,3) = LFH. Let 1FH = {{a2i,a2i+1}|3 < i < 3h}U{{ao, a2},
{ala 0'2}1 {0'21 03}, {a'3) 0'4}’ {(13, 05}}. Hl = {{11 0'1_}’ {3) al}) {1: 3}’ {1, (12},
{2,a2},{1,as}, {2,a3}}. By (8], the graph G = 2(Ky \/ Ky—o) — Hj can be
partitioned into a collection A; of triples. Let H = {{2{,2i +1}|0 < i <
3¢+ 1} U {{1,a4},{2,a4},{1,2}}. By [2], (Ku V Ku—v) — Hz can be parti-
tioned into a collection A, of triples. Let A3 = {{1,2,3}, {1, 01,02}, {1, a3,
a4}, {2,a2,a3}} and B = A+ A; + A2 + As. Then (Y, B) is an MPT(u,3)
with leave {{ao, a2}, {as,as},{2,a4},{3,a1},{0,1}} U {{24,2i +1}|2<i <
3t+1}U{{a2i,a2+1}|3 < i < 3k} and contains (X, A) as a subdesign. The
conclusion follows.

Case 8. L(v,3) =1FYY.

Suppose

1IFYY = {{ao,a1},{a1,a2},{a1,a3}} U {{a4,as},{as,ae}, {as,a7}}
U{{agi,a25+1}'4 << 3h}.

Let Hy = {{1,a3},{2,a3},{1,2}} U {{2,2¢ + 1}|0 < i < 3¢t +1}. By [8],
(KvV Ku—v) — Hy can be partitioned into a collection A; of triples. Let

Hy, = {{1) al}, {2) 0«1}, {1: 02}: {2’02}’ {la 3}’ {1’3}1 {1! as}, {3a a5}a
{1’ 0'6}’ {3x aﬁ}’ {Oa a-,-}, {3: a7}7 {01 3}}

By [8], 2(Kv V Ku—v) — H2 can also be partitioned into a collection A2 of
triples. Set As = {{1,a1,a2},{2,a1,a3},{1,as, a6}, {3,as,a7},{1,2,3}, {0,
1,3}} and B = A+ A, + Ay + Az. Then (Y, B) is an M PT(u,3) with leave
{{27:’ 2i+ 1}|2 <i<3t+ 1} U {{aoa al}’ {a4a 0‘5}» {2, a2}» {la 0'3}’ {3’ aﬁ}’ {0:
a7}} U {{a2i, a2i+1}|4 < i < 3h} and contains (X, A) as a subdesign. The
conclusion follows.

Case 4. L(v,3) = 1Fs.
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Suppose 1F5 = {{ag,a;}|1 < i < 5} U {{azi,a2i4+1}|3 < i < 3h}. Let
}I_l = {{0,(10},{3,00}, {013}} u {{21"22+ 1}|0 <t <3+ 1} By [8],
(KvV Ky—y) — Hi can be partitioned into a collection A; of triples. Let

H2 = {{]-)aO}a {1, al}) {2; a'O}’ {2J al}y {Oy 03}, {2’ 0,3}, {01 2}’ {la 0'4}1
{3, a4}) {1’3}, {01 05}’ {3’05}’ {0» 3}}

By [8], 2(K, V Kyu—y)— Hj can also be partitioned into a collection A, of
triples. Set A3 = {{3, ag,as}, {1, ag, a4}, {0, ao, as}, {2, ag, a,l}, {0, 1, 3}, {0,
2,3}} and B = A+ A; + Ay + As. Then (Y, B) is an M PT(u,3) with leave
{{24,2i + 1}|2 < ¢ < 3t + 1} U {{ao,a2},{1, 01}, {0,as},{2, a3}, {3,a4}} U
{{a2i, a2i41}|3 < i < 3h} and contains (X, A) as a subdesign. The conclu-
sion follows.

4 Thecases \=50r \=7

In this section, we consider the embedding problem of maximum packings
of triples for A = 5 or A = 7. First, we have the following lemma:

Lemma 4.1 Let v = 5(mod 6), u=0,4(mod 6) and A =5 or 7. Then an
MPT (v, A) can be embedded in an MPT(u,]) if u > 2v + 1.

Proof: We take (A} =2)+ (Ae=3)for A=5and (\; =3)+ (X2 =4)
for A = 7. The conclusion then follows from Theorem 2.2, Lemmas 3.1, 3.3
and Construction 2.1.

Lemma 4.2 Let v = 2(mod 6), v > 8 and u = 2,4(mod 6). Then an
MPT(v,5) can be embedded in an MPT(u,5) if u> 2v+1.

Proof: We prove the lemma for the case © = 2 (mod 6), the case u = 4
(mod 6) can be dealt with in a similar way. Write v = 6h + 2 and
u—v = 6t. Since u > 2v + 1, an MPT(6h + 2,5) can be embedded
in an MPT(12h 4+ 7,5) and an MPT(12h + 7,5) can be embedded in an
MPT(24h + 20, 5), we can suppose 1 < h+ 1<t < 3h+2. Let (X, A) be
an M PT(v,5) with leave L(v,5)=1FY. Choose differences of D(6t,5) to
form the following collection T' of difference triples:

(1a2’3);
(26,3t —4,3t—4):1<i<t—1;

(26,3t —14,3t—4):1<i<t—1;
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i-1,t+it—i+1):1<i<t;
Qi-1,t+it—i+1):1<i<t.

From T choose 5t — 5h — 3 difference triples Dy, Do, -+, Ds;—sp—3. Let
By = (Dy) + (D2) +++ - + (Dst—sn—-3), B2 = {{0,2¢,4t} +i|0 <i < 2t —1}.
Clearly G = 5K, — (B; + By) is a (30h-+11)-regular spanning subgraph
of 5K,_, on the vertex set Z,_,. Since 30k + 11 > 36t/7 > 3t(v/7 — 1),
by Lemma 2.4, G can be partitioned into 30k + 11 1-factors F, Fy, Fy, - -+,
Faonto. Let By = Bg -I-B% +-.- +th+1, where Bg =a;*F5;+a;* F5,'+1 +
a; * Fsiio + a; * F5iy3 + a; * Fip4 for each ¢ where 0 < 7 < 6h + 1. Set
B = A+ By + Bz + Bj. Then (Y, B) is an M PT(u,5) with leave L(v,5)UF
and contains (X, A) as a subdesign. This completes the proof.

Lemma 4.8 Let v = 2(mod 6), v > 8 and u = O(mod 6). Then an
MPT(v,5) can be embedded in an M PT(u,5) if u> 2v+ 1.

Proof: Write v = 6h +2 and u —v = 6t +4. Suppose 1 < h < ¢,
Let (X, A) be an M PT(v,5) with leave L(v,5) = {{a0,a:}|1 <i < 3}U
{{a2i,a2i+1}|2 < i < 3h}. Let F = {{2¢,2¢+1}{0 < i < 3t +1}. By
(2], (K, V Ky-,) — F can be partitioned into a collection A; of triples.
Let G = {{0,a:}|0 < i < 3} U {{1,a1},{1,a2},{3,a0},{3,a3}}. By [8],
4(K,\/ Ku—y) — G can be partitioned into a collection Az of triples. Set
B = A+ Ay + Az + {{0,a0,a1}, {3,a0,23},{0,1,a2}}. Then (Y, B) is an
MPT(u, 5) with leave {{ao,ag},{o, a3},{1,a1}} U {{agi,a2i+1}12 <@ <
3h} U F and contains (X, A) as a subdesign. This completes the proof.

Lemma 4.4 Let v = 2(mod 6), v > 8 and v = 5(mod 6). Then an
MPT(v,5) can be embedded in an MPT (u,5) if u>2v+1.

Proof: Let v=6h+2, u~v=6t+3 and 1 < h <t Let (X,A)be an
MPT(v,5) with leave L(v,5)={{ao,a:}|1 < i < 3} U {{azi,a2i41}|2 < i <
3h}. Let Ky = {{0,a:}|0 < i < 6h+1} and Ka2 = {{0,1},{1,2},{2,3},
{0,2}}. By[6], (K»V Ku-v) — (K1,0 U K2,2) then can be partitioned into
a collection A; of triples. Let G = {{0,a0},{1,a0},{1,a1},{2,21},{0,1},
{1,2}}. By (2], 4(K» V Ky-) — G can be partitioned into a collection A of
triples. Let Az = {{0,a2,a2i+1}|2 < i < 3h} U {{0, ao, a3}, {0, ao, a2},{1,
ao,a1},{0,2,a1},{1,2,3}}. Set B = A+ A; + A2 + A3. Then (Y, B) is an
MPT(u, 5) with leave the double edge {{0,1},{0,1}} and contains (X, A)
as a subdesign. This completes the proof.

Lemma 4.5 Let v = 5(mod 6) and u = 2(mod 6). Then an M PT(v,5)
can be embedded in an MPT(u,5) if u> 2v+1.
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Proof: Suppose v=6h+5,u—v=6t+3and 1 <h+1 <t. Let (X, A)
be an MPT (v,5) with leave {{ao,a1},{ao,a1}. By [8], 4(K, V/ Ku_.) can
be partitioned into a collection A; of triples. Let H = {{0,a;}j0 < <
8}U{{i,ai}l4 <4 < 6h+4}U{{0,1},{2,3}} U ({2 +1,2i + 2}|3h 1 2 <
i < 3t}. By (2], (KyV Ku_y) — H can be partitioned into a collection
Az of triples. Let A3 = {{0,a9,a1}}, B = A+ A; + Ao + As. Then
(Y,B) is an MPT(u,5) with leave 1FY = {{i,a:}ld < i < 6h+4) U
{{0,a2},{0, 03}, {0,1},{2,3}, {a0, a1} } U {26 + 1,2i + 2}|3h + 2 < i < 3¢}
and contains (X, A) as a subdesign. This completes the proof.

Lemma 4.6 Let v = 5(mod 6) and u = 2(mod 6). Then an MPT(v,7)
can be embedded in an MPT(u,7) if u> 2v+ 1.

Proof: Let v=6h+5,u—v=6t+3and1 <h+1<t Let (X,A) be
an M PT(v,7) with leave L(v,7) of type Ej.
Case 1. L(v,7) = Cy4 or 22.

Suppose Cy = {{ao, a1}, {a1,02}, {az, a3}, {ao,a3}} and 22 = {{ag,a,},
{a0,a1}, {a2, a3}, {az,a3}}. Let H = {{0,a;}| 0 < i <4}u{{i—4,a;}|5<
i S6h+4}U{{26+1,2i+2}|3h < i < 3t}. By [2, 8], 7(Ky \/ Ku—v)— H can
be partitioned into a collection A, of triples. Let Ay = {{0,a0,a1},{0, a2, a3
}} and B = A+ A1+ Ay. Then (Y, B) is an M PT(u, 7) with leave a 1-factor
on Y and contains (X, A) as a subdesign. The conclusion follows.

Case 2. L(v,7) = oo = {{ag, a1}, {a0, a1}, {a1, a2}, {a1, a2}}.

Let Hy = {{0,a;}|0 < i <3}U{{1,a:}|0 < i < 3}. By [2], there exists a
perfect matching F' on Y such that (K, \/ Ku—y) — (H; + F) can be par-
titioned into a collection A; of triples. Let Hy = {{1,a1},{0,a1},{0,1}}.
Clearly 6(K, \/ Ky—) — H; can also be partitioned into a collection Ap of
triples. Let A3 = {{0, ao, al}a {0’ ai, a2}1 {2) Qo, al}: {Or 1, a3}: {17 0'1,0'2}}
and B = A + A, + Az + A3. Then (Y, B) is an MPT(u,7) with leave a
1-factor on Y and contains (X, A) as a subdesign. The conclusion follows.
Case 3. L(v,7) = 4 = {{az, a3}, {a2, a3}, {a2, a3}, {az, as}}.

Let Hy = {{0,0:}|0 < i < 3} U {{1,a:}|0 < i < 3}. By [2], there exists
a perfect matching F on Y such that (K, \/ Ky—,)— (H1 + F) can be parti-
tioned into a collection A, of triples. Let Hz = {{0,1}, {0, a3}, {0, 1}, {1,as},
{0, a2}, {1, a2}}. Clearly 6(K, \/ Ky—») — Ha can also be partitioned into a
collection Ay of triples. Let A3 = {{0,1, ao}, {0, az, a3}, {0,1, a1}, {0, a2, as},
{1,a2,a3},{1,0a2,a3}}, and B = A + A; + A + A;. Then (Y,B) is an
MPT(u,7) with leave a 1-factor F on Y and contains (X, A) as a subde-
sign. The conclusion follows.
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5 Main results

In this section, we will prove that the necessary condition of Lemma 1.5 is
also sufficient for the embedding of an M PT(v,)) in an M PT(u, A) with
index A > 1.

Lemma 5.1 Ifu > 7, then any T'S(3,2) can be embedded in an M PT(u,2).

Proof: Suppose 7 < u < 14. By Theorem 1.1, we only need to consider the
cases for u € {8,11,14}. We prove the case u = 8, the other cases can be
dealt with in a similar way. Let (X, A) be a T'S(3,2), X = {a;|0 <i < 2}.
Let Y = XUZs, B; = {{0,1,2}}, L =2{{3,4}}, then G = 2K5 — (B, + L)
is a 6-regular spanning subgraph of 2K5 on the vertex set Zs. So G can
be partitioned into three 2-factors Fp, F1, and F. Let B = A+ By +ao *
Fy+a; * Fy + ag * F, then (Y, B) is an M PT(8,2) containing (X, A) as a
subdesign. This completes the proof.
Now we are ready to prove our main theorem.

Theorem 5.2 Letv > 3 and A > 1. Then an MPT (v, A) can be embedded
in an MPT(u, ) if and only if u > 2v 4+ 1.

Proof: The necessity comes from Lemma 1.5. The sufficiency is proved
by combining Theorem 2.2, Lemmas 3.1-3.6, 4.1-4.6, 5.1, and using Table
1 and Construction 2.1 repeatedly.
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